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Isotropic and anisotropic spectra of passive scalar fluctuations in a turbulent fluid flow with a power law
}k2b spectrum are analyzed. The isotropic spectra occur in flows with zero mean external gradient of passive
scalar concentration and passive scalar fluctuations can be caused by an external source. On the other hand, in
the presence of nonzero mean external gradient of concentration, passive scalar fluctuations are anisotropic and
can be excited by ‘‘tangling’’ of the mean external gradient of the passive scalar by turbulent fluid flow. The
analysis is based on the renormalization procedure in the spirit of Moffatt@J. Fluid Mech.106, 27 ~1981!; Rep.
Prog. Phys.46, 621 ~1983!#. It is shown that the anisotropick23 spectrum of passive scalar fluctuations is
universal, i.e., independent of exponentb in a turbulent velocity spectrum. In the particular case of the
Kolmogorov spectrum (b55/3) of turbulent velocity field the derived general spectra recover the known
spectra of passive scalar fluctuations}k25/3 and}k217/3. In addition, the ultimate Prandtl number for large
Reynolds numbers is estimated (Prlim'0.792) and is found to be in fairly good agreement with experimental
results.

PACS number~s!: 47.27.Ak, 05.60.1w, 47.27.Qb

I. INTRODUCTION

Passive scalar fluctuations in incompressible and com-
pressible turbulent fluid flow were studied quite extensively
~see, e.g.,@1–7#, and references therein! due to the great
importance of the turbulent mixing problem. However, some
of the aspects of this phenomenon, e.g., the problem of spec-
tra of the passive scalar fluctuations, are still not completely
understood. Isotropic and anisotropic spectra of the passive
scalar fluctuations in different cases were analyzed in numer-
ous studies~see, e.g.,@3,8–14#! by means of different meth-
ods. The isotropic spectra occur in flows with zero mean
external gradient of passive scalar concentration. In this case
passive scalar fluctuations can be caused by an external
source. On the other hand, in the presence of nonzero mean
external gradient of concentration, passive scalar fluctuations
can be excited by ‘‘tangling’’ of the mean external gradient
of the passive scalar by turbulent fluid flow. In this case the
spectra of passive scalar fluctuations are called anisotropic.

Some of the results on spectra of passive scalar fluctua-
tions are a subject of discussion and controversy. Namely,
the existence of the anisotropick23 spectrum of passive sca-
lar fluctuations was repeatedly discussed in the literature
~see, e.g.,@2,15–17#!. Although this spectrum was observed
in experiments~see, e.g.,@17–19#! its origin still remains
poorly understood.

In this study we analyze the isotropic and anisotropic
spectra of passive scalar fluctuations in a turbulent fluid flow
with a power law}k2b spectrum using the renormalization
procedure in the spirit of Moffatt@20#. Notably, this ap-
proach allows us to derive all the known spectra of passive
scalar fluctuations~in scales from the maximum scale of tur-
bulent motions to the viscous scale!, including thek23 spec-
trum.

In order to elucidate the problem, in this section we
present a short review of the isotropic and anisotropic spectra
of passive scalar fluctuations obtained with simple dimen-
sional arguments and approximate estimations. First, con-
sider isotropic homogeneous and incompressible turbulent
fluid flow with zero mean external gradient of a number den-
sity of passive scalar particles. The external source of passive
scalar fluctuations is localized in region of scalesl, l 0 ,
where l 0 is the energy containing scale of hydrodynamic
turbulence. The equation for a fluctuating componentq of
passive scalar concentration in incompressible turbulent fluid
flow u reads

]q

]t
1~u•“ !q5DDq1e, ~1!

whereD is the coefficient of molecular diffusion ande is the
external source of the passive scalar fluctuations. As was
found by Obukhov@8# and Corrsin@9# the spectrum of pas-
sive scalar fluctuations in a rangek0,k,min(kn ,kD) is
given by

G~k!}k25/3, ~2!

where

^q2&5E
0

`

G~k!dk; ~3!

k05 l 0
21 , kD5 l D

21 , l D is the length scale in which molecular
diffusion is dominant,kn5 l n

21 , and l n is the ‘‘viscous’’
length scale at which molecular dissipation becomes domi-
nant. For instance, for Kolmogorov turbulencel n
}Re23/4l 0 , where Re5u0l 0 /n0 is the Reynolds number,n0
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is the kinematic viscosity, andu0 is the characteristic veloc-
ity in scalel 0 . Thek

25/3 spectrum of passive scalar fluctua-
tions is obtained by means of dimensional analysis if one
assumes that

^q2&k
t~k!

