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Anomalous scalings and dynamics of magnetic helicity

I. Rogachevskii and N. Kleeorin
Department of Mechanical Engineering, The Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel

~Received 8 June 1998!

It is demonstrated that the two-point correlation function of the magnetic helicity in the case of zero mean
magnetic field has anomalous scalings for both compressible and incompressible turbulent helical fluid flow.
The magnetic helicity in the limit of very high electrical conductivity is conserved. This implies that the
two-point correlation function of the conserved property does not necessarily have normal scaling. The reason
for the anomalous scalings of the magnetic helicity correlation function is that the magnetic field in the
equation for the two-point correlation function of the magnetic helicity plays a role of a pumping with
anomalous scalings. It is shown also that when magnetic fluctuations with zero mean magnetic field are
generated the magnetic helicity is very small even if the hydrodynamic helicity is large.
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PACS number~s!: 47.65.1a, 47.27.Eq
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I. INTRODUCTION

Problems of intermittency and anomalous scalings
vector ~magnetic! and scalar fields passively advected by
turbulent fluid flow are a subject of active research in the
years ~see, e.g.,@1–8#!. The anomalous scaling means t
deviation of the scaling exponents of the correlation funct
of a vector~scalar! field from their values obtained by th
dimensional analysis. An interesting question is the role
the conservation laws in the problem of intermittency a
anomalous scalings. For the passive scalar advected b
compressible and homogeneous turbulent fluid flow
quantity n2 ~or T2) is conserved~for infinitely small diffu-
sivity or thermal conductivity!, wheren is the number den-
sity of particles, andT is the fluid temperature. Correspon
ing two-point correlation function̂n(t,x)n(t,y)& has normal
scaling ~see, e.g.,@2,3#!. For the passive vector~magnetic
field! the quantityh2 is not conserved and the second m
ment^h(t,x)•h(t,y)& has anomalous scalings@4,7#, whereh
is the magnetic field. In this case the total~magnetic plus
hydrodynamic! energy is conserved. On the other hand,
magnetic helicity^a(t,x)•h(t,x)& in the limit of very high
electrical conductivity is conserved. Herea is a vector po-
tential of magnetic field, i.e.,h5“3a. What is a scaling for
the two-point correlation function̂a(t,x)•h(t,y)& of the
magnetic helicity?

In this paper we show that the two-point correlation fun
tion of magnetic helicity has anomalous scalings for bo
compressible and incompressible turbulent helical fluid flo
For the helical fluid velocity fielda(r )Þ0 @see Eq.~3! be-
low#. The reason for the anomalous scalings is that the m
netic field in the equation for the two-point correlation fun
tion of magnetic helicity plays a role of a pumping wi
anomalous scalings. This implies that the two-point corre
tion function of the conserved property does not necessa
have normal scaling. This demonstrates a difference betw
passive scalar and vector fields. We also study here an e
tation of the magnetic helicity by a helical turbulent flu
flow in the case of generation of magnetic fluctuations w
zero mean magnetic field. Note that for a nonhelical veloc
field @a(r )50, see Eq.~3! below# the scaling exponent o
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r

t

n

f
d
in-
e

-

e

-
,
.

g-

-
ily
en
ci-

y

the magnetic helicity correlation function is normal, i.e.,
can be obtained from the dimensional arguments@5#.

II. GOVERNING EQUATIONS

We study the evolution of magnetic fluctuations with ze
mean magnetic field in a low-Mach-number compressi
turbulent fluid flow. A mechanism of the generation of ma
netic fluctuations with a zero mean magnetic field was p
posed in@9# and comprises stretching, twisting and foldin
of the original loop of a magnetic field. These nontrivi
motions are three dimensional and result in an amplificat
of the magnetic field. The magnetic field is determined
the induction equation]h/]t1(u•“)h5(h•“)u2h(“•u)
1hDh, where u is the fluid velocity,h is the magnetic
diffusion. We derive equations for the second-order corre
tion functions of the magnetic field and the magnetic helic
and we use a method of path integrals and modifi
Feynman-Kac formula~see, e.g.,@1,6–8,11#!. The equation
for the second-order correlation function hi j
5^hi(t,x)hj (t,y)& of the magnetic field is

]hi j /]t5@ L̂ ik~x!d js1L̂ js~y!d ik1N̂i jks#hks1I i j ~1!

