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Turbulent barodiffusion, turbulent thermal diffusion, and large-scale instability in gases
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Two effects, turbulent barodiffusion and turbulent thermal diffusion in gases, are discussed. These phenom-
ena are related to the dynamics of a gaseous admixture in compressible turbulent fluid flow with low Mach
numbers. Turbulent barodiffusion causes an additional mass flux of the gaseous admixture directed to the
maximum of the mean fluid pressure, while turbulent thermal diffusion results in an accumulation of the
gaseous admixture in the vicinity of the minimum of the mean temperature of the surrounding fluid. At large
Peclet and Reynolds numbers these additional turbulent fluxes are considerably higher than those caused by
molecular barodiffusion and molecular thermal diffusion. It is shown that turbulent barodiffusion and turbulent
thermal diffusion may contribute to the formation of large-scale inhomogeneous structures in a gaseous ad-
mixture advected by a low-Mach-number compressible turbulent velocity field. The large-scale dynamics are
studied by considering the stability of the equilibrium solution of the derived evolution equation for the mean
number density of the gaseous admixture in the limit of largge®@umbers. The resulting equation is reduced
to an eigenvalue problem for a ScHioger equation with a variable mass, and a modified Rayleigh-Ritz
variational method is used to estimate the lowest eigeny@ieesponding to the growth rate of the instabil-
ity). This estimate is in good agreement with obtained numerical solution of the ddogeo equation.
[S1063-651%97)00403-0

PACS numbes): 47.27.Qb

I. INTRODUCTION by the compressibility of the turbulent fluid flow. It is dem-
onstrated that turbulent barodiffusion and turbulent thermal
The phenomena of molecular barodiffusion and moleculadiffusion may contribute to the formation of large-scale in-
thermal diffusion in gases were discovered long &ee, homogeneous structures in a gaseous admixture. The large-
e.g.,[1-3]). The equation for the number density of a  scale dynamics are studied by considering the stability of the
gaseous admixture in a surrounding fluid taking into accoungquilibrium solution of the derived evolution equation for the

these effects is mean number density of the gaseous admixture in the limit
of large Pelet numbers.

%: —V-Jy. Recently, it was found that the inertia of small particles

ot advected by a turbulent fluid flow results in an additional

flux of particles directed to the minimuigor maximum of
the mean temperature of the surrounding fluid depending on
VT, _the rat?o of material particle densi.ty tq that of the syrroynd—
Ju=—D|Vn,+ kt_l__+k — ing flwd LS]. Turbulent thermal d|ffu5|on of small |nert|al'

f particles is caused by nonzero divergence of the velocity

comprises three terms: the flux of the gaseous admixture dL}c'eeld of inertial particles advected by fluid flow.

to molecular diffusion - Vn,), the flux caused by the tem-
perature gradien¥T; of the surrounding fluidmolecular
thermal diffusion, and the flux caused by the fluid pressure

The molecular flux of the gaseous admixture

Il. TURBULENT FLUX OF THE MASS

gradientVP; (molecular barodiffusion; see, e.¢3]). Here OF A GASEOUS ADMIXTURE
D is the coefficient of molecular diffusiok,en, is the ther- _ _ _
mal diffusion ratio, andk,xn, is the molecular barodiffu- We consider a mixture of two gaseous components with

sion ratio. Turbulent fluid flow results in a large increase ofvery different number densities,<n. Instead of a gaseous
the effective diffusion coefficient at large’ &et and Rey- component with a number density, light particles can be
nolds number$4—7]. considered. Hereafter the gas component with a number den-
The main goal of this paper is to discuss two effects:sity n=p;/m, is called a fluid, while the component with a
turbulent barodiffusion and turbulent thermal diffusion in number densityn, is called a gaseous admixturenf is the
gases. These phenomena result in additional mass fluxes wfass of molecules of the surrounding fluidhe number
the gaseous admixture advected by a compressible turbuledensityn,(t,r) of a gaseous admixture in a turbulent com-
fluid flow with low Mach number. These effects are causedpressible flow is determined by
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%+v.(nDU):DAnp, D D=Dpm=D Spm+ mo(UpUm), (7)
Verr=V—7o(uU(V- 1)), (8)
whereU is a random velocity field of the gaseous admixture,
which it acquires in a turbulent fluid velocity field The U=V+u, V=(U) is the mean velocityu is the turbulent
density p; of the surrounding fluid satisfies the continuity component of the velocity, and, is the characteristic time
equation of turbulent motions in the energy containing sciyje Note
that Eq.(6) is written in the form of a conservation law for
the mass density of the gaseous admixture.
Now we calculate the effective velocity.;. The conti-
nuity equation(2) can be rewritten in the form

Ips
—r TV (pv)=0. i)

In Eq. (2) we do not take into account the diffusion of the
fluid in the gaseous admixture becaugg<n.

