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Magnetic helicity tensor for an anisotropic turbulence

N. Kleeorin and I. Rogachevskii
Department of Mechanical Engineering, The Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel

~Received 28 September 1998!

The evolution of the magnetic helicity tensor for a nonzero mean magnetic field and for large magnetic
Reynolds numbers in an anisotropic turbulence is studied. It is shown that the isotropic and anisotropic parts
of the magnetic helicity tensor have different characteristic times of evolution. The time of variation of the
isotropic part of the magnetic helicity tensor is much larger than the correlation time of the turbulent velocity
field. The anisotropic part of the magnetic helicity tensor changes for the correlation time of the turbulent
velocity field. The mean turbulent flux of the magnetic helicity is calculated as well. It is shown that even a
small anisotropy of turbulence strongly modifies the flux of the magnetic helicity. It is demonstrated that the
tensor of the magnetic part of thea effect for weakly inhomogeneous turbulence is determined only by the
isotropic part of the magnetic helicity tensor.@S1063-651X~99!05506-3#

PACS number~s!: 47.65.1a, 47.27.Eq
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I. INTRODUCTION

The magnetic helicityA(t)
•H is a fundamental quantity in

magnetohydrodynamics because it is conserved in the l
of infinite electrical conductivity of the medium, whereH
5“3A(t) is the magnetic field andA(t) is the magnetic vec-
tor potential. In addition, the topological properties of ma
netic field are determined by the magnetic helicity~see, e.g.,
@1,2#!. In developed magnetohydrodynamic turbulence
mean magnetic helicitŷa•h& is conserved as well in the
limit of infinite magnetic Reynolds numbers and zero me
magnetic field, whereh and a are fluctuations of the mag
netic field and the magnetic vector potential, respectiv
~see, e.g., @1,2#!. The magnetic helicity tensorx i j
5^ai(x)hj (x)& determines the tensor of the magnetic part
thea effect. The latter is of fundamental importance in vie
of magnetic dynamo~see, e.g.,@1–3#!. In spite of the great
importance of this quantity, a dynamics of the magnetic
licity tensor for an anisotropic turbulence is poorly unde
stood.

In the present paper the equation for the magnetic heli
tensor for an anisotropic turbulence and a nonzero m
magnetic field, and for large magnetic Reynolds number
derived. It is shown that the isotropic and anisotropic parts
the magnetic helicity tensor have different characteris
times of evolution. The time of variation of the isotropic pa
of the magnetic helicity tensor is much longer than the c
relation time of the turbulent velocity field. On the oth
hand, the anisotropic part of the magnetic helicity ten
changes for the correlation time of the turbulent veloc
field. This anisotropic part is determined only by the turb
lent magnetic diffusion tensor. The mean turbulent flux
the magnetic helicity is calculated as well. It is shown th
even small anisotropy of turbulence strongly modifies
flux of the magnetic helicity.

II. THE EQUATION FOR THE MAGNETIC HELICITY:
SIMPLE APPROACH

First, we derive an equation for the magnetic helicity f
an anisotropic turbulence by a simple consideration. The
PRE 591063-651X/99/59~6!/6724~6!/$15.00
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duction equation for the magnetic fieldH is given by

]H/]t5“3~v3H2h“3H!, ~1!

where H5B1h, B5^H& is the mean magnetic field,v
5V1u, V5^v& is the mean fluid velocity field, andh is the
magnetic diffusion due to electrical conductivity of fluid
The equation for the vector potentialA(t) follows from the
induction equation~1!,

]A(t)/]t5v3H2h“3~“3A(t)!1“w, ~2!

where H5“3A(t), A(t)5A1a, and A5^A(t)& is the
mean vector potential,w5F̃1f is an arbitrary scalar func
tion, andF̃5^w&. Now we multiply Eq.~1! by a and Eq.~2!
by h, add them, and average over the ensemble of turbu
fields. This yields an equation for the magnetic helicityx
5^ap(x)hp(x)&:

]x/]t522^u3h&•B22h^h•~“3h!&2“•F̃ ~3!

where F̃p5Vpx2xpnVn1^a3u&3B2h^a3(“3h)&
1^a3(u3h)&2^hf&. Electromotive force for an aniso
tropic turbulence is given by

^u3h&5U3B1âB2ĥ“3B ~4!

