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Turbulent barodiffusion, turbulent thermal diffusion, and large-scale instability in gases
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Two effects, turbulent barodiffusion and turbulent thermal diffusion in gases, are discussed. These phenom-
ena are related to the dynamics of a gaseous admixture in compressible turbulent fluid flow with low Mach
numbers. Turbulent barodiffusion causes an additional mass flux of the gaseous admixture directed to the
maximum of the mean fluid pressure, while turbulent thermal diffusion results in an accumulation of the
gaseous admixture in the vicinity of the minimum of the mean temperature of the surrounding fluid. At large
Péclet and Reynolds numbers these additional turbulent fluxes are considerably higher than those caused by
molecular barodiffusion and molecular thermal diffusion. It is shown that turbulent barodiffusion and turbulent
thermal diffusion may contribute to the formation of large-scale inhomogeneous structures in a gaseous ad-
mixture advected by a low-Mach-number compressible turbulent velocity field. The large-scale dynamics are
studied by considering the stability of the equilibrium solution of the derived evolution equation for the mean
number density of the gaseous admixture in the limit of large Pe´clet numbers. The resulting equation is reduced
to an eigenvalue problem for a Schro¨dinger equation with a variable mass, and a modified Rayleigh-Ritz
variational method is used to estimate the lowest eigenvalue~corresponding to the growth rate of the instabil-
ity!. This estimate is in good agreement with obtained numerical solution of the Schro¨dinger equation.
@S1063-651X~97!00403-0#
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I. INTRODUCTION

The phenomena of molecular barodiffusion and molecu
thermal diffusion in gases were discovered long ago~see,
e.g., @1–3#!. The equation for the number densitynp of a
gaseous admixture in a surrounding fluid taking into acco
these effects is

]np
]t

52¹•JM .

The molecular flux of the gaseous admixture

JM52DF¹np1kt
¹Tf

Tf
1kp

¹Pf

Pf
G

comprises three terms: the flux of the gaseous admixture
to molecular diffusion (;¹np), the flux caused by the tem
perature gradient¹Tf of the surrounding fluid~molecular
thermal diffusion!, and the flux caused by the fluid pressu
gradient¹Pf ~molecular barodiffusion; see, e.g.,@3#!. Here
D is the coefficient of molecular diffusion,kt}np is the ther-
mal diffusion ratio, andkp}np is the molecular barodiffu-
sion ratio. Turbulent fluid flow results in a large increase
the effective diffusion coefficient at large Pe´clet and Rey-
nolds numbers@4–7#.

The main goal of this paper is to discuss two effec
turbulent barodiffusion and turbulent thermal diffusion
gases. These phenomena result in additional mass fluxe
the gaseous admixture advected by a compressible turb
fluid flow with low Mach number. These effects are caus
551063-651X/97/55~3!/2713~9!/$10.00
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by the compressibility of the turbulent fluid flow. It is dem
onstrated that turbulent barodiffusion and turbulent therm
diffusion may contribute to the formation of large-scale i
homogeneous structures in a gaseous admixture. The la
scale dynamics are studied by considering the stability of
equilibrium solution of the derived evolution equation for th
mean number density of the gaseous admixture in the l
of large Pe´clet numbers.

Recently, it was found that the inertia of small particl
advected by a turbulent fluid flow results in an addition
flux of particles directed to the minimum~or maximum! of
the mean temperature of the surrounding fluid depending
the ratio of material particle density to that of the surroun
ing fluid @8#. Turbulent thermal diffusion of small inertia
particles is caused by nonzero divergence of the velo
field of inertial particles advected by fluid flow.

II. TURBULENT FLUX OF THE MASS
OF A GASEOUS ADMIXTURE

We consider a mixture of two gaseous components w
very different number densities:np!n. Instead of a gaseou
component with a number densitynp , light particles can be
considered. Hereafter the gas component with a number
sity n5r f /mm is called a fluid, while the component with
number densitynp is called a gaseous admixture (mm is the
mass of molecules of the surrounding fluid!. The number
densitynp(t,r ) of a gaseous admixture in a turbulent com
pressible flow is determined by
2713 © 1997 The American Physical Society
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]np
]t

1¹•~npU!5DDnp , ~1!

whereU is a random velocity field of the gaseous admixtu
which it acquires in a turbulent fluid velocity fieldv. The
density r f of the surrounding fluid satisfies the continui
equation

]r f

]t
1¹•~r fv!50. ~2!

In Eq. ~2! we do not take into account the diffusion of th
fluid in the gaseous admixture becausenp!n.