The velocityv of the surrounding fluid is assumed to be
known. We neglect an influence of the gaseous admixture _ _
upon the velocity of the surrounding fluid becauseWhereps=p+p, p=(p) is the mean density, and is the
Pp= mpnp< Pt wherem. is the mass of mo|ecu|d§)r par- denS|ty fluctuations. We take into account that the turbulent
ticles) of the gaseous admixture. On the other hand, the vevelocity of the gaseous admixture coincides with that of the
locity of the gaseous admixtutég is determined by the ve- surrounding fluid because the random component of the ter-
locity of the surrounding fluid, and it is found from the minal fall velocity v equals zero.
equation of motiondU/dt=[v—U]/7,+g, whereg is the Consider the case of low Mach numbevs<(1o/L)"?, _
acceleration of gravity, and, is the characteristic time of Wherelo is the energy containing scale of turbulent fluid
momentum coupling between the gaseous admixture and tHEw, L is the large scalée.g., the inhomogeneity scale of the
surrounding fluid. Here we neglect the small pressure gradimean temperature or the mean densi = ((u%))“%/c, is
ent of the gaseous admixture and its viscous force. The sdhe Mach number, and is the sound speed. Since the fluc-
lution of the equation of motion for a gaseous admixturetuations of pressure P=c§5~p(u2>, the ratio
when inertia effects are negligible yields the velocity p/p~M?<1. Therefore we can neglect termsp and Eq.
U=v+vs. The second term in the velocity of the gaseous(9) is reduced to
admixture describes a sedimentation of the admixture in a
gravity field with a terminal fall velocitys= 7.

In order to derive the equation for the mean concentration
of the gaseous admixture, Ed.) must be averaged over the
ensemble of random velocity fluctuations. For this purpose he equation of state for the surrounding fluid for the mean
we use the stochastic calculus that was applied in magnetdields P=pT/m,, yields
hydrodynamic$9—11] and passive scalar transport in incom-
pressible[9,10,17 and compressiblg8,13] turbulent flows. - __F
In the stochastic calculus the solution of Ed) with the T P p
initial condition ny(t=ty,X) =ng(X) is given by

1dp
1+2 P
p

L dt 9

Vo= — (. Vo
(V-u)= p(“' )P

1
(V~U)2—;(U-V)P- (10)

=NX. (12)

Combining Egs(6)—(8), (10), and(11) allows us to rewrite

Np(t,x)=M{G(t,to)no[ &(t,to) ]} (3)  EQq.(6) in the form
(see Appendix A where % LV (Jy+ ) =0, 12
t
G(tto)= ex;{ - ftob* (.&t0))do, @ where the turbulent flux of the gaseous admixture is given by
b, EV.. U, and M{ } is the mathematical expectation over 3= Dy N+N E N V_P} 13
the Wiener pathg, T P

t_t _ . . . . .
OU(tS,§S)ds+(2D)1’2W(t—to), 5) D1=ugly/3 is the coefficient of turbulent diffusion, ang

&Lt =x— jo is the characteristic velocity in the scdlg The molecular
flux of the gaseous admixture
wheret,=t—s, &=§&(t,t—s), andw(t) is the Wiener ran-
dom process. Equatiofd) describes a set of random trajec-
tories that pass through the poinat timet (see, e.g.[13]).