5const,

E~k!}k25/3, ~4!

where

t~k!5@ku~k!#21, u~k!5A^u2&k, ~5!

^q2&k5Ek

G~k8!dk8, Ek

[E
k

`

,

^u2&k5Ek

E~k8!dk8,

andE(k) is the spectrum function of turbulent velocity field
u. Conditions~4! and ~5! imply the following estimate of
magnitude of terms in Eq.~1!: (u•“)q;e and a condition
^eq&5const. Thek25/3 spectrum of passive scalar fluctua-
tions depends on the exponent of the spectrum of turbulent
velocity field. This spectrum exists in the region
k0,k,min(kn ,kD) and is independent of the molecular
Prandtl number Pr05n0 /D.

When Pr0@1 in the regionkn,k!kD the spectrum of
passive scalar fluctuations is given by

G~k!}k21

~see@11,13#!. This spectrum can be obtained if one assumes
that

^q2&k
t~k!

5const, ~6!

t~k!5const. ~7!

Condition ~7! means that in the intervalkn,k!kD there is
only one characteristic time of a random velocity field.

Until now we considered the isotropic spectra of passive
scalar fluctuations, i.e., passive scalar fluctuations with zero
mean external gradient of passive scalar. On the other hand,
when the external mean gradient of the passive scalar“N0
Þ0, the spectra of passive scalar fluctuations are anisotropic.
Now let us discuss these anisotropic spectra. In this case
passive scalar fluctuations can be excited by ‘‘tangling’’ of
the mean external gradient of the passive scalar by turbulent
fluid flow. When“N0Þ0 the equation for the fluctuating
componentq of the passive scalar concentration reads

]q

]t
1~u•“ !q2DDq52~u•“ !N0 . ~8!

First consider the case Pr0!1 and examine the range
kD!k!kn . An estimate

DDq;~u•“ !N0 ~9!

in Eq. ~8! and an assumption of the Kolmogorov spectrum of
hydrodynamic turbulenceE(k)}k25/3 yield the spectrum of
the passive scalar fluctuations in this case:

G~k!}k217/3~“N0!
2. ~10!

Note that the latter spectrum of the passive scalar fluctua-
tions is anisotropic, i.e.,

F~k!}k217/3sin2u~“N0!
2,

where

G~k!5E F~k!k2sinududw,

andu is the angle between a wave vectork and“N0 .
The k217/3 spectrum is also valid for isotropic passive

scalar fluctuations (“N050). In the case of the isotropic
passive scalar fluctuations this spectrum was derived in@12#.
An estimate

DDq;~u•“ !q ~11!

in Eq. ~1! is valid in this case. If we assume that in the range
kD!k!kn the spectrum of passive scalar fluctuations is
steep, then the main contribution in the (u•“)q term is from
fluctuations of passive scalarq(k8) of the inertial range
k0!k8!kD and from fluctuations of velocity fieldu(k9) of
the interval kD!k9!kn . This means that in the (u•“)q
term the fluctuationsq and u are not correlated. The latter
yields thek217/3 spectrum of isotropic passive scalar fluctua-
tions:

G~k!}k217/3u“qu2,

where an assumption of the Kolmogorov spectrum of hydro-
dynamic turbulenceE(k)}k25/3 was used.

Now we consider the spectrum of the anisotropic passive
scalar fluctuations in the intervalk0,k,min(kn ,kD). The
spectrum in this interval can be obtained by means of Eq.~9!
whereby the coefficient of the molecular diffusionD is re-
placed by a scale dependent coefficient of the turbulent dif-
fusionh(k):

~u•“ !N0;h~k!Dq, ~12!

and

h~k!;
u~k!

k
. ~13!

Equations~12! and ~13! yield the spectrum of the passive
scalar fluctuations in the rangek0,k, min(kn ,kD):

G~k!}k23~“N0!
2

~see@10#!. In Sec. III we derive the isotropic and anisotropic
spectra of the passive scalar fluctuations~in scales from the
maximum scale of turbulent motions to the viscous scale! by
means of a renormalization procedure.
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II. RENORMALIZATION PROCEDURE AND TURBULENT
TRANSPORT COEFFICIENTS

In this section we consider properties of passive scalar
fluctuations in a turbulent fluid flow. The renormalization
procedure~see, e.g.,@20,21#! is employed here for investiga-
tion of the passive scalar fluctuations in turbulence with a
mean gradient of passive scalar. Numerous works on turbu-
lence are confined to a study of the large-scale properties of
flows by averaging the equations over the ensemble of the
fluctuations~see, e.g.,@1–3#!. This averaging is carried out
over the fluctuations in all scales of turbulence.

