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Magnetic helicity tensor for an anisotropic turbulence
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The evolution of the magnetic helicity tensor for a nonzero mean magnetic field and for large magnetic
Reynolds numbers in an anisotropic turbulence is studied. It is shown that the isotropic and anisotropic parts
of the magnetic helicity tensor have different characteristic times of evolution. The time of variation of the
isotropic part of the magnetic helicity tensor is much larger than the correlation time of the turbulent velocity
field. The anisotropic part of the magnetic helicity tensor changes for the correlation time of the turbulent
velocity field. The mean turbulent flux of the magnetic helicity is calculated as well. It is shown that even a
small anisotropy of turbulence strongly modifies the flux of the magnetic helicity. It is demonstrated that the
tensor of the magnetic part of the effect for weakly inhomogeneous turbulence is determined only by the
isotropic part of the magnetic helicity tensf81063-651X%99)05506-3

PACS numbeps): 47.65+a, 47.27.Eq

. INTRODUCTION duction equation for the magnetic fiell is given by

The magnetic helicitA®™ - H is a fundamental quantity in AHIat=V X (VvXH— 7V XH), (1)
magnetohydrodynamics because it is conserved in the limit
of infinite electrical conductivity of the medium, whek¢ ~ WhereH=B+h, B=(H) is the mean magnetic field;
=V xA® is the magnetic field and® is the magnetic vec- =V +U, V=(v) is the mean fluid velocity field, ang is the
tor potentiaL In addition, the topo|0gica| properties of mag_magnetic diffusion due to electrical CondUCtiVity of fluid.
netic field are determined by the magnetic helicitge, e.g., The equation for the vector potential follows from the
[1,2)). In developed magnetohydrodynamic turbulence thdnduction equatior(1),
mean magnetic helicitya- h) is conserved as well in the
limit of infinite magneti)é Re>ynolds numbers and zero mean oA Gt=vXH= VX (VXA)+ V¢, @
magnetic field, wherér anda are fluctuations of the mag- where H=VXA®, AO=A+a and A=(A®) is the
netic field and the magnetic vector potential, respectively , ~ i .
(see, e.g.,[1,2). The magnetic helicity tensory; mean veEtor potentialp=® + ¢ is an arbitrary scalar func-
=(a;(x)h;(x)) determines the tensor of the magnetic part oftion, and® = (¢). Now we multiply Eq.(1) by a and Eq.(2)
the « effect. The latter is of fundamental importance in view by h, add them, and average over the ensemble of turbulent
of magnetic dynamdsee, e.g.[1-3]). In spite of the great fields. This yields an equation for the magnetic helicity
importance of this quantity, a dynamics of the magnetic he=(ay(x)hy(x)):
licity tensor for an anisotropic turbulence is poorly under-

stood. axlot=—2(uxh)-B—2xn(h-(Vxh))—V.F (3
In the present paper the equation for the magnetic helicity 5
tensor for an anisotropic turbulence and a nonzero meawhere Fp=Vox—XpnVnt(@xu)xB—n(ax(Vxh))

magnetic field, and for large magnetic Reynolds numbers is-{(ax (uxh))—(h¢). Electromotive force for an aniso-
derived. It is shown that the isotropic and anisotropic parts ofropic turbulence is given by

the magnetic helicity tensor have different characteristic A .

times of evolution. The time of variation of the isotropic part (uxh)y=UXB+aB— 7V XB (4)
of the magnetic helicity tensor is much longer than the cor-

relation time of the turbulent velocity field. On the other (see, e.g.[4,5]), where 7= 7mn=(7ppSmn— Tmn)/2, Mmn
hand, the anisotropic part of_ the magnetic helicity tensor_ 7mnt s Bmn={TUmln), (U)n=—V 7ma/2 is the
changes for the correlation time of the turbulent velocity

field. This anisotropic part is determined only by the turbu- ")~ ‘g, ) (B) .

lent magnetic diffusion tensor. The mean turbulent flux of ~ “mn™ @mn: and the tensoram, and ar,, are given by
the magnetic helicity is calculated as well. It is shown that y_ ., _ o ‘

even small anisotropy of turbulence strongly modifies the amn=~[emii{ WOV lj (X)) + i 7 () V mllj (X)) 172,
flux of the magnetic helicity.