The use of this techniqusee Appendix Byields the equa-
tion for the mean fieldN=(n), comprises three terms: molecular diffusion YN), molecu-

lar thermal diffusion ~k,VT, wherek; is the molecular
thermal diffusion ratip, and molecular barodiffusion
(~k,VP, wherek, is the molecular barodiffusion ratio; see,
e.g.,[3]). Comparing the moleculai4) and turbulent(13)
where fluxes of the gaseous admixture, we can interpret the new

vT
Ju=—D|VN+k—+k (14)

VP
PP

N .
—= V- (VeiN=DV,N) =0, (6)
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additional turbulent fluxes as fluxes caused by the effects of The situation changes ¥-u+0 in a turbulent fluid flow.
turbulent thermal diffusion {k;VT, wherek:=N is the In this case a mass of fluid flowing into a small volume does
turbulent thermal diffusion ratjcand turbulent barodiffusion not equal the mass outflow from the volume at any instance.
(~kpVP, wherekp= —N is the turbulent barodiffusion ra- Therefore, at times smaller than a characteristic time of the
tio). turbulent velocity field there is an accumulatir outflow)
Remarkably, the additional turbulent flux caused by theof the gaseous admixture. Note that the accumulation and
effect of turbulent thermal diffusion appears also for inertialoutflow of the gaseous admixture in a small control volume
particles advected by a turbulent flg&]. The turbulent flux are separated in time and molecular diffusion breaks a time-
of small inertial particles of mass®, is given by reversal symmetry between the accumulation and outflow.
The latter can cause pattern formation in the concentration

k(P distribution of the gaseous admixture advected by a com-
JP=—-Dy 7VT+ VN|, (15  pressible turbulent fluid flow. Indeed, let us demonstrate this
effect. For this purpose we derive the equationrfér Mul-
3/m T tiplication of Eq.(1) by n, and simple manipulations yield
PN P —
ki®’=N Pe( m#) (T* ) InRe, (16) ﬂnf, 2 2
W+(V~A)=—np(V-U)—2D(Vnp) , (17)

(see[8]), wherek{” is the turbulent thermal diffusion ratio

of small inertial particlesDTk(Tp) is the coefficient of turbu- whereAzngu—DVng. Consider an evolution of mass of
lent thermal diffusion, Peugl,/D is the Pelet number, the gaseous admixture in a volumé&, in a Lagrangian

Re, =min{Re,Pg}, Re=louy/v is the Reynolds number, frame. Integrating Eq(17) over the volumeV, , we obtain
Per=Iqug/x is the thermal Pelet number, and is the co-

efficient of molecular thermal conductivity. The turbulent d ) ) )

thermal diffusion of small inertial particles is caused by the aJ npdV, = —f np(V-v)dV, —ZDJ (Vnp)“dv,,
correlation between temperature and velocity fluctuations of

the surrounding fluid and leads to the relatively strong mearhere we use that- U=V-v. The latter equation shows that
flux of small inertial particles in the direction of the regions ;, o, incompressible fluid flovynf)dv* can only decrease

with the minimum(qr maximun’) of the mean temperatgre of with time due to molecular diffusion. On the other hand, in a
the surrounding fluid depending on the ratio of material par-

ticle density to that of the surrounding fluid. Note that thecompressmle fluid rov_v the valugn,dV,, can grow when
o . o ..~ ~V.v<0. Thus the regions wheré-v<<0 contribute to the
velocity field of particles is divergent due to the finite inertia

2 .
of particles advected by turbulent flow. For heavy particle rowth of [nydV . Howevgr, the total number Qf particles
(with sizes =1um) the turbulent thermal diffusion ratio of the gaseous qdmlxture in the whole system'|s cpnserved.
kP> N at large Reynolds and'Blet numbers Now we elucidate the role of molecular diffusion and
T .

For light particles(or the gaseous admixtyréhe effects s;aecligentanon. Integration of Eq1) over the volumeV,
of inertia are negligible. However, compressibility of the sur-Y
rounding fluid results in the new additional turbulent fluxes d
of the gaseous admixture caused by turbulent thermal diffu- —f nydV, =D 3@ (Vn,)-dS— % npVs- dS,
sion and turbulent barodiffusion. Note that the turbulent flux dt
of the gaseous admixtuf&3) can also be obtained by means

of a simple dimensional analysisee[14]). where we use the Gauss theorgitV-B)dV, = {B-dS.

