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Anomalous scalings and dynamics of magnetic helicity

I. Rogachevskii and N. Kleeorin
Department of Mechanical Engineering, The Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
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It is demonstrated that the two-point correlation function of the magnetic helicity in the case of zero mean
magnetic field has anomalous scalings for both compressible and incompressible turbulent helical fluid flow.
The magnetic helicity in the limit of very high electrical conductivity is conserved. This implies that the
two-point correlation function of the conserved property does not necessarily have normal scaling. The reason
for the anomalous scalings of the magnetic helicity correlation function is that the magnetic field in the
equation for the two-point correlation function of the magnetic helicity plays a role of a pumping with
anomalous scalings. It is shown also that when magnetic fluctuations with zero mean magnetic field are
generated the magnetic helicity is very small even if the hydrodynamic helicity is large.
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[. INTRODUCTION the magnetic helicity correlation function is normal, i.e., it
can be obtained from the dimensional argumébts

Problems of intermittency and anomalous scalings for
vector (magneti¢ and scalar fields passively advected by a Il. GOVERNING EQUATIONS
turbulent fluid flow are a subject of active research in the last . ) . ]
years(see, e.g.[1-8)). The anomalous scaling means the We study th.e eyolut_lon of magnetic fluctuations with zero
deviation of the scaling exponents of the correlation functionm€an magnetic field in a low-Mach-number compressible
of a vector(scalay field from their values obtained by the turbulent fluid flow. A mechanism of the generation of mag-
dimensional analysis. An interesting question is the role oftetic fluctuations with a zero mean magnetic field was pro-
the conservation laws in the problem of intermittency andP0sed in[9] and comprises stretching, twisting and folding
anomalous scalings. For the passive scalar advected by iff the original loop of a magnetic field. These nontrivial
compressible and homogeneous turbulent fluid flow thénotions are th_ree_dlmens,lonal and_ result in an amp!|f|cat|on
quantity n? (or T2) is conservedfor infinitely small diffu- of the magnetlc flel_d. The magnetic field is determined by
sivity or thermal conductivity, wheren is the number den- the induction equatiowh/dt+(u-V)h=(h-V)u—h(V-u)
sity of particles, and is the fluid temperature. Correspond- + 7Ah, whereu is the fluid velocity, 7 is the magnetic
ing two-point correlation functiodn(t,x)n(t,y)) has normal cﬁffusmn._We derive equatlo_ns_for the second—orde_r cor_re_la—
scaling (see, e.g.[2,3]). For the passive vectomagnetic  ton functions of the magnetic field apd the magnetic hehqty
field) the quantityh? is not conserved and the second mo-and we use a method of path integrals and modified
ment(h(t,x) - h(t,y)) has anomalous scalingé,7], whereh Feynman-Kac formuldsee, e.g.[l,6—8_,1il). The equation
is the magnetic field. In this case the totatagnetic plus for ~ the  second-order  correlation  function h;
hydrodynamig energy is conserved. On the other hand, the= (hi(t.X)h;(t,y)) of the magnetic field is
magnetic helicity{a(t,x) - h(t,x)) in the limit of very high R R N
electrical conductivity is conserved. Heaeis a vector po- hij 19t=[Li(X) 8js+ Lis(Y) S+ Nijks st 11 (1)
tential of magnetic field, i.eh=V Xa. What is a scaling for
the two-point correlation functiofa(t,x)-h(t,y)) of the
magnetic helicity?

In this paper we show that the two-point correlation func-
tion of magnetic helicity has anomalous scalings for both,
compressible and incompressible turbulent helical fluid flow.
For the helical fluid velocity fieldx(r)#0 [see Eq.(3) be-
low]. The reason for the anomalous scalings is that the mag
netic field in the equation for the two-point correlation func-
tion of magnetic helicity plays a role of a pumping with _s @i+ o fmp 99T I
anomalous scalings. This implies that the two-point correla- IS 9%, dy, ks Yp IXm ks Xp IYn
tion function of the conserved property does not necessarily 5 5 9
have normal scaling. This demonstrates a difference between _ s 9 fpj _ s fip L 8LS I
passive scalar and vector fields. We also study here an exci- K axpdys B axedy, IS axpdy;
tation of the magnetic helicity by a helical turbulent fluid
flow in the case of generation of magnetic fluctuations withand fmn=(7Un(X)Un(y)), and omn is the Kronecker tensor
zero mean magnetic field. Note that for a nonhelical velocityand &y, is the Levi-Civita tensor,»;; = (7pp6i;— 7ij)/2,
field [a(r)=0, see Eq(3) below] the scaling exponent of and U=V-V (7u,u)/2, and amn,=—(em;i{7u;Vau;)