velocity caused by the turbulent diamagnetisr?n,= ®mn

=& mji{ Thi(X) V hj(x))
Il. THE EQUATION FOR THE MAGNETIC HELICITY:
SIMPLE APPROACH +&nji{ Thi(X) V mhj(x))1/(20p). (6)

First, we derive an equation for the magnetic helicity for Substituting Eq(4) into Eq. (3) we obtain after simple ma-
an anisotropic turbulence by a simple consideration. The innipulations an equation for the magnetic helicity:
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where we used an identith- (VX h))= (3°x/9XpdY ) o,
andr=y—x. The second and third terms in EF) describe

the sources of the magnetic helicity. Therefore, the mean ;4

magnetic fieldB, the mean electric currentV X B, and the

hydrodynamic helicity are the sources of the magnetic helic-

ity. The first term in Eq(7) determines the relaxation of the
magnetic helicity with the characteristic tinTe which de-
pends on the molecular magnetic diffusign This time is

given by

The characteristic relaxation tinfeof the magnetic helicity
is T~1oRmM (Rm denotes “magnetic Reynolds numbgr”
i.e., it is much longer than the correlation timg=1,/u, of

the turbulent velocity field, wherey is the characteristic

192)(
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IXpdYp

X

)

r=0
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ity field (see, e.g.[9,12)). We also take into account the
dependence of the momentum relaxation time on the scale of
turbulent velocity field:7(k) = 2o(k/ko) 1P, wherep is the
exponent in the spectrum of kinetic turbulent eneigig the
wave number,kozlgl. The equation fory= x, follows
from Eq. (9):

_2,](

+ Vp[spmrv\/nsag;"_vm)(mp_ (4/3)Vp)(]

2

ot +2;7man(VXB)n_2a$rlljr)18mBn

r=0

IXpdY

(11)

(see Appendix A where hereafteV ,=d/JR,, and we used
the gauge condition for the mean vector poten"t;jg,LVpAS
=0. For an isotropic turbulencep(,,= 78m,/3) the gauge
condition is given byV-A=0. The last term in Eq(11)
describes the turbulent flux of the magnetic helicky

= epixis@l) + Vexsp— (4/3)V,x. The mean turbulent flux
of the magnetic helicity depends on the tensor of hydrody-
namic helicitya!” and the mean fluid velocity. Compari-
son of Eq.(11) (which was derived by the path integral

turbulent velocity in the maximum scale of turbulent motionsmethod with Eq. (7) (which was obtained by the simple
lo. The last term in Eq(7) describes the turbulent flux of  considerationshows that these two approaches arrive at the
the magnetic helicity which will be calculated in Sec. Ill. similar equation after the changg®)— a,,,. Note that the
Equation(7) in the case of an isotropic turbulence coincidesmean turbulent flux of the magnetic helicify cannot be

with that derived in6] (see alsd7,8]).

Ill. THE EQUATION FOR THE MAGNETIC HELICITY
TENSOR: METHOD OF PATH INTEGRALS

In this section we derive an equation for the magneti

helicity tensor. To this purpose we use a method of patl

integrals(see, e.g.[5,9-11). This method allows us to de-
rive the equation for the tensaf; = (a;(x)h;(y))r_o:

s Tl

+—(¢, a(v)X, =Voxii +Vixii 6ip) + (9_\/1)(.
&Rp jpl %Is Xis pAij 1X1j Cip (9Rp ip

azan
O’)XpO”yi

ainj

IXij _
7\ 9xp0y,

ot

_277np

NV

— a_|;\):Jij+2ai(§)hsj_a(kus)hsk5ij + &ispSphsjt 1ij
9
(for details, see Appendix AwhereR=(x+Yy)/2,
i :a’i(g)Bst_ a(kvs)BkBsfsij+8ik|<7ulb>BkBj
+ 2, 11pB(9B; 19R,) + Jjj (10)

bij:<hi(x)hj(x)>u ;]ij:<ui(x)uj(x)>u Si:<Ui(X)~b(X)>,
ei=(¢()N;(x),  Jy=eipalt (9 /xp)hs)+dg; IR,
—((dh;/9x;) ¢), and b=V -u. Equation(9) is derived for
the caseV?m =0. We use here thé-correlated in time ran-

calculated by the simple consideration.