Thus only molecular diffusion and sedimentation can change
a mass of the gaseous admixture in the voliwhe How-
ever, the direction of this changéhe growth or decay of
JnpdV, and fngdv*) is determined by the sign o¥-v.
WhenD =0 andv¢=0 the particles of gaseous admixture are
“frozen” into the surrounding fluid and'n,dV, =const. If
Now we study the dynamics of the large-scale distributionV-v<<O0 andD #0, a redistribution of the mass of the gas-
of the concentration of the gaseous admixture in a smalleous admixture occurs, so that regions with a high concen-
scale turbulent fluid flow. Turbulent barodiffusion and turbu-tration of the gaseous admixture are adjacent to the regions
lent thermal diffusion may result in the formation of inho- with a low concentration. Therefore, the large-scale inhomo-
mogeneous structures in a large-scale distribution of th@geneous structures in the spatial distribution of the gaseous
gaseous admixture advected by a compressible turbulemdmixture concentration are formed.
fluid flow. The mechanism of this effect is as follows. In  Note that there exists a certain similarity between the for-
incompressible flow at any time, the mass of the fluid flow-mation of the large-scale inhomogeneous structures in the
ing into a small volume exactly equals the mass outflowspatial distribution of the gaseous admixture concentration
from this volume. In the limit of infinite Pdet number the (passive scalarand generation of magnetic fieldpassive
gaseous admixture is frozen into the flow of a surroundingvecto) by a turbulent flow of conducting fluid. The magnetic
fluid. Therefore, there is no accumulation of the gaseous adiux [B-dS through a surface corresponds to a mass
mixture at any point of the volume. SnpdV, of the gaseous admixture in the volurkg . The

Ill. MECHANISM OF THE FORMATION
OF LARGE-SCALE INHOMOGENEITIES
IN THE SPATIAL DISTRIBUTION
OF THE CONCENTRATION
OF A GASEOUS ADMIXTURE
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magnetic energy/B2dV, corresponds tofnf,dv* . The where the wave vectds is perpendicular to th& axis. Sub-
source of generation of magnetic energy is associated withtituting Eq.(19) into Eq. (18) yields

vl Xy, 1.e.,
Okl N 1 #N N«

9B2 vy gt my dZ? THoTz mON’ (20
WXBkBmﬁT
m where
(see, e.g.,[15]). On the other hand, compressibility 1 =
(dvy/x#0) of the fluid results in the formation of large- —=Fy(Z), wuo=Fy+AFo+tug, K0=k2—)\—0—>\’.
scale inhomogeneous structures in the spatial distribution of Mo Fo

; ? 2y.
the gaseous admixture concentratioe., growth ofng): We consider the case,(2)>Pe ! for all Z. Equation(20)

2 is written in dimensionless form, the coordinadeis mea-
ﬂm_nzﬂ_ sured in unitsA 1, the timet is measured in unitﬂ%/DT,
at P axy the wave numbelk and valueN are measured in units

o A7l vo=vsA7/Dy, A7 is the characteristic scale of the
The effect of the magnetic diffusion is similar to that of spatial temperature distribution, the temperatiirés mea-
molecular diffusion of a passive scalar. Indeed, the magnetigyred in units of temperature differend® in the scale
flux can be changed only if the magnetic diffusion is nonzeroy  and the concentratioN is measured in unitdl, . The

(finite electrical conductivity, which prevents the freezing of o ~ . .
the magnetic field into the flow of a conducting fluid. Diffu- ;iicst%”\_)\ez’ wheree, is a unit vector directed along the

sion of the magnetic field breaks a reversibility in time of the Substitution of
magnetic structures evolution. Similarly, molecular diffusion
breaks a reversibility in time so that accumulation and out- 1
flow of the gaseous admixture from a control volume cannot N(t,Z)=V¥y(Z)exp yt)ex;{ - Ef Xodz} (21
be compensated exactly. The latter results in the formation of
the large-scale inhomogeneous structures in the spatial CORsduces Eq(20) to the eigenvalue problem for the Schro
centration distribution of the gaseous admixture. dinger equation

All of the above considered conditions for the formation
of the inhomogeneous structures in the concentration distri- 1
bution of the gaseous admixture are only necessary, but not m—\P6+[W0— Uol¥,=0, (22)
sufficient. The sufficient conditions can be determined only 0
after the analysis of the large-scale stability of the equilibyherew,= — y and the potentiall, is given by
rium concentration distribution. This analysis is performed in
the next section. 1 (X% X6