~see, e.g.,@4,5#!, where ĥ[ĥmn5(hppdmn2hmn)/2, hmn

5hdmn1h̃mn , h̃mn5^tumun&, (U)n52“mh̃mn /2 is the
velocity caused by the turbulent diamagnetism,â5amn

5amn
(v)1amn

(B) , and the tensorsamn
(v) andamn

(B) are given by

amn
(v)52@«m ji^tui~x!“nuj~x!&1«n ji^tui~x!“muj~x!&#/2,

~5!

amn
(B)5@«m ji^thi~x!“nhj~x!&

1«n ji^thi~x!“mhj~x!&#/~2m0r!. ~6!

Substituting Eq.~4! into Eq. ~3! we obtain after simple ma
nipulations an equation for the magnetic helicity:
6724 ©1999 The American Physical Society
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]x

]t
522hS ]2x

]xp]yp
D

r→0

12hmnBm~“3B!n22âmnBmBn

2“•F, ~7!

where we used an identitŷh•(“3h)&5(]2x/]xp]yp) r→0,
andr5y2x. The second and third terms in Eq.~7! describe
the sources of the magnetic helicity. Therefore, the m
magnetic fieldB, the mean electric current}“3B, and the
hydrodynamic helicity are the sources of the magnetic he
ity. The first term in Eq.~7! determines the relaxation of th
magnetic helicity with the characteristic timeT which de-
pends on the molecular magnetic diffusionh. This time is
given by

T215
2h

x S ]2x

]xp]yp
D

r 50

. ~8!

The characteristic relaxation timeT of the magnetic helicity
is T;t0Rm ~Rm denotes ‘‘magnetic Reynolds number’’!,
i.e., it is much longer than the correlation timet05 l 0 /u0 of
the turbulent velocity field, whereu0 is the characteristic
turbulent velocity in the maximum scale of turbulent motio
l 0. The last term in Eq.~7! describes the turbulent fluxF of
the magnetic helicity which will be calculated in Sec. I
Equation~7! in the case of an isotropic turbulence coincid
with that derived in@6# ~see also@7,8#!.

III. THE EQUATION FOR THE MAGNETIC HELICITY
TENSOR: METHOD OF PATH INTEGRALS

In this section we derive an equation for the magne
helicity tensor. To this purpose we use a method of p
integrals~see, e.g.,@5,9–11#!. This method allows us to de
rive the equation for the tensorx i j 5^ai(x)hj (y)& r→0:

]x i j

]t
522hS ]2x i j

]xp]yp
D

r 50

22h̃npS ]2xn j

]xp]yi
D

r 50

1
]

]Rp
~« jpla ls

(v)x is2Vpx i j 1Vlx l j d ip!1
]Vj

]Rp
x ip

2
]Vp

]Ri
xp j12a is

(v)hs j2aks
(v)hskd i j 1« ispSphs j1I i j

~9!

~for details, see Appendix A!, whereR5(x1y)/2,

I i j 5a is
(v)BjBs2aks

(v)BkBsd i j 1« ikl^tulb&BkBj

12«kli h̃ lpBk~]Bj /]Rp!1Ji j , ~10!

hi j 5^hi(x)hj (x)&, h̃ i j 5^ui(x)uj (x)&, Si5^ui(x)b(x)&,
w̃ j5^f(x)hj (x)&, Ji j 5« lp ja ls

(v)^(]ai /]xp)hs&1]w̃ j /]Ri

2^(]hj /]xi)f&, and b5“•u. Equation~9! is derived for
the case“h̃ i j 50. We use here thed-correlated in time ran-
dom process to describe a turbulent velocity field. The
sults remain valid also for the velocity field with a finit
correlation time, if the second-order correlation functions
the magnetic field and the magnetic helicity vary slowly
comparison with the correlation time of the turbulent velo
n

-

c
h

-

f

-

ity field ~see, e.g.,@9,12#!. We also take into account th
dependence of the momentum relaxation time on the sca
turbulent velocity field:t(k)52t0(k/k0)12p, wherep is the
exponent in the spectrum of kinetic turbulent energy,k is the
wave number,k05 l 0

21. The equation forx5xpp follows
from Eq. ~9!:

]x

]t
522hS ]2x

]xp]yp
D

r 50

12ĥmnBm~“3B!n22amn
(v)BmBn

1“p@«pmnxnsams
(v)1Vmxmp2~4/3!Vpx# ~11!