~for details see@7#!, where

L̂ i j 5« iks

]

]xk
F«sm jUm1as j2ĥsm«mp j

]

]xp
G ,

1

2
N̂i jks5d ikd jsf mn

]2

]xm]yn
1

]2f i j

]xk]ys
2d ik

] f m j

]ys

]

]xm

2d js

] f in

]xk

]

]yn
1d ikd js

] f mp

]yp

]

]xm
1d ikd js

] f pn

]xp

]

]yn

2d ik

]2f p j

]xp]ys
2d js

]2f ip

]xk]yp
1d ikd js

]2f pl

]xp]yl
,

and f mn5^tum(x)un(y)&, and dmn is the Kronecker tenso
and « ikm is the Levi-Civita tensor,ĥ i j 5(hppd i j 2h i j )/2,
and U5V2“p^tupu&/2, and amn52(«m ji^tui“nuj&
3008 ©1999 The American Physical Society
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1«nji^tui“muj&)/2, and hpm5hdpm1^tupum&, and t(r ) is
the scale-dependent momentum relaxation time,V5^u&, the
tensorI i j is determined by an external source of magne
fluctuations,r5y2x. We seek a solution for the second m
ment of the magnetic field in the form

^hm~x!hn~x1r !&5W~r !dmn1~rW8/2!Pmn

1m~r !«mnpr p /2, ~2!

wherePmn5dmn2r mr n /r 2, andW85dW/dr. Note that the
current helicity correlation functionm(r )5@^h(x)•„“W

3h(y)…&1^h(y)•„“W 3h(x)…&#/25Ŝx/3, where the mag-
netic helicity correlation function x(r )5@^a(x)•h(y)&
1^h(x)•a(y)&#/2, and Ŝx5x914x8/r . The correlation
function ^tumun& is

^tum~x!un~x1r !&5hT@~F1Fc!dmn1rF 8Pmn /2

1Fc8r mr n /r 1a~r !«mnpr p /2# ~3!

~see@8#!, wherehT5u0
2t0 /3 is the turbulent magnetic diffu

sion, u0 is the characteristic velocity in the maximum sca
l 0 of turbulent motions,t05 l 0 /u0 , F(0)512Fc(0). The
function Fc(r ) describes the compressible~potential! com-
ponent, whereasF(r ) corresponds to the vortical part of th
turbulence. The function a(r )52@^tu(x)•„“W 3u(y)…&
1^tu(y)•„“W 3u(x)…&#(6u0)21. In Eqs. ~2! and ~3! the di-
mensionless distancer is measured in the unitsl 0 .

We use here thed-correlated in time random process
describe a turbulent velocity field. Using th
d-correlated-in-time random process allows us to obtain
analytical results for the anomalous scalings of the two-po
correlation functions of the magnetic field and magnetic
licity. The results remain valid also for the velocity field wit
a finite correlation time if the second-order correlation fun
tions of the magnetic field and magnetic helicity vary slow
in comparison to the correlation time of the turbulent velo
ity field ~see, e.g.,@1#!. We also take into account the depe
dence of the momentum relaxation time on the scale of
turbulent velocity field:t(k)5t0k12p, wherep is the expo-
nent in spectrum of kinetic turbulent energy,k is the wave
number measured in the unitsl 0

21 .
Using Eqs.~1!–~3! we derive equations for the correlatio

functions of the magnetic fieldW(t,r ) and the magnetic he
licity x(t,r ). Indeed,

]W/]t5~W91zW82jW!/m22„a02a~r !…m1 Ĩ , ~4!

]m/]t5Ŝ@2„a02a~r !…W1m/m#, ~5!

wherea05a(r 50)52^tu•(“W 3u)&/3 is thea-effect, Ĩ is
an external source of magnetic fluctuations, and 1m
52/Rm12@12F2(rF c)8#/3, andz54/r 1m(1/m)8, and
j52m( f 812 f c8)/r , and f 5F1rF 8/3, and f c5Fc

1rF c8/3, and Rm5u0l 0 /h@1 is the magnetic Reynold
number, and the functionsF(r ) and Fc(r ) are determined
below. Equations~4! and ~5! are written in dimensionles
variables: coordinates and time are measured in the unil 0
and t0 , the velocity is measured in the unitsu0 , the mag-
netic field is measured in the unitsB0 . Note that in@12# the
c
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system of equations which is similar to Eqs.~4! and~5! was
derived. However, there are mistakes in the equations
rived in @12#. Sincem(r )5Ŝx/3, Eq.~5! can be rewritten as

]x/]t5~x914x8/r !/m16„a02a~r !…W. ~6!