IV. ANALYSIS OF LARGE-SCALE INSTABILITY (23

~ In this section we analyze the formation of large-scale Now we use a quantum-mechanical analogy for the analy-
inhomogeneous structures in the spatial concentration distri;s of inhomogeneity formation in a spatial distribution of the
bution of the gaseous admixture concentration. Equafi@h  concentration of the gaseous admixture. The instability

for the mean number density of the gaseous admixture capy>0) can be excited if there is a region of a potential well

be rewritten in the form whereU,<0. The positive value ofV, corresponds to tur-
N bulent diffusion, whereas a negative valueW§ results in
the excitation of the instability. Now we introduce the func-
—+V-{[Vs— AD7Fo(Z)IN}=V-{[D+D1Fy(Z)]VN}, . .
at {[vs= ADTFo(Z)IN}= V-] TFo(Z)IVN} tion f=In(u?), wheref’=F(/F,. The potentiall, can be

(18)  rewritten as

where V=vg, Fo(Z)=(U?/uj, (Uplm)=UgFo(Z)3dmn/3 1, ,
(for details se¢13]), and the vectorg andVp are directed UO:4_mO{(f ~N) [ veexp(—1)]
against thez axis. The equilibrium solution of Eq18) is
given by +4K2+2f"— 2\ =\, (24)
Ve—ADF((2) The potentialU, can be negative if
VNg=N (—)
© % D+D1Fy(2) 27— 21" —\2<0. (25)

Hereafter we consider the casesPE, i.e.,D>D. Now we
study the stability of this equilibrium solution.
We seek the solution of Eq18) in the form In order to estimate the first energy lewal, we use a
modified variational metho@e.g., a modified Rayleigh-Ritz
N(t,r)=Ng(r)+N(t,2)expik-r,), (19 method. The modification of the regular variational method

A. Estimation of the growth rate of the instability
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is required since Eq22) can be regarded as the Scfiiger ~ where n=vo/\g, Co=2bg, Zog=—AoY/(1—cp), andY is
equation with a variable mass,(Z). Now we rewrite Eq. determined from the equation
(22) in the form

CoA3Y?2

1 d? (Y+1)2=277Yx/1—coexp<——).

HY =Wy, F':UO_HOW' (26) 2(1-cg)

The modified variational method employs an inequality ~ D€'in€ & critical value o at whichy=0, i.e.,

_2(1+¢) In( U ) (34)

W,<I, I=fm\lf*l:|\PdZ, 2 Y2 =
0 0 (7) cr CO)\% 2\/1+—(:()

where W is an arbitrary function that satisfies a normaliza--l-hen we can rewrite the growth rate of the instability in the
tion condition

form
f meW*wdz=1. 28 _Mom[| [4(tcy)) 35
2 7 '

The inequality (27) can be proved if one uses the

expansion W=3"_ca w{, where S;_jlaj]=1 and Where

Jmo(PP)* wMdz=5,,. The eigenfunctionst ) satisfy )

the equatiorH WP =W, ¥ (), p= 1( v )

—-1
We chose the trial functiod in the form 2\ Yg

W =Agexd — a(Z—-2Zy)%2], Here we consider the caselok1. This implies long-wave-
length perturbations in the horizontal plane. It is seen from
1/4 b ZZ
@DosLg
ol

a+by Egs.(34) and(35) that the instability is excited when
2(a+ bo)

Ao= , (29

?>2\/1+2b0 (36)
0

where the unknown parametersandZ, can be found from
the condition of minimum of the functioh(«,Z;) [see Eq.
(27)]. Here we use the spatial distributions 6fZ) and andY>Y,. For example, wheib,<1 (i.e., the inhomoge-
N(2), neity of turbulence is very weakthe growth rate of the
instability is given by
f(Z)=boZ%exp(— BoZ?), (30
7~boAgY5, (37)
NZ)=(Z—\o)exp — €,Z?), (3D
o ) whereYy=n—1+n(n—2). Thus it is shown here that the
whereBy<1 andep<1. These distributions satisfy the nec- equilibrium distribution of concentration of the gaseous ad-
essary conditior(25) for excitation of the instability. Substi- jyre is unstable. The instability results in the formation of
tuting Eqs.(29) and(31) into Eq. (27) yields an inhomogeneous distribution of concentration of the gas-