(for details seg7]), where

n 17 “ J
I-ij :Siksa_xk Ssijm+ Asj— nsnﬁmpjﬁ )
P

9 9t Ifmj 9
mn + _5ik
&Xm&yn &Xk&ys ays ﬂXm

1.
_§Nijks: ik Ojsf
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+8nji<7uivmuj>)/21 and Mpm= 77§pm+<’7'upum>a and T(r) is
the scale-dependent momentum relaxation tifre (u), the
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system of equations which is similar to E¢4) and(5) was
derived. However, there are mistakes in the equations de-

tensorl;; is determined by an external source of magneticrived in[12]. Sinceu(r)=Sy/3, Eq.(5) can be rewritten as

fluctuationsy =y—x. We seek a solution for the second mo-

ment of the magnetic field in the form
<hm(x)hn(x+r)>:W(r)5mn+(rW,/2) Pmn
+M(r)8mnprp/21 2

whereP,n= 6mn— I mfn/r2, andW’ =dW/dr. Note that the
current helicity correlation functionu(r)=[(h(x)'(ﬁ
X h(y)))+(h(y)-(VXh(x)))]/2=5x/3, where the mag-
netic helicity correlation function x(r)=[{(a(x)-h(y))

+(h(x)-a(y))1/2, and Sy=x"+4x'/r. The correlation
function (7upu,) is

<7‘Um(X)Un(X+I’)>= Nl (F+F¢)dmnt rF'Pmn/2
+Frmrn/r+a(femngp/2] (3

(see[8]), whereyr=u3,/3 is the turbulent magnetic diffu-

sion, ug is the characteristic velocity in the maximum scale

I, of turbulent motions;ry=1,/uy, F(0)=1—-F.(0). The
function F(r) describes the compressiblpotentia) com-
ponent, whereaB(r) corresponds to the vortical part of the
turbulence. The function a(r)=—[{7u(x)- (VX u(y)))
+{7u(y)- (VXu(x)))1(6ug) "*. In Egs.(2) and (3) the di-
mensionless distanaeis measured in the unitg,.

Ixlat=(x"+4x'Ir)Im+6(ay— a(r))W. (6)
Equation (6) at r=0 is given by @x/dt),—o=2(x"
+4x'/r),—o/Rm. This implies that in a very high electrical
conductivity limit (Rm—o0) the magnetic helicityy(r =0)
=(a(x)-h(x)) is conserved. We seek a solution of EG.
and (6) in the form: W(t,r)=(¥(r)Jm/r?exp(t) and
x(t,r)=(x(r)/r?exp(t), where the functions¥(r) and
x(r) are determined by

P Im(r)—[T+U(r)]¥=v(r)[«"—2x/r?]/9m+I,
(7)

8

and v(r)=6Vm(ag—a(r)), and I=r?/{m, and U(r)
=({%+2¢' +4&)14m(r). We consider the case of small
magnetic Prandtl numbers Rt v/ <1, which is typical for
many astrophysical and geophysical applications, whese
the kinematic viscosity. We choose the following model of
turbulence. Incompressibl€(r) and compressible=(r)
components in the inertial range of turbulenge<r <1 are
given by F(N=(1-r""1Y/(1+0), F(r)=(1

—r9 Yo/(1+ o), whereo is the degree of compressibility,
g is the exponent in spectrum of the functi¢ru,u,), and

«"Im(r)—[T+2/(mr?®)]k=—v(r)¥,

We use here thé-correlated in time random process to r ,=Re Y(3~P) p is the exponent in the spectrum of kinetic

describe a turbulent velocity field. Using the

turbulent energy, and Reugly/v>1 is the Reynolds num-

d-correlated-in-time random process allows us to obtain th@er. Note that the exponeptin the spectrum of kinetic tur-
analytical results for the anomalous scalings of the two-poinbulent energy differs from that of the functigau,,u,,) due
correlation functions of the magnetic field and magnetic heto the scale dependence of the momentum relaxation time

licity. The results remain valid also for the velocity field with

of the turbulent velocity field. The relation betweprandq

a finite correlation time if the second-order correlation func-is q=2p—1 [7]. Equation(4) for a(r)=0 ando=0 was
tions of the magnetic field and magnetic helicity vary slowly derived in[10].