Equation ~6! at r 50 is given by (]x/]t) r 5052(x9
14x8/r ) r 50 /Rm. This implies that in a very high electrica
conductivity limit (Rm→`) the magnetic helicityx(r 50)
[^a(x)•h(x)& is conserved. We seek a solution of Eqs.~4!
and ~6! in the form: W(t,r )5„C(r )Am/r 2

…exp(Gt) and
x(t,r )5„k(r )/r 2

…exp(Gt), where the functionsC(r ) and
k(r ) are determined by

C9/m~r !2@G1U~r !#C5v~r !@k922k/r 2#/9m1I ,
~7!

k9/m~r !2@G12/~mr2!#k52v~r !C, ~8!

and v(r )56Am„a02a(r )…, and I 5r 2 Ĩ /Am, and U(r )
5(z212z814j)/4m(r ). We consider the case of sma
magnetic Prandtl numbers Prm5n/h!1, which is typical for
many astrophysical and geophysical applications, wheren is
the kinematic viscosity. We choose the following model
turbulence. IncompressibleF(r ) and compressibleFc(r )
components in the inertial range of turbulencer d,r ,1 are
given by F(r )5(12r q21)/(11s), Fc(r )5(1
2r q21)s/(11s), wheres is the degree of compressibility
q is the exponent in spectrum of the function^tumun&, and
r d5Re21/(32p), p is the exponent in the spectrum of kinet
turbulent energy, and Re5u0l 0 /n@1 is the Reynolds num-
ber. Note that the exponentp in the spectrum of kinetic tur-
bulent energy differs from that of the function^tumun& due
to the scale dependence of the momentum relaxation timt
of the turbulent velocity field. The relation betweenp andq
is q52p21 @7#. Equation~4! for a(r )50 ands50 was
derived in@10#.

The solution of Eqs.~7! and~8! can be obtained using a
asymptotic analysis~see, e.g.,@1,6–8#!. This analysis is
based on the separation of scales. In particular, the solut
of the Schro¨dinger equations~7! and~8! with a variable mass
have different regions where the form of the potentialU(r ),
massm(r ) and, therefore, eigenfunctionsC(r ) andk(r ) are
different. Solutions in these different regions can be matc
at their boundaries. The results obtained by this asympt
analysis are presented below.

III. ANOMALOUS SCALINGS

We study a zero mode, i.e., we obtain the solutions
Eqs. ~7! and ~8! at G50. In this case Eqs.~7! and ~8! are
given by

C9/m~r !2Ũ~r !C5I , ~9!

k922k/r 252v~r !mC, ~10!

where Ũ(r )5U(r )24m(a02a(r ))2, and the function
a(r )5a0(12r q21) for 0<r<1, and a(r )50 for r .1,
and the external source of magnetic fluctuationsĨ (r )5I 0(1
2r s) for 0<r<1, and Ĩ (r )50 for r .1, and s.0. The
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solutions of Eqs.~9! and ~10! have three characteristic re
gions. In region I, i.e., for 0<r<Rm21/(q21), the functions
W(r ) and x(r ) are given byW(r )5I * (12b0 Rmr q21),
and x(r )5B11a1a0 Rmr q11, where b05bm1j0(q
21)/(q12), and I * ;I 0 Rm(q12)/2(q21), and a15A1 /@(q
11)(q14)#, and bm5(11qs)/3(11s), and j05(1
12s)(21q)(q21)/3(11s). In region II, i.e., for
Rm21/(q21)!r !1, the functionsW(r ) and x(r ) are given
by

W~r !5A2m1/2r 23/2cos~b ln r 1w0!1WN , ~11!

x~r !5B21B3 /r 31a2a0 Re$r 2~q/2211 ib !%, ~12!

whereWN52I 0r 32q/@2bm((42q/2)21ubu2)#, and

b25S q224

4 D S 31s~42q!

11qs D ,

a25
~3A2 /A2!bm

23/2

@„~12q/2!21ubu2
…„~42q/2!21ubu2

…#1/2
.

Note that whenq>2 the parameterb is a complex number
and Re$r 2(q/2211 ib)%5r 2q/211 cos(b ln r), and whenq,2
the parameterb is a real number. Forq,2 the solution for
W(r ) is given byW(r )5m1/2r 23/2(A2r 2ubu1A4r ubu). In re-
gion III ( r @1), the functionsW(r )5A3r 22

„3a0 cos(3a0r)
2r21 sin(3a0r)…, and x(r )5B4 /r 326A3a0r 21 sin(3a0r),
where we take into account the boundary condition
the function x(r ), i.e., x(r )→0 for r→`, and a con-
dition x(r )→0 for a0→0. Matching the functionsW(r )
and W8(r ) at the boundaries of these regions yiel
A1;A2;A3;A4;I 0 . On the other hand, matching th
functions x(r ) and x8(r ) at the boundaries of the region
yields B1;I 0a0 Rm(q22)/2(q21) for 2<q<3, and B1

;I 0a0 Rm(q2212b)/2(q21) for 1,q,2, and B2;I 0a0 for
1,q<3, andB3;I 0a0 Rm2(82q)/2(q21) for 2<q<3, and
B3;I 0a0 Rm(q2612b)/2(q21) for 1,q,2.