2 eous admixture. The exponential growth during the linear

(a+bo)™ ( Ao f the instabili be damped by the nonli f-
_ 20l Zb— 22| +(b—a)2+ 2ak? stage of the instability can be damped by the nonlinear e
2a%? o 2 (b—a) . fects(e.g., a hydrodynamic interaction between the gaseous
b72 2 admixture and a turbulent fluid flow and a change of tem-
x exp( aboZp) voko | voaZo Lo perature distribution in the vicinity of the temperature inver-
a+bg 2 2(at+by) 4 sion layey.
a+ bO 2 azbozg ical d he i bil
a+2bg exp — (a+by)(a+2by) |’ (32 B. Numerical study of the instability
Equation (22) was solved numerically with turbulent
whereb=1/2—by>0. kinetic-energy and mean temperature profiles given by Egs.
Thus the modified Rayleigh-Ritz method allows us to es<(30) and (31). The extremum of turbulent kinetic energy is
timate the growth rate of the instability located atZ=0, the temperature minimum is located at
Z=M\, [see Egs(30) and (31)], andZ= —H s the location
\3n 7 CoNGY? of an impenetrable boundary for the gaseous admixture. The
y=—Wo~ N 1—mex T 2(1+cy) boundary condition aZ= —H is determined by the equation

J|z= _4=0, which yields the condition fo¥,

k2 p( CoN2Y?2

ex
Ty N 2(I=cy)

dw 1
, (33 d_ZO:(f’—EXO)\IfO at Z=—H. (39
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Y Y

0.1 0.2

-0.1 0.1 0.3 0.5 b 0 1 2 -by

FIG. 1. Dependence of the growth rate of the instability versus FIG. 3. Dependence of the growth rate of the instability versus
by for A\g=1, v9=2.2, andH=7. —bg for A\g=—0.2,v,=0, andH=0.9.

Equation(38) provides zero flux of the gaseous admixturethe potentialU(Z) sharply change. Note that the analytical
through a horizontal boundary plaiZe= —H. The second estimate obtained by means of the modified Rayleigh-Ritz
boundary condition iaF o(Z=)=0. As an example, Fig. 1 method yields the upper bound fby=0.5 in good agree-
shows the dependence of the growth rate of the instabilitynent with the numerical results.
versushg for Ag=1,v9=2.2, andk<1. These values of the The effect of the boundary was neglected in the modified
parameters satisfy the necessary condif@®) for the exci- Rayleigh-Ritz method. Note that in the cade=7 the nu-
tation of the instability. The minimum of the functid{Z) merical simulation showed that the effect of the boundary is
describing the spatial distribution of the turbulent kinetic en-indeed very small. However, if the boundary is located not
ergy is chosen to be located at the height7 from the far from the extrema of the temperature and turbulent
horizontal boundary plane, whek¢ is measured in units of kinetic-energy distributions, the modified Rayleigh-Ritz
A+. These numerical results are in good agreement with thenethod does not allow an estimate of the growth rate of the
analytical estimates obtained by means of the modifiednstability. However, this case can be interesting in view of
Rayleigh-Ritz methodSec. IV A). The instability is excited its relevance to atmospheric turbulent transport and can be
when 0<by<0.57. For illustration, the spatial distributions studied numerically. For example, the dependence of the
of the potential U(Z) are presented in Fig. (@ (for growth rate of the instability versus-b, for H=0.9 is
by=0.1) and in Fig. Bb) (for by=0.5). In the vicinity of the = shown in Fig. 3. In this case the instability is excited even for
upper bound for the parameteg, the spatial distributions of very small terminal fall velocitythe calculations were per-
formed forvy=0). The gaseous admixture is accumulated in
the region between the maximum of the turbulent kinetic
U@ energy(e.g.,bp<0) and minimum of the temperature, which

(@
is located under the maximum of turbulent kinetic energy
(the calculations were performed fag= —0.2). Note that
1 the case (=0 describes the large-scale dynamics of the gas-
eous admixture when the terminal fall velocity is very small.
/\ On the other handy,#0 corresponds to the dynamics of
o \/ light particles in a turbulent fluid flow.