The velocityv of the surrounding fluid is assumed to b
known. We neglect an influence of the gaseous admix
upon the velocity of the surrounding fluid becau
rp5mpnp!r f , wheremp is the mass of molecules~or par-
ticles! of the gaseous admixture. On the other hand, the
locity of the gaseous admixtureU is determined by the ve
locity of the surrounding fluid, and it is found from th
equation of motiondU/dt5@v2U#/tp1g, whereg is the
acceleration of gravity, andtp is the characteristic time o
momentum coupling between the gaseous admixture and
surrounding fluid. Here we neglect the small pressure gr
ent of the gaseous admixture and its viscous force. The
lution of the equation of motion for a gaseous admixtu
when inertia effects are negligible yields the veloc
U5v1vs . The second term in the velocity of the gaseo
admixture describes a sedimentation of the admixture i
gravity field with a terminal fall velocityvs5tpg.

In order to derive the equation for the mean concentra
of the gaseous admixture, Eq.~1! must be averaged over th
ensemble of random velocity fluctuations. For this purpo
we use the stochastic calculus that was applied in magn
hydrodynamics@9–11# and passive scalar transport in incom
pressible@9,10,12# and compressible@8,13# turbulent flows.
In the stochastic calculus the solution of Eq.~1! with the
initial conditionnp(t5t0 ,x)5n0(x) is given by

np~ t,x!5M $G~ t,t0!n0@j~ t,t0!#% ~3!

~see Appendix A!, where

G~ t,t0!5expF2E
t0

t

b* „s,j~ t,s!…dsG , ~4!

b*[¹•U, andM $ % is the mathematical expectation ov
the Wiener pathsj,

j~ t,t0!5x2E
0

t2t0
U~ ts ,js!ds1~2D !1/2w~ t2t0!, ~5!

where ts5t2s, js[j(t,t2s), andw(t) is the Wiener ran-
dom process. Equation~5! describes a set of random traje
tories that pass through the pointx at timet ~see, e.g.,@13#!.
The use of this technique~see Appendix B! yields the equa-
tion for the mean fieldN5^np&,

]N

]t
1¹•~VeffN2D̂¹mN!50, ~6!

where
,
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D̂5Dpm5Ddpm1t0^upum&, ~7!

Veff5V2t0^u~¹•u!&, ~8!

U5V1u, V5^U& is the mean velocity,u is the turbulent
component of the velocity, andt0 is the characteristic time
of turbulent motions in the energy containing scalel 0 . Note
that Eq.~6! is written in the form of a conservation law fo
the mass density of the gaseous admixture.

Now we calculate the effective velocityVeff . The conti-
nuity equation~2! can be rewritten in the form

S 11
r̃

r D ~¹•u!52
1

r
~u•¹!r2

1

r

dr̃

dt
, ~9!

wherer f5 r̃1r, r5^r f& is the mean density, andr̃ is the
density fluctuations. We take into account that the turbul
velocity of the gaseous admixture coincides with that of
surrounding fluid because the random component of the
minal fall velocity vs equals zero.

Consider the case of low Mach numbersM!( l 0 /L)
1/2,

where l 0 is the energy containing scale of turbulent flu
flow, L is the large scale~e.g., the inhomogeneity scale of th
mean temperature or the mean density!, M5(^u2&)1/2/cs is
the Mach number, andcs is the sound speed. Since the flu
tuations of pressure P̃5cs

2r̃;r^u2&, the ratio
r̃/r;M2!1. Therefore we can neglect terms;r̃ and Eq.
~9! is reduced to

~¹•u!.2
1

r
~u•¹!r. ~10!

The equation of state for the surrounding fluid for the me
fieldsP5rT/mm yields

¹T

T
2

¹P

P
52

¹r

r
[l¢ . ~11!

Combining Eqs.~6!–~8!, ~10!, and~11! allows us to rewrite
Eq. ~6! in the form

]N

]t
1¹•~JM1JT!50, ~12!

where the turbulent flux of the gaseous admixture is given

JT52DTF¹N1N
¹T

T
2N

¹P

P G , ~13!