~see Appendix A!, where hereafter“p5]/]Rp , and we used
the gauge condition for the mean vector potentialh̃sp“pAs

50. For an isotropic turbulence (h̃mn5h̃dmn /3) the gauge
condition is given by“–A50. The last term in Eq.~11!
describes the turbulent flux of the magnetic helicityFp

5«pltx tsa ls
(v)1Vsxsp2(4/3)Vpx. The mean turbulent flux

of the magnetic helicity depends on the tensor of hydro
namic helicitya i j

(v) and the mean fluid velocityV. Compari-
son of Eq. ~11! ~which was derived by the path integra
method! with Eq. ~7! ~which was obtained by the simpl
consideration! shows that these two approaches arrive at
similar equation after the changeamn

(v)→amn . Note that the
mean turbulent flux of the magnetic helicityF cannot be
calculated by the simple consideration.

The tensorx i j can be presented in the formx i j 5xd i j /3
1m i j , where the anisotropic part of the magnetic helic
tensor m i j has the following properties:mpp50, and m i j
5m j i . For the calculation of the second spatial derivati
(]2x i j /]xp]yp) r 50 we use the tensorx i j (k

(1),k(2)) in k
space:

x i j ~k(1),k(2)!525@~kppd i j 2ki j !~x* /52kmnmnm /2kpp!

2m imkm j2kimmm j1kppm i j

1kmnmnmd i j !]/8pk2, ~12!

where

x i j ~x,y!5*x i j ~k(1),k(2)!expi ~k(1)x1k(2)y!dk(1)dk(2),

andki j 5ki
(2)kj

(1) . The tensorx i j (k
(1),k(2)) satisfies the iden-

tities ki
(1)x i j (k

(1),k(2))50 and x i j (k
(1),k(2))kj

(2)50. These
identities correspond to the conditions“•a50 and “•h
50, respectively. Using Eqs.~8!, ~12!, and~B1! ~see Appen-
dix B! we rewrite Eq.~11! for the magnetic helicity in the
form

]x/]t1x/T1“p~Vpx!12amn
(v)BmBn22ĥmnBm~“3B!n

5“p~ms f« f pla ls
(v)1Vsmsp!. ~13!

Equation~13! implies that the characteristic relaxation tim
T of the isotropic part of the magnetic helicity tensor isT
;t0Rm, i.e., it is much longer than the correlation timet0
5 l 0 /u0 of the turbulent velocity field. Equations~9! and
~13! yield the equation for the tensorm i j :
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h jp* mpi18h ip* mp j23m i j 23d i j hpm* mmp

5~7/10!~3h i j* 2d i j !x1O~t0 /T!, ~14!

where h i j* 5h̃ i j /h̃pp . We neglected here small term
;(t0 /T) and;t0B2. It follows from Eq. ~14! that the an-
isotropic part of the magnetic helicity tensor is determin
only by the turbulent diffusion tensor. Therefore, the char
teristic time of evolution of the anisotropic partm i j of the
magnetic helicity tensor is of the order oft0, i.e., it is very
small. Solving Eq.~14! in the complete set of the eigenfun
tions of the matrixh i j* we obtainm i j 50 when i 5” j , m11

5m1x, m225m2x, and m3352(m11m2)x, where h i j* 50
when iÞ j , andh11* 5h1 , h22* 5h2 , h33* 512(h11h2), and

m15S 7

30D «2
22~«12«2!2/3

«1«21~«11«2!2/3
,

m25S 7

30D «1
22~«12«2!2/3

«1«21~«11«2!2/3
,

h151/31«1, andh251/31«2. In the case of one preferen
tial direction («15«2[«5” 0) we obtain m15m257/30.
When«50 the anisotropic part of the magnetic helicity te
sor m i j 50. In the case of one preferential direction~say, in
the directione), Eqs.~13! and ~14! yield

]x/]t1x/T1“p~Vp
effx!12amn

(v)BmBn22ĥmnBm~“3B!n

50, ~15!

where Veff523V/3017(e•V)e/1027(e3D)/15, and the
vector Dm5amn

(v)en . Equation~15! implies that even smal
anisotropy of turbulence (Rm21!«!1) strongly modifies
the flux of the magnetic helicity.