V. CONCLUSION

-1
© 8 e z We demonstrated the existence of two effects: turbulent
® barodiffusion and turbulent thermal diffusion. These effects
u2) occur during advection of the gaseous admixture by a com-
pressible turbulent fluid flow with low Mach numbers. These
phenomena result in the appearance of two additional turbu-
6 lent nondiffusive fluxes in the equation for the total mass
flux of the gaseous admixture. The magnitude of turbulent
barodiffusion and turbulent thermal diffusion fluxes is much
> larger than the corresponding molecular fluxes at largdePe
M and Reynolds numbers. The effects vanish in incompressible
\//\\/ turbulent flow of a surrounding fluid. These phenomena can
cause formation of the large-scalmean-field inhomoge-
8 16 z neous structures in a spatial concentration distribution of the
gaseous admixture. The effects of turbulent barodiffusion
FIG. 2. Distributions of the potential (r) for Ag=1,v,=2.2, and turbulent thermal diffusion can be important in various
H=7, and differentby: (a) by=0.1 and(b) by=0.5. natural and industrial turbulent compressible fluid flows, e.g.,

-2
o}
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the formation of gaseous clouds in turbulent atmospheres in

the vicinity of a temperature inversion layer.
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APPENDIX A: SOLUTION OF EQ. (1)

Here we show that Eq3) is a solution of Eq(1). If the
total fieldn, is specified at time, then we can determine the
total field n,(t+ At) at timet+ At by means of the substi-
tutionst—t+ At andty—t in Eq. (3). The result is given by

np(t+AL,X) = M{G(t+At,t)n [t,&t+At,H)]}, (AL)

where

t+At
G(t-l—At,t):ex;{—J b, (0,&,)do
t

Et+AL) =& =Xx— LMU(IU,fg)dUJr(ZD)l’ZW(At).

t{r:t+ At_ ag, andg(tz ,tl) = §t27tl’ i.e., g(r: g(t+ At,t”) .
We expand the functiony(t,£,,) in Eq. (A1) in a Taylor
series in the vicinity of the point:

2
a*n,
IXm0Xs

an, 1
np(t,fAt)an(t,X)"‘ m(fm_x)m"' 2
X(fAt_X)m(gAt_x)s+" te (AZ)

Using the equation for the Wiener trajectory we obtain

tr—ty
[‘f(tZatl)_x]m:_fo Un(ts,&)ds
+(2D) Yt~ ty), (A3)

where&(t,,t,—s)=§&;. Expanding the velocity ,(ts, &) in
a Taylor series in the vicinity of the point and using Eg.
(A3) we find that

_ U, s
Um(ts, &) =Um(ts,x)+ [?_XI[— JOU|(tU,X)d0'

+(2D)Y2w(s)|. (A4)

Substitution of Eq(A4) into Eq. (A3) yields
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At
(Eat=X)m=— Jl) Um(ts,&s)ds

atgu,, <
+fo X, <ts,x>dSJOU|(tg,§g)da
Até’u
_VZDJ —"  wi(s)ds+ 2Dwy,.
0 &X| (ts,x)
(A5)

The integrals in formuldA5) can be evaluated by means of
the “mean value” theorem. The result is given by

(£xi—X)m=—Up(t, ,X)At+2Dw,,+ O((At)?),
(A6)

wheret, is within the interval ¢,t+ At). Substitution of Eq.
(A6) into Eqg. (A2) yields an expression for the field

np(tlgAt) '

an
Np(t, &) =Np(t,X) +ﬁ[ —Up(t, ,X)At+\2Dw,]

2

o, O((A1)?)
IXmXs '

+Dwpws (A7)

Expanding the functiob, (o,§,) in a Taylor series in the
vicinity of the pointx, using Eq.(A6), and evaluating the
integral

t+ At
[ hitoao
t

by means of the mean value theorem, we calculate the func-
tion G(t+At,t) accurate up to~At terms. The result is
given by

G(t+At,t)=1-b, (t3,X)At, (A8)
wherets is within the interval {,t+At). Combining Egs.
(A7), (A8) and(Al) and averaging over Wiener trajectories
yields the expression for the fietg,(t+ At,x). Now we cal-
culate the limitf ny(t+At,x) —np(t,x) /At for At—0. This
procedure yields Eql). Therefore Eq(3) is a solution of
Eq. (2).