DT5u0l 0 /3 is the coefficient of turbulent diffusion, andu0
is the characteristic velocity in the scalel 0 . The molecular
flux of the gaseous admixture

JM52DF¹N1kt
¹T

T
1kp

¹P

P G ~14!

comprises three terms: molecular diffusion (;¹N), molecu-
lar thermal diffusion (;kt¹T, where kt is the molecular
thermal diffusion ratio!, and molecular barodiffusion
(;kp¹P, wherekp is the molecular barodiffusion ratio; see
e.g., @3#!. Comparing the molecular~14! and turbulent~13!
fluxes of the gaseous admixture, we can interpret the n
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55 2715TURBULENT BARODIFFUSION, TURBULENT THERMAL . . .
additional turbulent fluxes as fluxes caused by the effect
turbulent thermal diffusion (;kT¹T, where kT5N is the
turbulent thermal diffusion ratio! and turbulent barodiffusion
(;kP¹P, wherekP52N is the turbulent barodiffusion ra
tio!.

Remarkably, the additional turbulent flux caused by
effect of turbulent thermal diffusion appears also for inert
particles advected by a turbulent flow@8#. The turbulent flux
of small inertial particles of massmp is given by

JT
~p!52DTFkT~p!

T
¹T1¹NG , ~15!

kT
~p!5N

3

PeSmp

mm
D S T

T*
D lnRe* ~16!

~see@8#!, wherekT
(p) is the turbulent thermal diffusion ratio

of small inertial particles,DTkT
(p) is the coefficient of turbu-

lent thermal diffusion, Pe5u0l 0 /D is the Pe´clet number,
Re*5min$Re,PeT%, Re5 l 0u0 /n is the Reynolds number
PeT5 l 0u0 /x is the thermal Pe´clet number, andx is the co-
efficient of molecular thermal conductivity. The turbule
thermal diffusion of small inertial particles is caused by t
correlation between temperature and velocity fluctuations
the surrounding fluid and leads to the relatively strong m
flux of small inertial particles in the direction of the region
with the minimum~or maximum! of the mean temperature o
the surrounding fluid depending on the ratio of material p
ticle density to that of the surrounding fluid. Note that t
velocity field of particles is divergent due to the finite iner
of particles advected by turbulent flow. For heavy partic
~with sizes >1mm! the turbulent thermal diffusion ratio
kT
(p)@N at large Reynolds and Pe´clet numbers.
For light particles~or the gaseous admixture! the effects

of inertia are negligible. However, compressibility of the su
rounding fluid results in the new additional turbulent flux
of the gaseous admixture caused by turbulent thermal d
sion and turbulent barodiffusion. Note that the turbulent fl
of the gaseous admixture~13! can also be obtained by mean
of a simple dimensional analysis~see@14#!.

III. MECHANISM OF THE FORMATION
OF LARGE-SCALE INHOMOGENEITIES

IN THE SPATIAL DISTRIBUTION
OF THE CONCENTRATION
OF A GASEOUS ADMIXTURE

Now we study the dynamics of the large-scale distribut
of the concentration of the gaseous admixture in a sm
scale turbulent fluid flow. Turbulent barodiffusion and turb
lent thermal diffusion may result in the formation of inh
mogeneous structures in a large-scale distribution of
gaseous admixture advected by a compressible turbu
fluid flow. The mechanism of this effect is as follows.
incompressible flow at any time, the mass of the fluid flo
ing into a small volume exactly equals the mass outfl
from this volume. In the limit of infinite Pe´clet number the
gaseous admixture is frozen into the flow of a surround
fluid. Therefore, there is no accumulation of the gaseous
mixture at any point of the volume.
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The situation changes if¹•uÞ0 in a turbulent fluid flow.
In this case a mass of fluid flowing into a small volume do
not equal the mass outflow from the volume at any instan
Therefore, at times smaller than a characteristic time of
turbulent velocity field there is an accumulation~or outflow!
of the gaseous admixture. Note that the accumulation
outflow of the gaseous admixture in a small control volum
are separated in time and molecular diffusion breaks a ti
reversal symmetry between the accumulation and outfl
The latter can cause pattern formation in the concentra
distribution of the gaseous admixture advected by a co
pressible turbulent fluid flow. Indeed, let us demonstrate
effect. For this purpose we derive the equation fornp

2 . Mul-
tiplication of Eq.~1! by np and simple manipulations yield

]np
2

]t
1~¹•A!52np

2~¹•U!22D~¹np!
2, ~17!

whereA5np
2U2D¹np

2 . Consider an evolution of mass o
the gaseous admixture in a volumeV* in a Lagrangian
frame. Integrating Eq.~17! over the volumeV* , we obtain

d

dtE np
2dV*52E np

2~¹•v!dV*22DE ~¹np!
2dV* ,

where we use that¹•U5¹•v. The latter equation shows tha
in an incompressible fluid flow*np

2dV* can only decrease
with time due to molecular diffusion. On the other hand, in
compressible fluid flow the value*np