in comparison to the correlation time of the turbulent veloc-
ity field (see, e.g.[1]). We also take into account the depen-

The solution of Egs(7) and(8) can be obtained using an
asymptotic analysigsee, e.g.,[1,6—8). This analysis is

dence of the momentum relaxation time on the scale of thgased on the separation of scales. In particular, the solutions

turbulent velocity field:7(k) = 7ok P, wherep is the expo-
nent in spectrum of kinetic turbulent enerdyjs the wave
number measured in the unitg®.

Using Eqgs(1)—(3) we derive equations for the correlation
functions of the magnetic fiel#/(t,r) and the magnetic he-
licity x(t,r). Indeed,

AW/ at=(W"+ (W' — EW)/m—2(ag— a(r))u+1, (4)

apl ot=9 2(apg— a(r))W+ u/m], (5)
whereag=a(r=0)=—(7u-(V X u))/3 is thea-effect, T is
an external source of magnetic fluctuations, andn1l1/
=2/Rm+2[1-F—(rF.)']/3, and{=4/r+m(1/m)’, and
E=2m(f'+2f)/r, and f=F+rF'/3, and f.=F;
+rF /3, and Rm=uglg/7>1 is the magnetic Reynolds
number, and the functionS(r) and F.(r) are determined
below. Equationg4) and (5) are written in dimensionless
variables: coordinates and time are measured in the Lits
and g, the velocity is measured in the unitig, the mag-
netic field is measured in the uniB,. Note that in[12] the

of the Schrdinger equation$§7) and(8) with a variable mass
have different regions where the form of the potentidl),
massm(r) and, therefore, eigenfunctions(r) and«(r) are
different. Solutions in these different regions can be matched
at their boundaries. The results obtained by this asymptotic
analysis are presented below.

IIl. ANOMALOUS SCALINGS

We study a zero mode, i.e., we obtain the solutions of
Egs.(7) and(8) atI'=0. In this case Eqg.7) and (8) are
given by

Y im(r)—-0(r¥=lI, 9)

K"—2klr?=—v(rym¥, (10

where U(r)=U(r)—4m(ap—a(r))?, and the function
a(r)=ag(1—r971) for 0O<r=<1, and a(r)=0 for r>1,
and the external source of magnetic fluctuatibfs) =1,(1
—r9%) for 0<r=<1, andI(r)=0 for r>1, ands>0. The
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solutions of Eqs(9) and (10) have three characteristic re- e=—qg/2—1+ib(o,q). This anomalous scaling corresponds

gions. In region |, i.e., for &r<Rm Y=Y, the functions
W(r) and x(r) are given byW(r)=1,(1—BoRmrd=1),
and x(r)=B;+aj;aoRmrd™l  where Bo=pBm+&o(q
—1)/(q+2), andl, ~1y Rm@*22G-1) anda,;=A,/[(q
+1)(g+4)], and B,=(1+qo)/3(1+0o), and &=(1
+20)(2+09)(q—1)/3(1+0o). In region I, ie., for
Rm Y@~ Y<r<1, the functionsW(r) and x(r) are given
by

W(r)=A,mY% ~32cogblnr+ ¢+ Wy, (11
x(r)=B,+B3/r3+ayag Re(r (@2 1t - (19)

whereWy= —1or3~9[28,((4—q/2)?+|b|?)], and

b2 g’—4\(3+o(4—q)
4 1+qo )’
(3A2/2) ™

(1= /2)2+ b (4—gr2)2+ b )]

Note that whem=2 the parameteb is a complex number
and Rér (@2-1Fbh = ~d2+1 50 Inr), and whenq<2
the parameteb is a real number. Fog<2 the solution for
W(r) is given byW(r)=mY% =34 A,r ~1°l+ A rlPhy. In re-
gion Il (r>1), the functionswW(r)=Azr ~?(3ag cos(3xr)
—r~1sin(3aqr)), and x(r)=B,/r3—6Azaqr 1sin(3aqr),

to the deviation from the condition of the constant flux of
magnetic fluctuations over the spectrum. It describes the case
2<g<3. When I q<2 the anomalous exponent in a low-
Mach-number compressible turbulent flow is real, i.e.,
=—q/2—-1+|b(o,q)|. In the case of incompressible turbu-
lent flow (c=0) and 1<q<2 this result coincides with that
obtained in[4]. For incompressible turbulent flow and 2
<g<3 the anomalous scaling of magnetic field is the com-
plex numbere=—qg/2—1—ib (6=0,), see[7].