The magnetic fluctuations are excited when the magn
Reynolds number Rm.Rmcr, where the critical magnetic
Reynolds number Rmcr is found in @7#. For incompressible
fluid s50 andp55/3 ~Kolmogorov turbulence! the critical
magnetic Reynolds number Rm(cr)5412, while for com-
pressible fluid flows50.1 the value Rm(cr)5740. For a
larger parameter of compressibility the critical magne
Reynolds number increases sharply up to Rm(cr);106 ~see,
@7#!. First, we consider the case Rm,Rmcr, i.e., when there
is no self-excitation of the magnetic fluctuations. In this ca
the magnetic fluctuations are sustained by an external sou
The first term in Eq.~11! for the correlation function of the
magnetic fieldW(r ) in the inertial range is given byWA
;r 2q/221 cos(b ln r1w0). This corresponds to the anomalo
scaling of the magnetic fluctuations. The normal scaling
the second moment of the magnetic fluctuations is given
the second term in Eq.~11!: WN;r 32q. The general solution
of equation for the second-order correlation function of m
netic fieldW(r ) includes solutions describing the anomalo
and normal scalings. The anomalous scalingWA
;r 2q/221 cos(b ln r1w0) can be presented as the real part
the power-law functionr e with the complex exponen
r

ic

e
ce.

r
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-

f

e52q/2211 ib(s,q). This anomalous scaling correspon
to the deviation from the condition of the constant flux
magnetic fluctuations over the spectrum. It describes the c
2,q,3. When 1,q,2 the anomalous exponent in a low
Mach-number compressible turbulent flow is real, i.e.,e
52q/2211ub(s,q)u. In the case of incompressible turbu
lent flow (s50) and 1,q,2 this result coincides with tha
obtained in @4#. For incompressible turbulent flow and
,q,3 the anomalous scaling of magnetic field is the co
plex numbere52q/2212 ib (s50,q), see@7#.

Now we discuss solutions for the correlation function
the magnetic helicity. The last term in Eq.~12!
}Re$r 2(q/2211 ib)% corresponds to the anomalous scaling
the magnetic helicity correlation function. The magnetic h
licity x05x (r 50) in the limit of very large electrical con
ductivity is conserved. This means that the two-point cor
lation function of conserved property has anomalous scal
The reason for the anomalous scalings of the magnetic
licity correlation function is that the magnetic field in th
equation for the two-point correlation function of the ma
netic helicity plays a role of a pumping with anomalous sc
ings @see Eqs.~9! and ~10!#. This demonstrates a differenc
between passive vector~magnetic field! and passive scalar
Indeed, the quantityn2 ~or T2) in incompressible and homo
geneous turbulent fluid flow is conserved~for infinitely small
diffusivity or thermal conductivity!. Corresponding two-
point correlation function has normal scaling. On the oth
hand, the magnetic helicity is conserved and the two-po
correlation function of magnetic helicity has anomalous sc
ing for a turbulent helical velocity field. Thus we demo
strated here that two-point correlation function of the co
served property does not necessarily have normal sca
Note that the nonlinear effects~i.e., self-consistent dynamic
in which the back-reaction of the Lorentz force is cons
ered! are important when the amplitude of the magnetic fie
is enough large, i.e., when̂h2&/4p;^ru2&. In this section
we consider the case when there is no magnetic dynamo,
the magnetic fluctuations are sustained by an external so
I. The obtained results are valid when the external sourceI is
not very strong, i.e.,I t/4p!^ru2&, and the nonlinear ef-
fects are not important.