2dV* can grow when
¹•v,0. Thus the regions where¹•v,0 contribute to the
growth of *np

2dV* . However, the total number of particle
of the gaseous admixture in the whole system is conserv

Now we elucidate the role of molecular diffusion an
sedimentation. Integration of Eq.~1! over the volumeV*
yields

d

dtE npdV*5D R ~¹np!•dS2 R npvs•dS,

where we use the Gauss theorem*(¹•B)dV*5 RB•dS.
Thus only molecular diffusion and sedimentation can cha
a mass of the gaseous admixture in the volumeV* . How-
ever, the direction of this change~the growth or decay of
*npdV* and *np

2dV* ) is determined by the sign of¹•v.
WhenD50 andvs50 the particles of gaseous admixture a
‘‘frozen’’ into the surrounding fluid and*npdV*5const. If
¹•v,0 andDÞ0, a redistribution of the mass of the ga
eous admixture occurs, so that regions with a high conc
tration of the gaseous admixture are adjacent to the reg
with a low concentration. Therefore, the large-scale inhom
geneous structures in the spatial distribution of the gase
admixture concentration are formed.

Note that there exists a certain similarity between the f
mation of the large-scale inhomogeneous structures in
spatial distribution of the gaseous admixture concentra
~passive scalar! and generation of magnetic fields~passive
vector! by a turbulent flow of conducting fluid. The magnet
flux *B•dS through a surface corresponds to a ma
*npdV* of the gaseous admixture in the volumeV* . The
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magnetic energy*B2dV* corresponds to*np
2dV* . The

source of generation of magnetic energy is associated
]vk /]xm , i.e.,

]B2

]t
}BkBm

]vk
]xm

~see, e.g., @15#!. On the other hand, compressibilit
(]vk /]xkÞ0) of the fluid results in the formation of large
scale inhomogeneous structures in the spatial distributio
the gaseous admixture concentration~i.e., growth ofnp

2):

]np
2

]t
}2np

2 ]vk
]xk

.

The effect of the magnetic diffusion is similar to that
molecular diffusion of a passive scalar. Indeed, the magn
flux can be changed only if the magnetic diffusion is nonz
~finite electrical conductivity!, which prevents the freezing o
the magnetic field into the flow of a conducting fluid. Diffu
sion of the magnetic field breaks a reversibility in time of t
magnetic structures evolution. Similarly, molecular diffusi
breaks a reversibility in time so that accumulation and o
flow of the gaseous admixture from a control volume can
be compensated exactly. The latter results in the formatio
the large-scale inhomogeneous structures in the spatial
centration distribution of the gaseous admixture.

All of the above considered conditions for the formati
of the inhomogeneous structures in the concentration di
bution of the gaseous admixture are only necessary, but
sufficient. The sufficient conditions can be determined o
after the analysis of the large-scale stability of the equi
rium concentration distribution. This analysis is performed
the next section.

IV. ANALYSIS OF LARGE-SCALE INSTABILITY

In this section we analyze the formation of large-sc
inhomogeneous structures in the spatial concentration di
bution of the gaseous admixture concentration. Equation~12!
for the mean number density of the gaseous admixture
be rewritten in the form

]N

]t
1¹•$@vs2lDTF0~Z!#N%5¹•$@D1DTF0~Z!#¹N%,

~18!

where V5vs , F0(Z)5^u2&/u0
2, ^upum&5u0

2F0(Z)dmn /3
~for details see@13#!, and the vectorsg and¹r are directed
against theZ axis. The equilibrium solution of Eq.~18! is
given by

¹N05N0S vs2lDTF0~Z!

D1DTF0~Z! D .
Hereafter we consider the case Pe@1, i.e.,DT@D. Now we
study the stability of this equilibrium solution.

We seek the solution of Eq.~18! in the form

N~ t,r !5N0~r !1N~ t,Z!exp~ ik•r'!, ~19!
th
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where the wave vectork is perpendicular to theZ axis. Sub-
stituting Eq.~19! into Eq. ~18! yields

]N

]t
5

1

m0

]2N

]Z2
1m0

]N

]Z
2

k0

m0
N, ~20!

where

1

m0
5F0~Z!, m05F081lF01v0 , k05k22l

F08

F0
2l8.

We consider the caseF0(Z)@Pe21 for all Z. Equation~20!
is written in dimensionless form, the coordinateZ is mea-
sured in unitsLT , the timet is measured in unitsLT

2/DT ,
the wave numberk and valuel are measured in units
LT

21 , v05vsLT /DT , LT is the characteristic scale of th
spatial temperature distribution, the temperatureT is mea-
sured in units of temperature differencedT in the scale
LT , and the concentrationN is measured in unitsN* . The
vectorl5lêz , whereêz is a unit vector directed along th
axisZ.