Now we discuss solutions for the correlation function of
the magnetic helicity. The last term in Eq(12)
«Re{r (#2714 corresponds to the anomalous scaling for
the magnetic helicity correlation function. The magnetic he-
licity xo=x (r=0) in the limit of very large electrical con-
ductivity is conserved. This means that the two-point corre-
lation function of conserved property has anomalous scaling.
The reason for the anomalous scalings of the magnetic he-
licity correlation function is that the magnetic field in the
equation for the two-point correlation function of the mag-
netic helicity plays a role of a pumping with anomalous scal-
ings [see Eqs(9) and (10)]. This demonstrates a difference
between passive vectdmagnetic fieldd and passive scalar.
Indeed, the quantitp? (or T?) in incompressible and homo-
geneous turbulent fluid flow is conservédr infinitely small
diffusivity or thermal conductivity. Corresponding two-
point correlation function has normal scaling. On the other
hand, the magnetic helicity is conserved and the two-point
correlation function of magnetic helicity has anomalous scal-

where we take into account the boundary condition foring for a turbulent helical velocity field. Thus we demon-

the function x(r), i.e., x(r)—0 for r—o, and a con-
dition x(r)—0 for a;—0. Matching the functiondN(r)

strated here that two-point correlation function of the con-
served property does not necessarily have normal scaling.

and W'(r) at the boundaries of these regions yieldsnote that the nonlinear effectse., self-consistent dynamics
A1=Ay~Ag~Ag~lo. On the other hand, matching the in which the back-reaction of the Lorentz force is consid-
functions x(r) and x'(r) at the boundaries of the regions ered are important when the amplitude of the magnetic field

yields B;~lqao RMY722@-1) for 2<qg<3, and B,
~lgag Rm72+20)2@-1) for 1<q<2, andB,~lqyaq for
1<q=<3, andB;~Igay Rm &~ 920-1) for 2<g<3, and
Bs~1gag RMA~6720)2@-1) for 1 <q<2.

is enough large, i.e., wheth?)/47~(pu?). In this section
we consider the case when there is no magnetic dynamo, i.e.,
the magnetic fluctuations are sustained by an external source
I. The obtained results are valid when the external souige

The magnetic fluctuations are excited when the magnetiaot very strong, i.e.] 7/4w<(pu?), and the nonlinear ef-
Reynolds number RmRm™, where the critical magnetic fects are not important.

Reynolds number Rfhis found in[7]. For incompressible
fluid =0 andp=5/3 (Kolmogorov turbulencethe critical

magnetic Reynolds number Rifi=412, while for com-
pressible fluid flowo=0.1 the value RA"=740. For a

IV. DYNAMICS OF MAGNETIC HELICITY

Now, we consider the case RaRm™, i.e., when the

larger parameter of compressibility the critical magneticmagnetic fluctuations with zero mean magnetic field are ex-

Reynolds number increases sharply up to/®m 10 (see,
[7]). First, we consider the case RoRm™, i.e., when there

cited. What is the dynamics of the magnetic helicity in a
helical turbulent fluid flow? Equationé7) and (8) can be

is no self-excitation of the magnetic fluctuations. In this casgewritten in the form Q+V)X=TX, whereX is the vector-
the magnetic fluctuations are sustained by an external sourceelomn with the component;=¥, and X,=«, and the

The first term in Eq(11) for the correlation function of the
magnetic fieldW(r) in the inertial range is given by,

~r =921 cospInr+¢p). This corresponds to the anomalous
scaling of the magnetic fluctuations. The normal scaling for,
the second moment of the magnetic fluctuations is given b

the second term in Eq11): Wy~r3~9. The general solution

of equation for the second-order correlation function of mag
netic fieldW(r) includes solutions describing the anomalous

and normal scalings. The anomalous scaling/,

matrix Q=Q;;=0, wheni+j, and Q;;=(d%dr?—U)/m,
and Q= (d?/dr2—2/r%)/m, and the matrixV=V;;=0,
when i=j, and V;,=—(d%dr?—2/r?)/9m, and V,,=1.