The tensory;; can be presented in the forg; = x6;; /3
+ wij;, where the anisotropic part of the magnetic helicity
tensor uj; has the following propertiesu,,=0, and u;;
o Mji - For the calculation of the second spatial derivative
{7 xij 19%pdYp)—o We use the tensok;; (k™ k@) in k
space:

Xij (k(l)yk(z)) =- 5[(kpp5ij - I(ij )X 15— kmn#nm/2kpp)

~ MimKmj— Kimmmj+ Kppitij

+Kmnitnmdij)1/8 72, (12

where
xij 6Y) = [ xij (KO, k) expi (kPx+ kPy) dk Ddk ),

andk;; =k@k{" . The tenson;; (k™,k®) satisfies the iden-
tities k{Mx;;(k™,k®)=0 and y;; (k™ k@)k{?=0. These
identities correspond to the conditios-a=0 and V-h
=0, respectively. Using Eg$8), (12), and(B1) (see Appen-
dix B) we rewrite Eqg.(11) for the magnetic helicity in the
form

axlat+ xIT+V o(Vox) +2a2BmBr— 2 7mBm(V X B),

:Vp(ﬂsfsfplal(g)+vsﬂsp)- (13

dom process to describe a turbulent velocity field. The reEquation(13) implies that the characteristic relaxation time
sults remain valid also for the velocity field with a finite T of the isotropic part of the magnetic helicity tensorTis
correlation time, if the second-order correlation functions of~ 7gRm, i.e., it is much longer than the correlation timg
the magnetic field and the magnetic helicity vary slowly in =14/ugy of the turbulent velocity field. Equation®) and
comparison with the correlation time of the turbulent veloc-(13) yield the equation for the tensar;; :
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ﬂprpi+87Ii*pij—3Mij —36; ﬂ;m/-l*mp _nific.antly changesff the mean f!ux of the magnetic helicity. It
is given by F=V*®"y. Indeed, if we consider, e.g., a small
=(7/110)(375; — 6;)) x + O( 7o/ T), (14)  anisotropy of turbulences~Rm™# (where3<1), then the

- vectorD = al)e,/3+ O(Rm™#). When the mean velocity
where 7 =7 /7,,. We neglected here small terms v js normal to the vectoe (which is typical for astrophysical
~(7o/T) and~ 7oB?. It follows from Eq.(14) that the an-  application we obtain Vef~23v/30. Therefore, a very
isotropic part of the magnetic helicity tensor is determinedsmall anisotropy~ Rm™# changes the mean flux of the mag-
only by the turbulent diffusion tensor. Therefore, the characnetic helicity to 25%. This result is associated with an exis-
teristic time of evolution of the anisotropic paut; of the  tence of a small parameter R which is the ratio of the
magnetic helicity tensor is of the order af, i.e., itis very  relaxation times of anisotropic and isotropic parts of the
small. Solving Eq(14) in the complete set of the eigenfunc- magnetic helicity tensor. Note that the mean magnetic field is
tions of the matrix7;; we obtainu;;=0 wheni#j, ui;  the main source of the magnetic helicity. For zero mean
=M1X, Mao=MoX, and ugs=—(u1+u,)x, Where ;=0  magnetic field the magnetic helicity is very smElb].
wheni#j, and 1= 71, 73,= 72, 73=1—(m+ ), and
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7 sg—(81—82)2/3
H17 130

( 7) e1—(e1—,)%3
2=\ 30 J :
30 8182+(81+82)2/3 APPENDIX A: DERIVATION OF THE EQUATION

FOR THE MAGNETIC HELICITY TENSOR
1= 1/3+ ¢4, andn,=1/3+¢,. In the case of one preferen-
tial direction (g;=e,=g+0) we obtain w,;=u,=7/30.
Whene =0 the anisotropic part of the magnetic helicity ten-
sor uij=0. In the case of one preferential directiay, in
the directione), Egs.(13) and(14) yield

We use a method of path integral@nd modified
Feynman-Kac formula(see, e.g.[5,9—11). The solution of
the induction equatior(1) with the initial condition H(t
=ty,X)=Hy(X) is given by the Feynman-Kac formula
Hi(t,X)=M{G;j;(t,to)Ho;[ &(t,to) ]}, where the functiorG;;

off v - is determined by the equatiaG;; (ts,tg)/ds=N; G,; with
ox1at+ xIT+ Vo (Vp'x) +2a(1BuBn = 2mBm(VXB)n o il condition G, = 3, for t,=tg. Here M{-} is a
=0, (15 ~ mathematical expectation over the ensemble of Wiener
paths,t;=t+s, and N;,=dv;/dx,— Sixb, and the Wiener
where VeT=23v/30+7(e-V)e/10-7(exD)/15, and the path &=&t,ty) is given by §t=x—f{0v(ts,§s)ds
vector D,=al)e,. Equation(15) implies that even small J27w(t), wherew, is a Wiener process. This method al-
anisotropy of turbulence (Rit<e<1) strongly modifies  |ows us to geH, (t+At,X):
the flux of the magnetic helicity.
For a weakly inhomogeneous turbulence the magnetic

part of thea tensor is given by Hi(t+At,x)=H;(t,x)+M

qi(X)At+pi(x)(At)?