Substitution of

N~ t,Z!5C0~Z!exp~gt !expF2
1

2E x0dZG ~21!

reduces Eq.~20! to the eigenvalue problem for the Schr¨-
dinger equation

1

m0
C091@W02U0#C050, ~22!

whereW052g and the potentialU0 is given by

U05
1

m0
S x0

2

4
1

x08

2
1k0D , x05m0m05

F08

F0
1l1

v0
F0

.

~23!

Now we use a quantum-mechanical analogy for the an
sis of inhomogeneity formation in a spatial distribution of t
concentration of the gaseous admixture. The instabi
(g.0) can be excited if there is a region of a potential w
whereU0,0. The positive value ofW0 corresponds to tur-
bulent diffusion, whereas a negative value ofW0 results in
the excitation of the instability. Now we introduce the fun
tion f5 ln^u2&, where f 85F08/F0 . The potentialU0 can be
rewritten as

U05
1

4m0
$~ f 82l!21@l1v0exp~2 f !#2

14k212 f 922l82l2%. ~24!

The potentialU0 can be negative if

2 f 922l82l2,0. ~25!

A. Estimation of the growth rate of the instability

In order to estimate the first energy levelW0 we use a
modified variational method~e.g., a modified Rayleigh-Ritz
method!. The modification of the regular variational metho
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is required since Eq.~22! can be regarded as the Schro¨dinger
equation with a variable massm0(Z). Now we rewrite Eq.
~22! in the form

ĤC05W0C0 , Ĥ5U02
1

m0

d2

dZ2
. ~26!

The modified variational method employs an inequality

W0<I , I5E m0C* ĤCdZ, ~27!

whereC is an arbitrary function that satisfies a normaliz
tion condition

E m0C*CdZ51. ~28!

The inequality ~27! can be proved if one uses th
expansion C5(p50

` apC0
(p) , where (p50

` uap
2u51 and

*m0(C0
(p))*C0

(k)dZ5dpk . The eigenfunctionsC0
(p) satisfy

the equationĤC0
(p)5WpC0

(p) .
We chose the trial functionC in the form

C5A0exp@2a~Z2Z0!
2/2#,

A05S a1b0
p D 1/4expS ab0Z0

2

2~a1b0!
D , ~29!

where the unknown parametersa andZ0 can be found from
the condition of minimum of the functionI (a,Z0) @see Eq.
~27!#. Here we use the spatial distributions off (Z) and
l(Z),

f ~Z!5b0Z
2exp~2b0Z

2!, ~30!

l~Z!5~Z2l0!exp~2e0Z
2!, ~31!

whereb0!1 ande0!1. These distributions satisfy the ne
essary condition~25! for excitation of the instability. Substi
tuting Eqs.~29! and ~31! into Eq. ~27! yields

I5
~a1b0!

1/2

2a3/2 F2aS Z0b2
l0

2 D 21~b2a!212ak2G
3expS ab0Z0

2

a1b0
D 2

v0l0

2
1

v0aZ0
2~a1b0!

1
v0
2

4

3S a1b0
a12b0

D 1/2expS 2
a2b0Z0

2

~a1b0!~a12b0!
D , ~32!

whereb51/22b0.0.
Thus the modified Rayleigh-Ritz method allows us to

timate the growth rate of the instability

g52W0;
l0
2h

2 F12
h

2A11c0
expS 2

c0l0
2Y2

2~11c0!
D G

2
k2

A12c0
expS c0l0

2Y2

2~12c0!
D , ~33!
-

-

where h5v0 /l0, c052b0, Z052l0Y/(12c0), and Y is
determined from the equation

~Y11!252hYA12c0expS 2
c0l0

2Y2

2~12c0!
D .

Define a critical value ofY at whichg50, i.e.,

Ycr
25

2~11c0!

c0l0
2 lnS h

2A11c0
D . ~34!

Then we can rewrite the growth rate of the instability in t
form

g;
l0
2h

2 F12S 4~11c0!

h2 D pG , ~35!

where

p5
1

2 S Y2

Ycr
2 21D .