On the other hand, the averaging in the renormalization
procedure is performed over the fluctuations of scales from
l n to l * within the inertial range of turbulencel n, l *, l 0 . In
the very small scalesl, l n the molecular dissipation is im-
portant. Therefore turbulent viscosityn and turbulent diffu-
sion h depend on the scale of the averagingl * . The next
stage of the renormalization procedure comprises a step-by-
step increase of the scale of the averaging. This procedure
allows the derivation of equations for the turbulent transport
coefficients.

We perform the first step of the renormalization proce-
dure, i.e., average the Navier-Stokes equation and the equa-
tion for the concentration of the passive scalar over the fluc-
tuations with the scales froml n to l * . The averaged
equations for velocityv and concentrationn are given by

]v

]t
1~v•“ !v52

1

r
“p1nDv1f, ~14!

]n

]t
1~v•“ !n5hDn1e, ~15!

where“•v50, e is the external source of passive scalar
fluctuations,rf is the external force,p is the pressure. The
turbulent coefficientsn andh depend on the scale of aver-
aging l * .

After this averaging, the rangel. l * corresponds to
‘‘mean’’ fields whereas fluctuations are in the rangel, l * .
The influence of the fluctuations on the ‘‘mean’’ fields is
described by the turbulent coefficientsn andh.

Let us change the scale of the averaging by a small value
uDku!k* ~where the wave numberk*5 l

*
21) and average

Eqs. ~14! and ~15! over the fluctuations. Now in the region
k,k*2uDku the velocity V and concentrationN are the
mean fields whereas the regionk.k*2uDku corresponds to
the turbulent fields. Since Eqs.~14! and ~15! have been al-
ready averaged over the fluctuations in the scales that are
smaller thanl * , it is sufficient to average these equations
over fluctuations in the small intervalk*2uDku,uku,k* .
Herev5V1u, n5N1q, V5^v&, N5^n&, and the angu-
lar brackets denote averaging over the ensemble of fluctua-
tions in the domaink*2uDku,uku,k* . Therefore the equa-
tions for the mean fieldsV andN are given by

]Vj

]t
1~V•“ !Vj1

1

r

]p

]xj
2nDVj2 f j5

]

]xj
s i j , ~16!

]N

]t
1~V•“ !N2hDN52

]

]xj
C j , ~17!

where “•V50, the Reynolds turbulent-stress tensor
s i j52^uiuj&, and the flux of particlesC j5^quj&. The
equations for mean fields comprise the second moments for
the turbulent fields. To obtain a closed system of equations it
is necessary to find the dependence of the second moments
^uiuj& and^quj& on the ‘‘mean’’ fields. To achieve this goal
we perform the following procedure.

~1! We derive equations for the turbulent fieldsu5v2V
andq5n2N in a frame moving with a local velocity of the
mean flowV.

~2! Define a background turbulence as the turbulence
without mean gradients of both mean passive scalar concen-
tration “N50 and mean velocity¹ iVj50. For simplicity
the background turbulence is assumed to be homogeneous
and isotropic. The solutions of the derived equationsu(0) and
q(0) correspond to the background turbulence.

~3! The goal of the present study is to analyze a deviation
from the solutionsu(0) andq(0) due to the presence of both
mean passive scalar gradient“N and gradient of the mean
flow ¹ iVj , and we derive equations for the fields
u(1)5u2u(0) andq(1)5q2q(0).

~4! We solve the integrodifferential equations for the
fieldsu(1) andq(1) by iterations. We consider here the effects
that are linear in the spatial derivatives of the mean fields
V andN.

~5! We calculate the second moments for the turbulent
fields in order to find the Reynolds turbulent-stress tensor
s i j and flux of particlesC j ,

s i j5s i j
~0!2^ui

~1!uj
~0!&2^ui

~0!uj
~1!&2^ui

~1!uj
~1!&, ~18!

C j5^q~0!uj
~1!&1^q~1!uj

~0!&1^q~1!uj
~1!&, ~19!

where s i j
(0)52^ui

(0)uj
(0)& is the Reynolds turbulent-stress

tensor for the background turbulence. We assume that
^q(0)uj

(0)&50.
Substituting Eqs.~18! and ~19! into ~16! and ~17! yields

the equations for the mean fields. The described procedure
enables us to derive equations for the transport coefficients:
turbulent viscosityn and turbulent diffusionh. The details
of the calculations are presented in the Appendix. The result
is given by

dn

dk
52

7

60nk2
E~k!, ~20!

dh

dk
52

Pr~k!