APPENDIX B: DERIVATION OF THE MEAN-FIELD
EQUATION FOR LARGE PE CLET NUMBER

We derive here the equation for the mean field. If the total
field n, is specified at time, then we can determine the total
field ny(t+At) at time t+At by means of substitutions
t—t+At andty—t in Eq. (3). The result is given by

np(t+At,x)=M{G(t+At,H)n [t &t+At,H)]}, (BL)

where
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t+At
G(t-l—At,t):eX[{—J b,(c,&,)do
t

Ht+At)=&=x— f:tua,,,f,,>do+(2D>1’2w(At).

t,=t+At—o, andg(tz,tl)zgtz_tl, ie., &= &(t+Att,).
Expanding the functiom,(t,&,¢) [Eq. (B1)] in a Taylor
series in the vicinity of the point yields

2
1 g
2 IXmdXs

an,
np(trgAt): np(t,x) + m(ét_ X)m+

X(Ear=X)m(Ear=X)st -~ - (B2)

Using the equation for the Wiener trajectory we obtain

tr—ty
[g(t21t1)_x]m:_fo Um(ts,&)ds

+(2D) YA (t,—ty), (B3)

whereg(t,,t,—s)=§&;. Expanding the velocity) ,(ts,&) in
a Taylor series in the vicinity of the point and using Eq.
(B3) yield

au,,
Um(tS!gs)ZUm(tsax)_UIWS
|

au
+(2D)¥2—"w(s)+ - - -.

o (B4)

Here we assume that the velocltyremains constantime
independentat small time intervals (@t),(At,2At), ...

and changes every small timet and that the velocity is
statistically independent at different time intervals. Substitut-
ing Eq. (B4) into Eq. (B3) and calculating the integrals in

Eq. (B3) accurate up to~-(t,—t;)? terms yield

- 1 L dUp
[&(ty,t) = X]m=—(t,=t)Up+ E(tz_tl) U X

Uy (to-t
—\/ZD—mfo2 ‘w,ds

0X|

+\2DWp(ty—ty) + - -. (B5)

The combination of Eqs(B5) and (B2) yields the formula
for the fieldny(t,£,,)
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t,&)=n(t +&n" U At+1U i At)2
Np(t, &) = Np(t,X) x|~ Um > '0_X|( )

U, (At
++/2Dw,,— 2D—mf Wlds)
oX| Jo
1 d°n,
2 XX,
—V2DAt(U w, +Uw,)],

where we keep terms O((At)?). Now we expand the func-
tion b, (o,&,) in a Taylor series in the vicinity of the point
X, use Eq.(B5), and calculate the integral

[UnU (At)2+ 2Dww,

(B6)

t+At
f b, (0,§,)do.
t

The result is given by

ab,
99x4

t+At 1
f b*(a,fg)dazb*(t,X)At—EU (At)2
t

ab* t+At
+42D f Wodo+ - -
&Xq t

(B7)
Here we also keep terms O((At)?). Using Eq.(B7) we

calculate the functiorG(t+At,t) accurate up to~(At)?
terms

G(t+A 1-b Alu&b*A21b2A2
(tHALY)=1-b, (tx)At+ > q%( D7 +5 b (AD)
db t+At
—\2D *f Wodo+ - - - (B8)
(9Xq t

Substitution of Eqs(B8) and(B6) into Eq.(B1) allows us
to determine the number density(t+At,x),

Ny(t+At,x)=M [ No(t,X)+ny(At)+ny(At)?

4°n

i
+D %X, (B9)

WmWs] )

where
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Averaging Eq.(B9) over the ensemble of the turbulent ve- whereBgz= — (V- V) +{7(u-V)b)+(7b?). Using the iden-
locities, we obtain the mean field N(t+At,x) tity

=(np(t+At,x)). Let us calculate the limifN(t+At,x)

—N(t,x)]/ At for At—0. The result is given by

J d
Up=—Up ) = ——(TUpUm) —(7u(V-u)),
%+[(V_<T(U'V)u>_2<7bu>)'V]N=BeﬁN <T P %y > 7, TUpti) —(U(V- )

2
9°N (810) We obtain Eq.(6) for the mean field\N. Here we neglect a
P OX X weak dependence of on the coordinates.
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