For a weakly inhomogeneous turbulence the magn
part of thea tensor is given by

amn
(B)~r50!;

2x

9hTm0r
dmn[a (B)dmn ~16!

~see Appendix C!, where a (B)52x/(9hTm0r) and x
5x(R). This implies that the tensor for the magnetic part
the a effect for weakly inhomogeneous turbulence is det
mined only by the isotropic part of the magnetic helic
tensor. Thus, the evolutionary equation for the magnetic
of the a effect in this case is given by

]a (B)

]t
1

a (B)

T
1

1

r
“p~Vp

effa (B)r!

52
4

9hTm0r
@amn

(v)BmBn2ĥmnBm~“3B!n#, ~17!

where we used Eqs.~15! and ~16!.

IV. DISCUSSION

We have shown here that an anisotropy of a fluid fl
strongly modifies the turbulent transport of the magnetic
licity. In particular, even small anisotropy of turbulence s
d
-

ic

f
-

rt

-

nificantly changes the mean flux of the magnetic helicity
is given byF5Veffx. Indeed, if we consider, e.g., a sma
anisotropy of turbulence:«;Rm2b ~whereb,1), then the
vectorDm5app

(v)em /31O(Rm2b). When the mean velocity
V is normal to the vectore ~which is typical for astrophysica
applications! we obtain Veff'23V/30. Therefore, a very
small anisotropy;Rm2b changes the mean flux of the ma
netic helicity to 25%. This result is associated with an ex
tence of a small parameter Rm21 which is the ratio of the
relaxation times of anisotropic and isotropic parts of t
magnetic helicity tensor. Note that the mean magnetic fiel
the main source of the magnetic helicity. For zero me
magnetic field the magnetic helicity is very small@15#.
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APPENDIX A: DERIVATION OF THE EQUATION
FOR THE MAGNETIC HELICITY TENSOR

We use a method of path integrals~and modified
Feynman-Kac formula! ~see, e.g.,@5,9–11#!. The solution of
the induction equation~1! with the initial condition H(t
5t0 ,x)5H0(x) is given by the Feynman-Kac formul
Hi(t,x)5M $Gi j (t,t0)H0 j@j(t,t0)#%, where the functionGi j
is determined by the equationdGi j (ts ,t0)/ds5NikGk j with
the initial condition Gi j 5d i j for ts5t0. Here M $•% is a
mathematical expectation over the ensemble of Wie
paths, ts5t1s, and Nik5]v i /]xk2d ikb, and the Wiener
path jt[j(t,t0) is given by jt5x2* t0

t v(ts ,js)ds

1A2hw(t), wherewt is a Wiener process. This method a
lows us to getHi(t1Dt,x):

Hi~ t1Dt,x!.Hi~ t,x!1M H qi~x!Dt1pi~x!~Dt !2

1A2hQin~x!E
0

Dt

wndsJ ~A1!

~see Appendix in @5#!, where Qin5H j“nNi j
2(“mHi)(“nvm), and

qi5Hm“mv i2vm“mHi2bHi1hwmwn“m“nHi~Dt !21,

pi5~1/2!Hn@“m~v i“nvm2vm“nv i !2“n~bv i !

1d in“m~bvm!#1“mHn~bvmd in2vm“nv i

1vk“kvmd in /2!1~1/2!vmvn“m“nHi .

Now we use the following identity @“3(ĥ“3H)#k

5“ i(Hn“nh̄ki2Hi“nh̄nk2h̄ in“nHk), where ĥ[ĥ i j

5(h̄ppd i j 2h̄ i j )/2. This identity can be derived as follows
Consider the vector Ek5“ i(Hn“nh̄ki)5“ i“n(Hnh̄ki),
whereh̄ki is an arbitrary symmetrical tensor, and we use
condition “•H50. Now we changen→ i and i→n. This
yields Ek5“n“ i(Hi h̄kn)5“ i(Hi“nh̄kn1h̄kn“nHi). Using
this equation we calculate the vectorCk5“ i(Hn“nh̄ki
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2Hi“nh̄nk 2 h̄in“nHk) 5 “i(Hi“nh̄kn 1 h̄kn“nHi 2 Hi“nh̄nk