3nk2~11Pr!
E~k!. ~21!

Here Pr(k)5n(k)/h(k) is the effective Prandtl number and
E(k) is the hydrodynamic energy spectra of the background
turbulence:

E~k!5~b21!S u02k0D S kk0D
2b

,

wherek05 l 0
21 . For example, for the Kolmogorov spectrum

of hydrodynamic turbulenceb55/3 ~see, e.g.,@22#!. After
the change of variables Eqs.~20! and ~21! are reduced to
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dn

dj
5

7

20n
, ~22!

dh

dj
5

Pr

n~11Pr!
, ~23!

wheredj52(E/3k2)dk and

j5E
k

` E~k8!

3~k8!2
dk85

u0
2

3k0
2 S b21

b11D S kk0D
2b21

5
E~k!

3k~b11!
.

~24!

The equation for the scale dependent Prandtl number Pr(k) is
derived from~22! and ~23!:

dPr

dj
52

Pr~Pr2a1!~ Pr1a2!

n2~11Pr!
. ~25!

Herea1;0.792 and2a2;20.442 are the roots of the qua-
dratic equation 20y227y2750. It follows from Eq. ~25!
that there is a special case for Pr(k)[Prlim5a1.0.792 when
the Prandtl number is constant in all scales of the turbulence.
The value 0.792 corresponds to the fixed point of Eq.~25!.
The dependence of the turbulent viscosityn on j can be
determined from~22! and is given by

n2~j!5n0
21

7

10
@j~k!2jd#, ~26!

where jd5j(k5kn). A one-parameter set of solutions of
Eqs. ~22! and ~23! for the turbulent transport coefficients
n(Pr) andh(Pr) is given by

Re~Pr![
n~Pr!

n0
5

Pr

Pr0
U Pr02a1
Pr2a1

Ua1U Pr01a2
Pr1a2

Ua2

, ~27!

h~Pr!5
n~Pr!

Pr
, ~28!

where Pr0Þa1 ,

a15
a2~11a1!

a11a2
'0.642, a25

a1~12a2!

a11a2
'0.358.

These turbulent coefficients depend only on the Prandtl num-
ber Pr. Equation~27! allows us to describe asymptotical be-
havior of the Prandtl number Pr for large Reynolds number
Re(k)5n(k)/n0@1:

Pr~k!'0.79210.618
~Pr02a1!~Pr01a2!

0.558

Pe1.56~k!
, ~29!

where Pe(k)5Re(k)Pr0@1. This means that in most of the
inertial range~where Pe(k)5h(k)/D@1) the Prandtl num-
ber Pr tends to the ultimate value of Prlim.0.792. Equation
~29! for Pr(k) and the ultimate value of Prlim are in a fairly
good agreement with experimental results~for a review see
@23#!.

Notably the above renormalization procedure is essen-
tially different from the renormalization group method
~RNG! described in@24#. Indeed, in the present study we do

not provide a closure for the dynamical problem of turbu-
lence. We study the interaction between the weakly inhomo-
geneous mean fields and background hydrodynamic turbu-
lence. In contrast to the RNG method, the spectrum and
statistical properties of the background turbulence~with
zero-mean fields! are assumed to be known. Furthermore, the
background turbulence can be arbitrary. On the other hand,
in the RNG method an external random stirring force with
Gaussian statistics is introduced. We consider a situation
with very weak gradients of mean fields, and we study small
deviation from the background turbulence under the influ-
ence of small gradients of mean fields, e.g.,

U“NN U!UA^~“q!2&
N

U.
The spectrum of the background hydrodynamic turbulence is
located within a finite region of wave numbers fromk0Þ0 to
kn , wherek05 l 0

21 , kn5 l n
21 , l 0 is the maximum scale of

turbulent motions, andl n is the ‘‘viscous’’ length scale at
which molecular dissipation becomes dominant.

In the above renormalization procedure the spectrum of
the background hydrodynamic turbulence is not determined
and it is assumed to be known. This means that we do not
study the dynamic problem of the hydrodynamic turbulence,
and we consider a particular problem of weak response of
homogeneous and isotropic turbulence to a weak external
gradient of the mean passive scalar field. Such an approach
allows us to avoid the fundamental difficulties associated
with divergencies, either at high wave number or at low
wave number. Common in our renormalization procedure
and in the renormalization group method is a step-by-step
averaging. However we do not perform a renormalization of
the background hydrodynamic turbulence as was done in the
RNG method~see@24#!.