2x
97nrrop

afun(r=0)~

(SmnE a’(B) 5mn (16) + \/ﬂQin(X) fAthdU] (Al)
0

(see Appendix @ where «®=2x/(97ruop) and x  (see  Appendix in [5]), where Q= H, VN
= x(R). This implies that the tensor for the magnetic part of _ (y _H.)(V v,,), and

the « effect for weakly inhomogeneous turbulence is deter-

mined only by the isotropic part of the magnetic helicity ¢;=H.,Vwi—vmVmHi—bH+ 7w W,V V,H;(At) "1,
tensor. Thus, the evolutionary equation for the magnetic part

of the a effect in this case is given by pPi=(L/2)H [V (viVwwm—vmV i) — Va(bo;)

da® B + 6inVim(bv ) [+ V  Hy(bv Sin—vmV v

1
+ —+;Vp(VSﬁa(B)p)

at T + 0, V0 mbin 12) + (112)v 0 ViV o Hi ©
—— 977T4ﬂop[a§;]’2]BmBn— NnrBm(V X B)y], (17 Now we use the following identity[V X (7V i<_H)A]k
=Vi(H Vo= HiVame— 7inVoHy),  where 5=
where we used Eq$15) and(16). =(7pp%i; — mi;)/2. This identity can be derived as follows.
Consider the vectorEy=V,(H,V,7)=ViV(Hn7k),
IV. DISCUSSION where 7, is an arbitrary symmetrical tensor, and we use the

We have shown here that an anisotropy of a fluid flowSondition V-H=0. Now we changa—i andi—n. This
strongly modifies the turbulent transport of the magnetic heYields Ex=V Vi(H;7¢,) = Vi(H;V 7+ 74 VoHi). Using
licity. In particular, even small anisotropy of turbulence sig-this equation we calculate the vect®,=V;(H,V .7



PRE 59 MAGNETIC HELICITY TENSOR FOR AN ANISOTROPIC ... 6727

—HVo7ok = 20 Vo) = VitHiVana + 1aVoHi — HiVo N2 =alV 8- ald sy +s.ka$X”6,-s—siskS§X”
— 7 VouH) = Vi (7nbs— 77n5ks)V Hg. Now we introduce 5 5

s R : 77]f Mpt (xy) ¢
the tensorn 7ij= (ﬂpp i 77”)/2 Using the identity + ik v (9_yp5js_25js77fp c?y

Ekim€jnsTmj= 77nk5|s Nindks We obtain C,= [VX(ﬂV
XH)]x. Note that the multiplication of the latter identity and

by eitens Yields the definition of the tensor;Il There-
fore these calculations yield the above identity. Note that

7mn IS an arbitrary symmetrical tensor. Whem,,
=W,,, (where VW,,=0), these identities vyield

[VX(WVXH)],=—-W,,V,V,H,. We also use an +8nji<Tui(X)&Uj(Y)>}/2’
identity v,V ouk=[ipall+ 8knSi— inSc+ Valviwi) 112 J
(see [5]) where all=—(emiviVaw;+en;iviVaw;)/2,

and S,=v,(V-V)—V,(v,vm)/2. Using these equa-
tions we obtaim;, = &imVi(epsHpVnvs), and

SE = (7Un(X)b(Y)) — (1/2) (I 7mnl 3Ys).,

PP =(Tun()UY)),  Bmn= (7 + 7D)12,

Gi = &itmV & misv1Hs = 7(WpWp Smn = WinWi) v=V+u, V=(v), and b=V -u. These tensors satisfy an
X (VX H),1/(2A1), (A2)  identity
Ju
p|:(_1/4)8itmvt[8mlsHsz(Ulvp)_zg(nl]}%Hn < Ui(x) k(y)> [ |kma(XY)+5 S(Xy)
+(Upvp5mn_vmvn)(VXH)n]- (A3) g
. . . — 5 S+ o /2
Equationg/Al)—(A3) yield an equation for the vector poten- IYn

tial A: o _
(see, e.g.[4,5]). Similarly we introducexY? and SY» :