2h̄in“nHk)5“i@(h̄nkdis2h̄indks)“nHs#. Now we introduce
the tensor ĥ[ĥ i j 5(h̄ppd i j 2h̄ i j )/2. Using the identity
«kim« jnsĥm j5h̄nkd is2h̄ indks we obtain Ck5@“3(ĥ“
3H)#k . Note that the multiplication of the latter identit
by «kit« f ns yields the definition of the tensorĥ i j . There-
fore, these calculations yield the above identity. Note t
h̄mn is an arbitrary symmetrical tensor. Whenh̄mn
5Wmn ~where “Wmn50), these identities yield

@“3(Ŵ“3H)#k52Win“ i“nHk . We also use an
identity v i“nvk5@« ikpāpn

(v)1dknS̄i2d inS̄k1“n(vkvk)#/2

~see @5#! where āmn
(v)52(«m jiv i“nv j1«n jiv i“mv j )/2,

and S̄m5vm(“•v)2“n(vnvm)/2. Using these equa
tions we obtainQin5« i tm“ t(« tpsHp“nvs), and

qi5« i tm“ t@«mlsv lHs2h~wpwpdmn2wmwn!

3~“3H!n#/~2Dt !, ~A2!

pi5~21/4!« i tm“ t@«mlsHs“p~v lvp!22āmn
(v)Hn

1~vpvpdmn2vmvn!~“3H!n#. ~A3!

Equations~A1!–~A3! yield an equation for the vector poten
tial A(t):

Ai
(t)~ t1Dt,x!.Ai

(t)~ t,x!1M H Qi~x!Dt1Pi~x!~Dt !2

1A2hSin~x!E
0

Dt

wndsJ 1Dt“ iw,

~A4!

whereH5“3A(t), Sin5« ipsHp“nvs ,

Qi5« i f kv fHk2h~wpwpd i l 2wiwl !~“3H! l /~2Dt !,
~A5!

Pi5~21/4!@« i lsHs“p~v lvp!22ā in
(v)Hn

1~vpvpd in2v ivn!~“3H!n#, ~A6!

and w is an arbitrary scalar function which depends on
gauge condition.

Now we introduce a two-point correlation functionx i j
(xy)

5Ai j 2Ai(t,x)Bj (t,y), where Ai j 5^Ai
(t)(t,x)H j (t,y)&, Ai

(t)

5Ai1ai , Hi5Bi1hi , and A5^A(t)&, B5^H&, where
equations for the mean fieldsA and B are given
by ]Bm /]t5Lmn

(B)Bn , ]Am /]t5Lmn
(A)Bn1“mF̃, Ls j

(A)(x)

5«sm jVm1as j
(v)2ĥsm«mp j“p , andLi j

(B)(x)5« ips“pLs j
(A)(x).

Equations~A1!, ~A2!–~A6! yield

]Ai j /]t5L js
(B)~y!Ais1Lik

(A)~x!Hk j1Ni jks
(xy)Hks1f i j ,

~A7!

wheref i j 5^@“ iw(x)#H j (y)&, Hi j 5^Hi(x)H j (y)&,
t

e

Ni jks
(xy)5a is

(xy)dk j2aks
(xy)d i j 1« ik fSf

(xy)d js2« iskSj
(xy)

1« i f kS ]h̃ j f

]ys
2

]h̃p f

]yp
d js22d jsh̃ f p

(xy) ]

]yp
D ,

and

amn
(xy)52F«m jiK tui~x!

]uj~y!

]yn
L

1«n ji K tui~x!
]uj~y!

]ym
L G Y 2,

Sm
(xy)5^tum~x!b~y!&2~1/2!~]h̃mn /]yn!,

h̃mn
(xy)5^tum~x!un~y!&, h̃mn5~ h̃mn

(xy)1h̃mn
(yx)!/2,

v5V1u, V5^v&, and b5“•u. These tensors satisfy a
identity

K tui~x!
]uk~y!

]yn
L 5F« ikmamn

(xy)1dknSi
(xy)

2d inSk
(xy)1

]h̃ki

]yn
G Y 2

~see, e.g.,@4,5#!. Similarly we introduceamn
(yx) andSm

(yx) :

amn
(yx)52F«m jiK t

]ui~x!