Now let us discuss the nonlinear terms@see Eqs.~A1!–
~A6!#. We do not introduce a parameter of nonlinear interac-
tion that is assumed to be small in the RNG method~see
@24#!. The nonlinear terms are taken into account by means
of the renormalized turbulent diffusionh(k) and renormal-
ized turbulent viscosityn(k) for fluctuations with wave num-
bersk*,k,kn . However, we neglect nonlinear terms that
are associated with fluctuations in the small interval
k*2uDku,uku,k* . It can be done for the following rea-
sons. In the Appendix we estimated the magnitude of these
nonlinear terms in Eqs.~A1!–~A6! determined by the func-
tionalsBmn(u;u) andSn(q;u). We also compared these non-
linear terms with the linear terms in Eqs.~A1!–~A6! related
to the mean fields¹ iVj andN, whereV is the mean velocity.
These linear terms are determined by the functionals
Lmn(V;u) and Hn(N;u). We found that the ‘‘nonlinear’’
functionals Bmn(u;u) and Sn(q;u) are proportional to
(Dk)2, whereas the termsLmn(V;u) andHn(N;u) in Eqs.
~A1!–~A6! are of orderuDku. In the Appendix we also esti-
mated the errors committed at each stage of averaging~due
to neglect of nonlinear terms! that can be accumulated. The
maximum error is of orderuDku3/2.

Therefore the ‘‘nonlinear’’ functionalsBmn(u;u);uDku2
@and Sn(q;u);uDku2# can be dropped out for small
uDku!k* , wherek*.k0 . However, it does not mean that
the nonlinear terms are dropped out in allk space. In the first

3434 53TOV ELPERIN, NATHAN KLEEORIN, AND IGOR ROGACHEVSKII



step of the renormalization procedure the equations are av-
eraged over fluctuations of scales fromkn

21 to k
*
21 . There-

fore the nonlinear terms contribute to the turbulent transport
coefficientn andh in all scales except for only very small
region of the spectrum:k*2uDku,uku,k* .

The equation forh(k) was first derived in@20#. This
equation@see Eq.~2.11! in @20## is different from Eq.~21! in
our paper. The cause of this difference is that in@20# an
approximationv!k2h(k) was used. In our study we do not
use this assumption and we choose the frequency spectrum
of the background hydrodynamic turbulence in the form of
the Lorenz profile@see Eq.~34!#. Integration inv space in
Eq. ~A17! yields Eq.~21!, which is different from Eq.~2.11!
of Ref. @20#. Note that it is possible to use another model of
the frequency spectrum of the background hydrodynamic
turbulence. However, the assumptionv!k2h(k) cannot be
considered as general.

The difference in the ultimate value of Prlim obtained in
@24# is caused by the fact that we do not renormalize the
background turbulence, which is assumed to be known. In
@24# the ultimate value of Prlim is 0.718. Note that recently
the state of the art in the renormalization theories and the
unified mathematical formulation for passive scalar transport
problems were discussed in@25,26#.

III. RENORMALIZATION PROCEDURE AND SPECTRA
OF PASSIVE SCALAR FLUCTUATIONS

Now let us derive the isotropic (“N050) and anisotropic
(“N0Þ0) spectra of the passive scalar fluctuations. Here
“N0 is the external gradient of concentration. When“N0
Þ0 passive scalar fluctuations are excited by the ‘‘tangling’’
of the mean gradient of the passive scalar concentration by
turbulent fluid flow. On the other hand, when“N050 pas-
sive scalar fluctuations are caused by an external sourcee.
The equation for the fluctuating component of the concentra-
tion q reads~see the Appendix!

]q

]t
2hDq52~u~0!

•“ !N01e. ~30!

In Eq. ~30! we take into account the terms that are respon-
sible for the generation of the passive scalar fluctuations by
the ‘‘tangling’’ of the mean gradient of the concentration of
particles “N0 with hydrodynamic fluctuationsu(0). The
(u•“)q term in Eq.~30! is taken into account by means of
the renormalized turbulent diffusionh @see the Appendix
after Eq.~A6!#. Now we rewrite Eq.~30! in Fourier space
and calculate the second moment^q( k̂1)q( k̂2)&. The result is
given by

^q~ k̂1!q~ k̂2!&52Gh~ k̂!Gh* ~ k̂!E f mn~ k̂,K̂2Q̂2Q̂8!QmQn8N0~Q̂!N0~Q̂8!dQ̂dQ̂81Gh~ k̂!Gh* ~ k̂!I ~ k̂,K̂ !, ~31!

where k̂5( k̂12 k̂2)/2 is the small-scale variable, and
K̂5 k̂11 k̂2 is the large-scale variable, and we neglect here
terms;O(K̂3),

f mn~ k̂,K̂ !5K um~0!S k̂1
K̂

2 D un~0!S 2 k̂1
K̂

2 D L ,
I ~ k̂,K̂ !5K eS k̂1

K̂

2 D eS 2 k̂1
K̂

2 D L ,
k̂5S kv D , Gh5

1

2 iv1h~k!k2
.