A+ At x)=AD(t,x)+M{ Q(X)At+ Pi(x)(At)? 79— Sm“<Tal:)Ex)uJ )>
275000 [ wader| + ALY, (%)
7Sin(X) o 'm i P +enji TTUJ(V) 2,
(A4)

S0=(7Um(Y)D(X)) = (1/2) (0 mnl 9%n),
whereH=VXA®Y, S =g, H,Vvs,
which satisfy an identity

Qi = eifkv tHi— n(WoW, 85 —wiw; ) (V X H), /(2A1),

Ju;(X
(A5) <7’ a( ) k(y)> Eikp@p) + 8xnSYY
Pi=(—1U4[e;sHsV (U|U )—2a; U)H o
S AL /2_
+(vpvp5in—vivn)(V><H)n], (AB) in ax,

and ¢ is an arbitrary scalar function which depends on theB(yxyr)neans of Eq(A7) we derive an equation for the tensor
gauge condition. Xij

Now we introduce a two-point correlatlon functwﬁxy)
= A —A(t,X)Bj(t,y), where Aj;j=(AL(t,X)H;(t,y)), A“)
~Acta, H=Bi+h, and A=(A), 'B=(H), where + NELBL(X)By(y) + ([ Vi () Th;(y),
equations for the mean fieldA and B are given
by 4B /at—L(B)Bn, Al t=LEB+ VD, LI (x)

=esmVm+ ) = NenEmpiVp. andLi(jB)(X):8ipsvp|—s/?)(x)- whereh;; =(h;(x))h;(y)). The equation for the tenso/

axat=L@ (y) x&+ L0 hyj+ NGLhy

(A8)

Equatlons(Al) (A2)—(A6) yield follows from Eg.(A8) by the changex—y andy—x. Now
we introduce a symmetrical tensog; =V +xP)i2.
A 1t=LD () Ais+ LI OO Hy+ NS H o+ ¢ Consider the cas¥ 7,,,=0. Now we derive an equation for

(A7) the tensory;;(r=0) using Eq.(A8). The result is given by
Eq. (9). For derivation of Eq(9) we use the following iden-
where ¢i; =([Vie(x) IH;(y)), Hij=(Hi(X)H;(y)), tities:
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hes= a®hgj— a{Dhyd; + e16pSphs; + 27 Pxmi
IJkS ks™ Xjs Msj ks ''skij isp Sj mpax 5X|
~  Xij
, (A9)
7]””axpaxn
L@ 00hgj+ L (y)hjs
&ZX(XY) ﬁZX(yX)
a® + + Dol e+
(X)hS] a|s (y)hsj Tpn XX 3YpdY
(xy) (y¥) (xy) 2
IXsi”  IXs] Xij IXi
+V + -V + Al
| ax; dy; ) S( IXs s ) (A10

(B)(X)X y¥) 4 L(B)(y)X(XY)

J
= sjpl(W(al(sv)X%y)) + _(a(v) (g’x)))

Vp J v J
(2 (2o L

X, Sax Yy,  Sdys
N i~ [P P
+Xi +Xi + %pn .
X, Py, YpdYn  IXpdXy
(A11)

The tensora ()= (¥ + a¥¥)/2. Weused here that
(X1 ox+ IxEV19Y ) —0=2[V pxis— (8 /%)) .

The latter identity can be derived as follows:

(ax‘y”) _( ohy(x)
x|\ Tax, ai(y)

_ J &ai )
- (9_)(p<hs(x)ai()/)>_ ths o

r—0

= VpXiS_ ((ﬁai /ﬁXp)hS>.

For the derivation of Eq(11) we used the following identi-
ties:

Silk;/IkaVpBi = — DimBi(V X B)p— BiVi(;‘?sprAs)a

and @,= —V,x/3+0(I§/I3), wherelg is the characteristic
scale of the mean magnetic field variatiohsg,s the maxi-
mum scale of turbulent motions, ahgkl|z .

APPENDIX B: THE DERIVATION OF EQ. (13)

We use here the two-scale approdske, e.qg.[13,14)).