]xn
uj~y!L

1«n ji K t
]ui~x!

]xm
uj~y!L G Y 2,

Sm
(yx)5^tum~y!b~x!&2~1/2!~]h̃mn /]xn!,

which satisfy an identity

K t
]ui~x!

]xn
uk~y!L 5F« ikpapn

(yx)1dknSi
(yx)

2d inSk
(yx)1

]h̃ki

]xn
G Y 2.

By means of Eq.~A7! we derive an equation for the tenso
x i j

(xy) ,

]x i j
(xy)/]t5L js

(B)~y!x is
(xy)1Lik

(A)~x!hk j1Ni jks
(xy)hks

1Ni jks
(xy)Bk~x!Bs~y!1^@“ if~x!#hj~y!&,

~A8!

wherehi j 5^hi(x))hj (y)&. The equation for the tensorx i j
(yx)

follows from Eq. ~A8! by the changex→y andy→x. Now
we introduce a symmetrical tensor:x i j 5(x i j

(xy)1x i j
(yx))/2.

Consider the case“h̃mn50. Now we derive an equation fo
the tensorx i j (r50) using Eq.~A8!. The result is given by
Eq. ~9!. For derivation of Eq.~9! we use the following iden-
tities:
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Ni jkshks5a is
(v)hs j2aks

(v)hskd i j 1« ispSphs j12h̃mp

]2xm j

]xp]xi

22h̃pn

]2x i j

]xp]xn
, ~A9!

Lis
(A)~x!hs j1Lis

(A)~y!hjs

5a is
(v)~x!hs j1a is

(v)~y!hs j1h̃pnS ]2x i j
(xy)

]xp]xn
1

]2x i j
(yx)

]yp]yn
D

1VsS ]xs j
(xy)

]xi
1

]xs j
(yx)

]yi
D 2VsS ]x i j

(xy)

]xs
1

]x i j
(yx)

]ys
D , ~A10!

L js
(B)~x!x is

(yx)1L js
(B)~y!x is

(xy)

5« jpl S ]

]yp
~a ls

(v)x ip
(xy)!1

]

]xp
~a ls

(v)x is
(yx)! D

2S ]Vp

]xp
1Vs

]

]xs
Dx i j

(yx)2S ]Vp

]yp
1Vs

]

]ys
Dx i j

(xy)

1x ip
(yx) ]Vj

]xp
1x ip

(xy) ]Vj

]yp
1h̃pnS ]2x i j

(xy)

]yp]yn
1

]2x i j
(yx)

]xp]xn
D .

~A11!

The tensoramn
(v)5(amn

(xy)1amn
(yx))/2. Weused here that

~]x is
(yx)/]xp1]x is

(xy)/]yp!r 5052@“px is2^~]ai /]xp!hs&#.

The latter identity can be derived as follows:

S ]x is
(yx)

]xp
D

r→0

5S K ]hs~x!

]xp
ai~y!L D

r→0

5S ]

]xp
^hs~x!ai~y!&2 K ]ai

]xp
hsL D

r→0

5“px is2^~]ai /]xp!hs&.

For the derivation of Eq.~11! we used the following identi-
ties:

« i lk h̃ lpBk“pBi52ĥ imBi~“3B!m2Bi“ i~ h̃sp“pAs!,

and w̃p52Vpx/31O( l 0
2/ l B

2), where l B is the characteristic
scale of the mean magnetic field variations,l 0 is the maxi-
mum scale of turbulent motions, andl 0! l B .

APPENDIX B: THE DERIVATION OF EQ. „13…

We use here the two-scale approach~see, e.g.,@13,14#!.
Indeed, let us consider, for example, a correlation functio
^ui~x!uj~y!&5E ^ui~k(1)!uj~k(2)!&exp@ i ~k(1)x1k(2)y!#

3dk(1)dk(2)

5E f̃ i j ~r ,K !exp~ iK–R!dK

5E f i j ~k,R!exp~ ik–r !dk,

where

f̃ i j ~K ,r !5E ^ui~k1K /2!uj~2k1K /2!&exp~ ik–r !dk,

f i j ~k,R!E *^ui~k1K /2!uj~2k1K /2!&exp~ iK–R!dK ,

and R5(x1y)/2, r5y2x, K5k(1)1k(2), k5(k(2)