Inverse Fourier transform of Eq.~31! in variableK̂ yields

F~ k̂,R!5Gh~ k̂!Gh* ~ k̂! f mn~ k̂,R!“mN0“nN0

1Gh~ k̂!Gh* ~ k̂!I ~ k̂,R!. ~32!

Equation~32! allows us to derive spectra of passive scalar
fluctuations. First we consider anisotropic spectra.

A. Anisotropic spectra of passive scalar fluctuations

The anisotropick23 spectrum. Consider a caseI50 and a
range of wave numbersk0,k,min(kD ,kn). For the homo-
geneous and isotropic background turbulence,

f mn~ k̂,k̂8!5
E~k!T~k,v!

8pk2 S dmn2
kmkn
k2 D d~ k̂1 k̂8!, ~33!

where the frequency componentT(k,v) is chosen as the
Lorenz profile:

T~k,v!5S n~k!k2

p D 1

v21n2k4
[S n~k!k2

p DGnGn* , ~34!

E
2`

`

T~k,v!dv51.

Note that the time dependence of the correlation function
W(k,t)5^u(k,t)u(k,t1t)& corresponds to a distribution:
W(k,t)5E(k)exp@2n(k)k2t#. Now we calculate the integral

E F~ k̂,R!dv5
E

8pk6n2~k! S Pr2~k!

11Pr~k! D sin2u~“N0!
2,

~35!

whereu is the angle between vectorsk and“N0 . We used
here formula~A19!. Integrating~35! over the angles ink
space, and using Eq.~26!, definition
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^q2~R!&[E E E F~ k̂,R!sinududwk2dkdv

[E G~k,R!dk, ~36!

and identity~24! E53kj(b11), we find that

G~k,R!5
10~b11!

7
F~k!S Pr2~k!

11Pr~k! D k23~“N0!
2,

~37!

where

F~k!511
1

Re2~k! S 730Re0a21D , a5
523b

32b
,

and Re05Re(k5k0). In most of the inertial range@where
Pe(k)5h(k)/D@1# the Prandtl number Pr tends to the ulti-
mate value of Prlim.0.792 @see Eq.~29!#. Therefore in this
case the Prandtl number Pr is independent ofk and the spec-
trum of the passive scalar fluctuations in the presence of the
mean gradient of the concentration of particles“N0 is de-
termined by Eq.~37! with Pr50.792. Notably, this spectrum
is independent of the exponent in the spectrum of the turbu-
lent velocity field. In this sense the anisotropick23 spectrum
of the passive scalar fluctuations is universal.

The k217/3 spectrum. Consider the caseI50 and the
range of wave numberskD,k,kn ~i.e., Pr!1). In this
range the diffusion of the passive scalar is determined by
molecular transport, i.e.,h(k)5D. On the other hand, the
kinematic viscosityn(k) is determined by the turbulent
transport. Integration of Eq.~32! overv space yields

F~k,R!5
E~k!

8pk6D2sin
2u~“N0!

2. ~38!

Then, integrating~38! over the angles ink space we find the
anisotropic spectrum of passive scalar fluctuations in the
range of wave numberskD,k,kn :

G~k,R!5
E~k!

3D2k4
~“N0!

25
~b21!

3

Pe2

k0
3 S kk0D

2b24

~“N0!
2.

Whenb55/3 the spectrum is given by

G~k,R!5
2

9

Pe2

k0
3 S kk0D

217/3

~“N0!
2.

Note that the anisotropick217/3 spectrum depends on expo-
nent in the spectrum of hydrodynamic turbulence.

B. Isotropic spectra of passive scalar fluctuations

Consider a case“N050 and IÞ0. Equation~30! in k
space is given by

q~ k̂!5Gh~ k̂!e~ k̂!. ~39!

By means of Eq.~39! we calculate the second moment,

x* ~ k̂!5^q~ k̂!e~2 k̂!&1^q~2 k̂!e~ k̂!&.

The result is given by

x* ~ k̂!5@Gh~ k̂!1Gh* ~ k̂!#I ~ k̂!. ~40!