e consider the modes which satisfy the following property:
he changex(r)— — «(r) in Egs.(7) and (8) results in the
changex(r)— — «(r) and¥(r)—¥(r). We seek a solution

of this equation in the fornX==,_,x&+ [y(y)E(y)dy,
where the eigenfunctiong, and E(y) satisfy to the equa-

~r~92-1gospInr+gy) can be presented as the real part oftions: Qac= @& and QE(y)=yE(y). _Here g is the
the power-law functionr¢ with the complex exponent vector-colomn with the componentg, =WV, ande, =0,
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andE(y) is the vector-colomn with the componeriig=0,  tion are decoupled. This implies that the magnetic helicity
and E,=x(y). The functions¥ (r) and %(r) are deter- &0 only relaxate from ;he |n!t|§1l value. In helical turbulence
mined by Eqs(7) and (8) with the conditiona(r)=0. The [(r)#0] the magnetic helicityx(r) depends onW(r).
equation for the functiom, describes nonhelical component TNiS implies that the eigenfunctio, of the discrete spec-
of the magnetic field correlation function and it has discretd™im is modified, i.e., it has spiral and nonspiral components:
spectrum. On the other hand, the equation for the functio®ip="Yp and exp=«,, where kp(r)=[gx(—N\,r)Vp(\)/
E(y) determines helical component of the magnetic field[yp+)\]d)\+0(s3), and A\=|y|, and \prz\TprrO(sZ),
corr(_alation function and it has continuo_us spectrum. Theyng Vp()\)=(1/S(—)\))fv(r’)m(r’)7<(—)\,r)\lfp(r’)dr’.
continuous spectrum corresponds#ec0, i.e., it describes ysing this equation we calculate the magnetic helicity
the relaxation of the magnetic helicity correlation function., (r—0).  The result is given by x(r=0)
The discrete spectrum of the equation for the functlon~_4aoTO Rm~(@*22@-\w(r=0), where W(r=0)

8 corresponds to the generation of the magnetic fluc—y, exp(y,). For nonhelical turbulence there is only the
tuations (/,>0). The normalize conditions for th? €I9€N- relaxation of the initial magnetic helicity(t=0)+#0. On
functions g and E(y) are given by m(r)ae,dr  the other hand, for helical turbulence the magnetic helicity is
=T(K) Sp, andm(r)E"(y)E(y")dr=S()8(y—7'). The  excited due to the growth of magnetic fluctuations. However,
standard procedure used in quantum mechanicghe magnitude of the magnetic helicity is very small even if
(see, e.g.[13)) yields the equations for the functiong,  the hydrodynamic helicity is large, i.e.,x(r=0)
and y(y), ie, (rp=I)x=L(y), and C-7)y(v)  =-4ayrW(r=0)/Rm3 where we use the Kolmogorov
=N(x), where N(xX)=(1/S(y))fv(r)m(r)«(r)x(r)dr, spectrum p=5/3. The realizability condition M (k)
and L(y)=(/T(E)o()T(r)m(r)y(r)dr, and x(r)  =|x(kK)[k (s%?, e-g-|[14]) eflllovr\]/s us to es_timar:el_the maxi-
=EOC: ka];',k(r), and';/(r)zfy(,yr);(,yl)d,yl Now we use mum pOS:Sl ? value of the magnetlc elClthax

a pel:(rttljrbation theorysee, e.g.[13)), i.e., we seek the solu- ~loW Rm~ (675, Whe_re/g(hz_)SfM(k)d.k. Therefore x(r
tions of the above equations in the form of seresZ(® = 0)/Xmax~ (ao/Ug)RM™¥797%<1. This means that the
tezWy g2z .. whereZ=x,;y;T. The small param- magnetic helicity with zero mean magnetic field is very

eter is e~Rm (4+2/2@-1) (see below The perturbation small even if the hydrodynamic helicity is large. Only non-
theory yields I®*D=0, and Iﬂ(o)'_ y and T® zero mean magnetic field can create large magnetic helicity
— Y, - p:

=—Ly®)/xP, and y@=0, and y®=N(x) (see, e.g.[15]).
(vp— ), andxP** =0, andx(V=1, andx{?) is deter-
mined by equatioN(x®)(y,—y)=T®y®), etc.

For nonhelical turbulenclex(r)= 0] the helicalw(r) and We thank Dmitry Sokoloff for stimulating discussions
nonhelicalW(r) parts of the magnetic field correlation func- and valuable suggestions.
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