ROGACHEVSKII PRE 59

(Uixu;(y))= f (UKD uj(k@))expli(kWx+kPy)]

x dk®dk®@
=f”f‘ij(r,K)exp(iK-R)dK
zf fij(k,R)exp(ik-r)dk,

where

7”(K,r)=f (Ui(k+K/2)uj(—k+K/2)yexp(ik-r)dk,

fij(k,R)j F{ui(k+K/2)u;(—k+K/2))exp(iK -R)dK,

and R=(x+y)/2, r=y—x, K=kM+k® k=(k?®
—k®™)/2, R andK correspond to the large scales, anahd
k describe the small scales. Using Efj2) we obtain

) =To 1[(377|J 5|])X/10+(77]pﬂp|
r=0

+ 87 Mp— 31ij — 38 Mpmimp) 7],

(B1)
where x(r=0)=[x, exp(K-R)dK dk, ,uij(r=0)
=l exp(K-R)dK dk,  x,=x, (kK), and ]

= Wi *(k,K). In order to obtain Eq(B1) in r space we used
the transformationsik®— g/ax and ik®—algy, and we
assumed a weak inhomogeneity of the magnetic helicity, i.e.,
we neglected the termsO(K) in Eq.(12). We also used the
realizability condition for the magnetic helicitisee, e.g.,
[1]), i.e., we assumed that the spectral densiigsand u.;

«y are localized in the vicinity of the maximum scale of
turbulent motionly. In order to derive Eq(B1) we used the
following integrals:

YijmnE J (kikj kmkn/k4)sin 6do d(p

= (47 15)( 5ij OmnT 5im5nj+ Jin 5mj)y

f (kik;kikekik, /k®)sin 6. do de

:(1/7)(st'”5 +ijsrfslt+Y|fsr51t+Ystt5|r
+Yifst5 +Y|jf55tr Yljtr 5fs)
Equations(B1) and(11) allow us to obtain Eq(13).

APPENDIX C: THE MAGNETIC PART OF THE « EFFECT
FOR WEAKLY INHOMOGENEOUS TURBULENCE

In this appendix we derive a formula for the magnetic part
of a effect for weakly inhomogeneous turbulence. We show
that this tensor is determined by the trace of the magnetic
helicity tensor. The tensorﬁ,?,% for the magnetic part of the

Indeed, let us consider, for example, a correlation function effect is determined by Ed6). Now we calculate
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emji{ Thi(X) Voh;(y))
— &mji€lq f 7(K@)kPKkag(k@)h; (kD))
x exi (kM. x+k®.y)]dkHdk®

k6K xmp)

= f 7( k(z))(kr(nZ)kgl)pr
X exdi(k®.x+k@.y)]1dk®dk®),

where xmn={(am(k@)h,(k®)). Since k@=k+K/2 and
k(U= —k+K/2, we obtain

(B)(r =0)= J T(k)[kmanpp_ Kp(kn)(mp+ kanp)

—KnKnXpp/2+ KpKnXmpt KoKmxnpl
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alP(r=0)~ Snf (K)K2xpp(k,R)AK/ (3uop),

where we used that(kk,/k?)sin §d0 de=(47/3)8yy,. The
spectrum function of the magnetic helicity is given by

%
4mkkg \ ko)

kO q-11-1
SCEUS

x(k,R)=x(R)

where the wave numbek is within interval ko<k<Kk,,

x(R)=[x(k,R)dk, and ko—lol The correlation t|me is
7(k)=270(k/ko)1 9. The integration in the equation for
aB)(r=0) yields

xexdiK -R] dk dK/ugp, (€

2®)r—0) XRUGD {(%)Hf*_l}
0

9(2—4q) nrmop

kO g-17-1
(] ]

X

wherep is the fluid density, ande, is the magnetic perme-
ability. Equation(C1) implies that the main contribution to
the tensor for the magnetic part of theeffect is from the %
trace for the magnetic helicity tensor, i.eq(®)(r=0)

~ [ 7(K)KmKnxpp(K,R) dk/pugp. Now we assume that

Xpp(K,R)=xpp(K,R), i.e., the trace of the magnetic helicity The realizability condition causds, =k, i.e., the magnetic
tensor ink space is isotropi¢it is independent of the direc- helicity is localized at the maximum scale of turbulent mo-

(C2

tion of k). Therefore,

tions (see, e.g.[1,2]). Therefore Eq(C2) yields Eq.(16).
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