We assume that the source of passive scalar fluctuations is
homogeneous and isotropic and frequency independent~i.e.,
it is a white noise!. ThereforeI ( k̂)5I (k). Integrating~40!
overv space and over the angles ink space we find

x* ~k!58p2I ~k!. ~41!

Now we assume that the flux of the passive scalar over the
spectrum is constant, i.e.,

x~k!5E
k

kD
x* ~k8!~k8!2dk85const[x0 . ~42!

Solution of Eq.~42! for k!kD is given by

x* ~k!5
x0~32b!

lnPe
k23, ~43!

where we take into account thatkD5k0Pe
1/(32b). Combin-

ing ~43! and ~41! yields

I ~k!5
x0~32b!

8p2lnPe
k23. ~44!

Substituting~44! into Eq. ~32!, using ~36!, ~A18!, and inte-
grating over the angles ink space and overv space yields

G~k!5
x0~32b!

2lnPe S 1

h~k!k3D . ~45!

The k25/3 spectrum. Consider a range of wave numbers
k0,k,min(kD ,kn). We rewrite Eq.~45! in the form

G~k!5
x0~32b!

2lnPe S Pr~k!

n~k!k3D .
It was found in this section that in range
k0,k, min(kD ,kn) for large Reynolds number
Re(k)5n(k)/n0@1, and the Prandtl number
Pr(k)5 const5a1'0.792 @see Eq.~29!#. Using the identity
E(k)53kj(b11) and Eq.~26! we obtain

G~k!5
x0a1~32b!

2lnPe S 30~b11!

7 D 1/2 k25/2

AE~k!
. ~46!

Whenb55/3 Eq.~46! yields

G~k!'2.18
x0t0
k0lnPe

S kk0D
25/3

.

The isotropick217/3 spectrum. Consider a range of wave
numberskD,k,kn . The diffusion coefficient in this range
is determined by molecular transport, i.e.,h(k)5D. Solu-
tion of Eq. ~8! with “N050 is given by

q~ k̂!52 iGh~ k̂!E um~ k̂2 k̂8!km8 q~ k̂8!dk̂8. ~47!

Comparing Eqs.~47! and ~39! we obtaine( k̂):
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e~ k̂!52 i E um~ k̂2 k̂8!km8 q~ k̂8!dk̂8.

Therefore,

I ~ k̂,K̂ ![K eS k̂1
K̂

2 D eS 2 k̂1
K̂

2 D L 5
1

3
^umum&^u“qu2&,

~48!

where

^u“qu2&52E km8 km9 q~ k̂8!q~ k̂9!dk̂8dk̂9

and we assume that in the rangekD!k!kn the spectrum of
passive scalar fluctuations is steep. Therefore the main con-
tribution in I ( k̂,K̂) is from fluctuations of the passive scalar
q(k8) of the inertial rangek0!k8!kD and from fluctuations
of velocity field u(k9) in the interval kD!k9!kn . This
means thatk@k8,k9; i.e., the fluctuations ofq andu are not
correlated. Therefore

K qS k̂1
K̂

2 D qS 2 k̂1
K̂

2 D L 5
1

3
GD~ k̂!GD* ~ k̂!^umum&^u“qu2&.

Integration overv space and over the angles ink space
yields a spectrum of isotropic passive scalar fluctuations in a
range of wave numberskD,k,kn :

G~k!5
~b21!

3

Pe2

k0
3 ^u“qu2&S kk0D

2b24

. ~49!

Whenb55/3 Eq.~49! yields

G~k!5
2

9

Pe2

k0
3 ^u“qu2&S kk0D

217/3

.

Note that the scalar transport problem can be formally
separated from the dynamical problem of turbulence. Indeed,
we study the passive scalar fluctuations in a prescribed tur-
bulent velocity field. Therefore, the dependencen(k) as well
as the rest of the hydrodynamic characteristics are the exter-
nal parameters of this problem and must be specified inde-
pendently. In this sense the hydrodynamic problem and that
of passive scalar transport are independent. However, since
we also determine the spectra of passive scalar fluctuations
we need the explicit dependence of the Prandtl number
Pr(k), e.g., n(k). This is the reason that we derived the
approximate equation forn(k) using the simple renormaliza-
tion procedure. Certainly this procedure does not allow us to
determine the spectra of hydrodynamic turbulenceb, which
is assumed to be known.

Notably, we did not derive the spectrum different from the
spectrum of the Corrsin-Obukhov theory. Indeed, thek23

spectrum in the anisotropic case was derived in our study for
a different problem. In contrast to Corrsin-Obukhov theory,
we considered a completely different mechanism of excita-
tion of passive scalar fluctuations. While Corrsin-Obukhov
assumed the isotropic external source of fluctuations, we
analyzed the case when passive scalar fluc-

tuations are generated by ‘‘tangling’’ of an external gradient
of mean passive scalar field“N0 by a turbulent velocity
field.