2k(1))/2, R andK correspond to the large scales, andr and
k describe the small scales. Using Eq.~12! we obtain

hmp* S ]2x i j

]xm]yp
D

r 50

5t0
21@~3h i j* 2d i j !x/101~h jp* mpi

18h ip* mp j23m i j 23d i j hpm* mmp!/7#,

~B1!

where x(r50)5*x* exp(iK•R)dK dk, m i j (r50)
5*m i j* exp(iK•R)dK dk, x* 5x* (k,K ), and m i j*
5m i j* (k,K ). In order to obtain Eq.~B1! in r space we used
the transformations:ik(1)→]/]x and ik(2)→]/]y, and we
assumed a weak inhomogeneity of the magnetic helicity,
we neglected the terms}O(K ) in Eq. ~12!. We also used the
realizability condition for the magnetic helicity~see, e.g.,
@1#!, i.e., we assumed that the spectral densitiesx* andm i j*
}x are localized in the vicinity of the maximum scale
turbulent motionl 0. In order to derive Eq.~B1! we used the
following integrals:

Yi jmn[E ~kikjkmkn /k4!sinu du dw

5~4p/15!~d i j dmn1d imdn j1d indm j!,

E ~kikjkfksktkr /k6!sinu du dw

5~1/7!~Yf strd i j 1Yj f srd i t1Yi f srd j t1Yj f std ir

1Yi f std j r 1Yi j f sd tr2Yi jtr d f s!.

Equations~B1! and ~11! allow us to obtain Eq.~13!.

APPENDIX C: THE MAGNETIC PART OF THE a EFFECT
FOR WEAKLY INHOMOGENEOUS TURBULENCE

In this appendix we derive a formula for the magnetic p
of a effect for weakly inhomogeneous turbulence. We sh
that this tensor is determined by the trace of the magn
helicity tensor. The tensoramn

(B) for the magnetic part of thea
effect is determined by Eq.~6!. Now we calculate
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«m ji^thi~x!“nhj~y!&

52«m ji« lqiE t~k(2)!kl
(2)kn

(1)^aq~k(2)!hj~k(1)!&

3exp@ i ~k(1)
•x1k(2)

•y!#dk(1)dk(2)

5E t~k(2)!~km
(2)kn

(1)xpp2kp
(2)kn

(1)xmp!

3exp@ i ~k(1)
•x1k(2)

•y!#dk(1)dk(2),

where xmn5^am(k(2))hn(k(1))&. Since k(2)5k1K /2 and
k(1)52k1K /2, we obtain

amn
(B)~r50!5E t~k!@kmknxpp2Kp~knxmp1kmxnp!

2KmKnxpp /21KpKnxmp1KpKmxnp#

3exp@ iK•R# dk dK /m0r, ~C1!

wherer is the fluid density, andm0 is the magnetic perme
ability. Equation~C1! implies that the main contribution to
the tensor for the magnetic part of thea effect is from the
trace for the magnetic helicity tensor, i.e.,amn

(B)(r50)
;*t(k)kmknxpp(k,R) dk/m0r. Now we assume tha
xpp(k,R).xpp(k,R), i.e., the trace of the magnetic helicit
tensor ink space is isotropic~it is independent of the direc
tion of k). Therefore,
-
,

,

-

amn
(B)~r50!;dmn*t~k!k2xpp~k,R!dk/~3m0r!,

where we used that*(kmkn /k2)sinu du dw5(4p/3)dmn. The
spectrum function of the magnetic helicity is given by

x~k,R!5x~R!
c

4pk2k0
S k

k0
D 2q

,

c5~q21!F12S k0

kx
D q21G21

,

where the wave numberk is within interval k0,k,kx ,
x(R)5*x(k,R)dk, and k05 l 0

21. The correlation time is
t(k)52t0(k/k0)12q. The integration in the equation fo
amn

(B)(r50) yields

amn
(B)~r50!;

x~R!~q21!

9~22q!hTm0r F S kx

k0
D 422q

21G
3F12S k0

kx
D q21G21

dmn . ~C2!

The realizability condition causeskx.k0, i.e., the magnetic
helicity is localized at the maximum scale of turbulent m
tions ~see, e.g.,@1,2#!. Therefore Eq.~C2! yields Eq.~16!.
s-

tt.

tt.
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