Here we consider the case ofk!1. This implies long-wave-
length perturbations in the horizontal plane. It is seen fr
Eqs.~34! and ~35! that the instability is excited when

v0
l0

.2A112b0 ~36!

andY.Ycr . For example, whenb0!1 ~i.e., the inhomoge-
neity of turbulence is very weak!, the growth rate of the
instability is given by

g;b0l0
4Y0

2 , ~37!

whereY05h211Ah(h22). Thus it is shown here that th
equilibrium distribution of concentration of the gaseous a
mixture is unstable. The instability results in the formation
an inhomogeneous distribution of concentration of the g
eous admixture. The exponential growth during the line
stage of the instability can be damped by the nonlinear
fects ~e.g., a hydrodynamic interaction between the gase
admixture and a turbulent fluid flow and a change of te
perature distribution in the vicinity of the temperature inve
sion layer!.

B. Numerical study of the instability

Equation ~22! was solved numerically with turbulen
kinetic-energy and mean temperature profiles given by E
~30! and ~31!. The extremum of turbulent kinetic energy
located atZ50, the temperature minimum is located
Z5l0 @see Eqs.~30! and ~31!#, andZ52H is the location
of an impenetrable boundary for the gaseous admixture.
boundary condition atZ52H is determined by the equatio
JTuZ52H50, which yields the condition forC0

dC0

dZ
5S f 82

1

2
x0DC0 at Z52H. ~38!



re

ili

n

f
th
fie

s

f

al
itz

ed

is
ot
ent
tz
the
of
be
the

for
-
in
tic
h
gy

as-
ll.
f

ent
cts
m-
se
rbu-
ss
ent
ch

ible
an

the
ion
us
.g.,

su us

2718 55TOV ELPERIN, NATHAN KLEEORIN, AND IGOR ROGACHEVSKII
Equation~38! provides zero flux of the gaseous admixtu
through a horizontal boundary planeZ52H. The second
boundary condition isC0(Z5`)50. As an example, Fig. 1
shows the dependence of the growth rate of the instab
versusb0 for l051, v052.2, andk!1. These values of the
parameters satisfy the necessary condition~36! for the exci-
tation of the instability. The minimum of the functionf (Z)
describing the spatial distribution of the turbulent kinetic e
ergy is chosen to be located at the heightH57 from the
horizontal boundary plane, whereH is measured in units o
LT . These numerical results are in good agreement with
analytical estimates obtained by means of the modi
Rayleigh-Ritz method~Sec. IV A!. The instability is excited
when 0,b0,0.57. For illustration, the spatial distribution
of the potential U(Z) are presented in Fig. 2~a! ~for
b050.1) and in Fig. 2~b! ~for b050.5). In the vicinity of the
upper bound for the parameterb0 , the spatial distributions o

FIG. 1. Dependence of the growth rate of the instability ver
b0 for l051, v052.2, andH57.

FIG. 2. Distributions of the potentialU(r ) for l051, v052.2,
H57, and differentb0: ~a! b050.1 and~b! b050.5.
ty

-

e
d

the potentialU(Z) sharply change. Note that the analytic
estimate obtained by means of the modified Rayleigh-R
method yields the upper bound forb050.5 in good agree-
ment with the numerical results.

The effect of the boundary was neglected in the modifi
Rayleigh-Ritz method. Note that in the caseH57 the nu-
merical simulation showed that the effect of the boundary
indeed very small. However, if the boundary is located n
far from the extrema of the temperature and turbul
kinetic-energy distributions, the modified Rayleigh-Ri
method does not allow an estimate of the growth rate of
instability. However, this case can be interesting in view
its relevance to atmospheric turbulent transport and can
studied numerically. For example, the dependence of
growth rate of the instability versus2b0 for H50.9 is
shown in Fig. 3. In this case the instability is excited even
very small terminal fall velocity~the calculations were per
formed forv050). The gaseous admixture is accumulated
the region between the maximum of the turbulent kine
energy~e.g.,b0,0) and minimum of the temperature, whic
is located under the maximum of turbulent kinetic ener
~the calculations were performed forl0520.2). Note that
the casev050 describes the large-scale dynamics of the g
eous admixture when the terminal fall velocity is very sma
On the other hand,v0Þ0 corresponds to the dynamics o
light particles in a turbulent fluid flow.