IV. DYNAMICS OF MAGNETIC HELICITY

Now, we consider the case Rm.Rmcr, i.e., when the
magnetic fluctuations with zero mean magnetic field are
cited. What is the dynamics of the magnetic helicity in
helical turbulent fluid flow? Equations~7! and ~8! can be
rewritten in the form (Q̂1V̂)X5GX, whereX is the vector-
colomn with the componentsX15C, and X25k, and the
matrix Q̂[Qi j 50, when iÞ j , and Q115(d2/dr22U)/m,
and Q225(d2/dr222/r 2)/m, and the matrixV̂[Vi j 50,
when i 5 j , and V1252(d2/dr222/r 2)/9m, and V2151.
We consider the modes which satisfy the following proper
the changea(r )→2a(r ) in Eqs. ~7! and ~8! results in the
changek(r )→2k(r ) andC(r )→C(r ). We seek a solution
of this equation in the formX5(k51

` xkek1*y(g)E(g)dg,
where the eigenfunctionsek and E(g) satisfy to the equa-
tions: Q̂ek5gkek , and Q̂E(g)5gE(g). Here ek is the
vector-colomn with the componentse1k5C̃k , and e2k50,
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andE(g) is the vector-colomn with the componentsE150,
and E25k̃(g). The functionsC̃k(r ) and k̃(r ) are deter-
mined by Eqs.~7! and ~8! with the conditiona(r )50. The
equation for the functionek describes nonhelical compone
of the magnetic field correlation function and it has discr
spectrum. On the other hand, the equation for the func
E(g) determines helical component of the magnetic fi
correlation function and it has continuous spectrum. T
continuous spectrum corresponds tog,0, i.e., it describes
the relaxation of the magnetic helicity correlation functio
The discrete spectrum of the equation for the funct
ek corresponds to the generation of the magnetic fl
tuations (gp.0). The normalize conditions for the eigen
functions ek and E(g) are given by *m(r )ek

†epdr
5T(k)dkp , and*m(r )E†(g)E(g8)dr5S(g)d(g2g8). The
standard procedure used in quantum mecha
~see, e.g.,@13#! yields the equations for the functionsxp
and y(g), i.e., (gp2G)xp5L(y), and (G2g)y(g)
5N(x), where N(x)5„1/S(g)…*v(r )m(r )k̃(r ) x̃(r )dr,
and L(y)5„g/T(p)…*v(r )C̃k(r )m(r ) ỹ(r )dr, and x̃(r )
5(k51

` xkC̃k(r ), and ỹ(r )5*y(g8)k̃(g8)dg8. Now we use
a perturbation theory~see, e.g.,@13#!, i.e., we seek the solu
tions of the above equations in the form of seriesZ5Z(0)

1«Z(1)1«2Z(2)1•••, whereZ5xp ;y;G. The small param-
eter is «;Rm2(q12)/2(q21) ~see below!. The perturbation
theory yields G (2k11)50, and G (0)5gp , and G (2)

52L(y(1))/xp
(0) , and y(2k)50, and y(1)5N(x(0))/

(gp2g), and xp
(2k11)50, and xp

(0)51, and xp
(2) is deter-

mined by equationN(x(2))(gp2g)5G (2)y(1), etc.
For nonhelical turbulence@a(r )50# the helicalm(r ) and

nonhelicalW(r ) parts of the magnetic field correlation fun
.
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e
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e
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s

tion are decoupled. This implies that the magnetic helic
can only relaxate from the initial value. In helical turbulen
@a(r )Þ0# the magnetic helicityx(r ) depends onW(r ).
This implies that the eigenfunctionep of the discrete spec
trum is modified, i.e., it has spiral and nonspiral componen
e1p5Cp and e2p5kp , where kp(r )5*0

`k̃(2l,r )Vp(l)/

@gp1l#dl1O(«3), and l5ugu, and Cp5C̃p1O(«2),
and Vp(l)5„1/S(2l)…*v(r 8)m(r 8)k̃(2l,r )Cp(r 8)dr8.
Using this equation we calculate the magnetic helic
x(r 50). The result is given by x(r 50)
;24a0t0 Rm2(q12)/2(q21)W(r 50), where W(r 50)
5W0 exp(gpt). For nonhelical turbulence there is only th
relaxation of the initial magnetic helicityx(t50)Þ0. On
the other hand, for helical turbulence the magnetic helicity
excited due to the growth of magnetic fluctuations. Howev
the magnitude of the magnetic helicity is very small even
the hydrodynamic helicity is large, i.e.,x(r 50)
524a0t0W(r 50)/Rm13/10, where we use the Kolmogoro
spectrum p55/3. The realizability condition M (k)
>ux(k)uk ~see, e.g.,@14#! allows us to estimate the max
mum possible value of the magnetic helicity:xmax

; l 0W Rm21/(q21), where^h2&5*M (k)dk. Therefore,x(r
50)/xmax;(a0 /u0)Rm2q/2(q21)!1. This means that the
magnetic helicity with zero mean magnetic field is ve
small even if the hydrodynamic helicity is large. Only no
zero mean magnetic field can create large magnetic hel
~see, e.g.,@15#!.
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