V. CONCLUSION

We demonstrated the existence of two effects: turbul
barodiffusion and turbulent thermal diffusion. These effe
occur during advection of the gaseous admixture by a co
pressible turbulent fluid flow with low Mach numbers. The
phenomena result in the appearance of two additional tu
lent nondiffusive fluxes in the equation for the total ma
flux of the gaseous admixture. The magnitude of turbul
barodiffusion and turbulent thermal diffusion fluxes is mu
larger than the corresponding molecular fluxes at large Pe´clet
and Reynolds numbers. The effects vanish in incompress
turbulent flow of a surrounding fluid. These phenomena c
cause formation of the large-scale~mean-field! inhomoge-
neous structures in a spatial concentration distribution of
gaseous admixture. The effects of turbulent barodiffus
and turbulent thermal diffusion can be important in vario
natural and industrial turbulent compressible fluid flows, e

s FIG. 3. Dependence of the growth rate of the instability vers
2b0 for l0520.2, v050, andH50.9.
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the formation of gaseous clouds in turbulent atmosphere
the vicinity of a temperature inversion layer.
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APPENDIX A: SOLUTION OF EQ. „1…

Here we show that Eq.~3! is a solution of Eq.~1!. If the
total fieldnp is specified at timet, then we can determine th
total field np(t1Dt) at time t1Dt by means of the substi
tutionst→t1Dt andt0→t in Eq. ~3!. The result is given by

np~ t1Dt,x!5M $G~ t1Dt,t !np@ t,j~ t1Dt,t !#%, ~A1!

where

G~ t1Dt,t !5expF2E
t

t1Dt

b* ~s,js!dsG ,
j~ t1Dt,t ![jDt5x2E

0

Dt

U~ ts ,js!ds1~2D !1/2w~Dt !,

ts5t1Dt2s, andj(t2 ,t1)[jt22t1
, i.e., js5j(t1Dt,ts).

We expand the functionnp(t,jDt) in Eq. ~A1! in a Taylor
series in the vicinity of the pointx:

np~ t,jDt!.np~ t,x!1
]np
]xm

~jDt2x!m1
1

2

]2np
]xm]xs

3~jDt2x!m~jDt2x!s1•••. ~A2!

Using the equation for the Wiener trajectory we obtain

@j~ t2 ,t1!2x#m52E
0

t22t1
Um~ ts ,js!ds

1~2D !1/2wm~ t22t1!, ~A3!

wherej(t2 ,t22s)[js . Expanding the velocityUm(ts ,js) in
a Taylor series in the vicinity of the pointx and using Eq.
~A3! we find that

Um~ ts ,js!5Um~ ts ,x!1
]Um

]xl
F2E

0

s

Ul~ ts ,x!ds

1~2D !1/2wl~s!G . ~A4!

Substitution of Eq.~A4! into Eq. ~A3! yields
in

r-
to
.
-
-
-

~jDt2x!m52E
0

Dt

Um~ ts ,js!ds

1E
0

Dt]Um

]xl
U ~ ts ,x!dsE

0

s

Ul~ ts ,js!ds

2A2DE
0

Dt]Um

]xl
U ~ ts ,x!

wl~s!ds1A2Dwm .

~A5!

The integrals in formula~A5! can be evaluated by means
the ‘‘mean value’’ theorem. The result is given by

~jDt2x!m.2Um~ t* ,x!Dt1A2Dwm1O„~Dt !2…,
~A6!

wheret* is within the interval (t,t1Dt). Substitution of Eq.
~A6! into Eq. ~A2! yields an expression for the fiel
np(t,jDt),

np~ t,jDt!.np~ t,x!1
]np
]xm

@2Um~ t* ,x!Dt1A2Dwm#

1Dwmws

]2np
]xm]xs

1O„~Dt !2…. ~A7!

Expanding the functionb* (s,js) in a Taylor series in the
vicinity of the point x, using Eq.~A6!, and evaluating the
integral

E
t

t1Dt

b* ~s,js!ds

by means of the mean value theorem, we calculate the fu
tion G(t1Dt,t) accurate up to;Dt terms. The result is
given by

G~ t1Dt,t !.12b* ~ t3 ,x!Dt, ~A8!

where t3 is within the interval (t,t1Dt). Combining Eqs.
~A7!, ~A8! and ~A1! and averaging over Wiener trajectorie
yields the expression for the fieldnp(t1Dt,x). Now we cal-
culate the limit@np(t1Dt,x)2np(t,x)#/Dt for Dt→0. This
procedure yields Eq.~1!. Therefore Eq.~3! is a solution of
Eq. ~1!.

APPENDIX B: DERIVATION OF THE MEAN-FIELD
EQUATION FOR LARGE PÉ CLET NUMBER

We derive here the equation for the mean field. If the to
field np is specified at timet, then we can determine the tota
field np(t1Dt) at time t1Dt by means of substitutions
t→t1Dt and t0→t in Eq. ~3!. The result is given by

np~ t1Dt,x!5M $G~ t1Dt,t !np@ t,j~ t1Dt,t !#%, ~B1!

where
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G~ t1Dt,t !5expF2E
t

t1Dt

b* ~s,js!dsG ,

j~ t1Dt,t ![jDt5x2E
0

Dt

U~ ts ,js!ds1~2D !1/2w~Dt !,

ts5t1Dt2s, andj(t2 ,t1)[jt22t1
, i.e., js5j(t1Dt,ts).

Expanding the functionnp(t,jDt) @Eq. ~B1!# in a Taylor
series in the vicinity of the pointx yields

np~ t,jDt!.np~ t,x!1
]np
]xm

~jDt2x!m1
1

2

]2np
]xm]xs

3~jDt2x!m~jDt2x!s1•••. ~B2!

Using the equation for the Wiener trajectory we obtain

@j~ t2 ,t1!2x#m52E
0

t22t1
Um~ ts ,js!ds

1~2D !1/2wm~ t22t1!, ~B3!

wherej(t2 ,t22s)[js . Expanding the velocityUm(ts ,js) in
a Taylor series in the vicinity of the pointx and using Eq.
~B3! yield

Um~ ts ,js!.Um~ ts ,x!2Ul

]Um

]xl
s

1~2D !1/2
]Um

]xl
wl~s!1•••. ~B4!

Here we assume that the velocityU remains constant~time
independent! at small time intervals (0,Dt),(Dt,2Dt), . . .
and changes every small timeDt and that the velocity is
statistically independent at different time intervals. Substit
ing Eq. ~B4! into Eq. ~B3! and calculating the integrals i
Eq. ~B3! accurate up to;(t22t1)

2 terms yield

@j~ t2 ,t1!2x#m.2~ t22t1!Um1
1

2
~ t22t1!

2Ul

]Um

]xl

2A2D
]Um

]xl
E
0

t22t1
wlds

1A2Dwm~ t22t1!1•••. ~B5!

The combination of Eqs.~B5! and ~B2! yields the formula
for the fieldnp(t,jDt)
t-

np~ t,jDt!5np~ t,x!1
]np
]xm

S 2UmDt1
1

2
Ul

]Um

]xl
~Dt !2

1A2Dwm2A2D
]Um

]xl
E
0

Dt

wldsD
1
1

2

]2np
]xm]xl

@UmUl~Dt !212Dwmwl

2A2DDt~Umwl1Ulwm!#, ~B6!

where we keep terms>O„(Dt)2…. Now we expand the func-
tion b* (s,js) in a Taylor series in the vicinity of the poin
x, use Eq.~B5!, and calculate the integral

E
t

t1Dt

b* ~s,js!ds.

The result is given by

E
t

t1Dt

b* ~s,js!ds.b* ~ t,x!Dt2
1

2
Uq

]b*
]xq

~Dt !2

1A2D
]b*
]xq

E
t

t1Dt

wqds1•••.

~B7!

Here we also keep terms>O„(Dt)2…. Using Eq. ~B7! we
calculate the functionG(t1Dt,t) accurate up to;(Dt)2

terms

G~ t1Dt,t !.12b* ~ t,x!Dt1
1

2
Uq

]b*
]xq

~Dt !21
1

2
b
*
2 ~Dt !2

2A2D
]b*
]xq

E
t

t1Dt

wqds1•••. ~B8!

Substitution of Eqs.~B8! and~B6! into Eq.~B1! allows us
to determine the number densitynp(t1Dt,x),

np~ t1Dt,x!5M H np~ t,x!1n1~Dt !1n2~Dt !2

1D
]2np

]xm]xl
wmwsJ , ~B9!

where

n15Um

]np
]xm

2b* np ,

n25
]np
]xm

S 12Ul

]Um

]xl
1b*UmD1

1

2
npSUl

]b*
]xl

1b
*
2 D

1
1

2

]2np
]xm]xl

UmUl .
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Averaging Eq.~B9! over the ensemble of the turbulent v
locities, we obtain the mean fieldN(t1Dt,x)
5^np(t1Dt,x)&. Let us calculate the limit@N(t1Dt,x)
2N(t,x)]/Dt for Dt→0. The result is given by

]N

]t
1@~V2^t~u•¹!u&22^tbu&!•¹#N5BeffN

1Dpm

]2N

]xp]xm
, ~B10!
tt
whereBeff52(¹•V)1^t(u•¹)b&1^tb2&. Using the iden-
tity

K tup
]

]xp
umL 5

]

]xp
^tupum&2^tu~¹•u!&,

we obtain Eq.~6! for the mean fieldN. Here we neglect a
weak dependence oft on the coordinates.
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