The mechanism of ‘‘tangling’’ of an external mean field
by hydrodynamic fluctuations is not new. It is well known
from the theory of magnetic fluctuations~passive vector
field! that the result of ‘‘tangling’’ of mean magnetic field is
a generation of anisotropic magnetic fluctuations~see, e.g.,
@21,27,28#!. The spectrum of these anisotropic magnetic fluc-
tuations is different from that of isotropic magnetic fluctua-
tions excited by the Zeldovich mechanism in homogeneous
and isotropic hydrodynamic turbulence~see, e.g.,@4,27,29#!.

A similar situation occurs in the passive scalar transport.
The difference between the latter case and magnetic~passive
vector field! case is that incompressible homogeneous and
isotropic turbulent velocity field cannot cause self-excitation
~exponential growth! of passive scalar fluctuations~in con-
trast to the exponential growth of the magnetic fluctuations
excited by the Zeldovich mechanism!. Isotropic passive sca-
lar fluctuations can be excited by an external isotropic source
as adopted in Corrsin-Obukhov theory.

Naturally, these two completely different mechanisms of
generation of passive scalar fluctuations~external isotropic
source and ‘‘tangling’’ of an external gradient of mean pas-
sive scalar field“N0 by a turbulent velocity field! result in
different spectra: thek25/3 spectrum in the Corrsin-Obukhov
theory and thek23 spectrum in the anisotropic case.

If two these sources~external isotropic source and ‘‘tan-
gling’’ of an external gradient of mean passive scalar field!
exist simultaneously the passive scalar fluctuations can be
regarded as a mixture of isotropic~with the k25/3 spectrum!
and anisotropic~with thek23 spectrum!. It is conceivable to
suggest that in the case when there exists only one source of
passive scalar fluctuations, i.e., an external gradient of mean
passive scalar field, the resulting fluctuation spectrum will be
a mixture of two parts, isotropic (;k25/3) and anisotropic
(;k23). The latter suggestion can be verified experimen-
tally by measurements of correlation function of concentra-
tion field in r space.

IV. DISCUSSION

In this study we considered the isotropic and anisotropic
spectra of passive scalar fluctuations in a turbulent fluid flow
with a power law}k2b spectrum by means of a renormal-
ization procedure. The results are presented in Table I. It is

TABLE I. Isotropic and anisotropic spectra of passive scalar
fluctuations. The caseb55/3 corresponds to the Kolmogorov
spectrum for turbulent velocity field.

Isotropic spectra Anisotropic spectra
of the passive scalar of the passive scalar

k0,k,min(kD ,kn)
b.0: k2(52b/2) k23(“N0)

2

b5
5
3 : k25/3 k23(“N0)

2

kD,k,kn

b.0: k2b24 k2b24(“N0)
2

b5
5
3 : k217/3 k217/3(“N0)

2

53 3437ISOTROPIC AND ANISOTROPIC SPECTRA OF PASSIVE . . .



seen that the anisotropick23 spectrum is universal. It is in-
dependent of the exponent in the spectrum of hydrodynamic
turbulence. Note that the existence of thek23 spectrum
found in @10# was the subject of controversy~see, e.g.,
@2,15,17#!. In the present study this spectrum has been de-
rived by the renormalization procedure as well as the known
k25/3 andk217/3 spectra. Thek25/3 andk217/3 spectra of pas-
sive scalar fluctuations exist only in a turbulent fluid flow
with the Kolmogorov spectrum (b55/3). The interval of
wave numberskn,k,kD ~i.e., Pr0@1) cannot be studied by
the renormalization procedure. In this region thek21 spec-
trum exists@11,13#.

APPENDIX: EQUATIONS FOR THE TURBULENT
TRANSPORT COEFFICIENTS

Let us derive equations for the turbulent fields. The total
pressure can be excluded from the equation of motion by
taking the ‘‘curl’’ of this equation. So we repeat twice the
vector multiplication of Eqs.~14! and ~16! written in k and
v space byk. Then we subtract Eq.~16! from Eq. ~14! and
Eq. ~17! from Eq.~15!, respectively, change to a frame mov-
ing with a local velocity of the mean flowsV, and transform
Eqs.~17! and ~15! to k andv space. The result is given by

uj~ k̂!1
i

2
PjmnGnBmn~u;u!5Gn f j2 iGnP̄jmnLmn~V;u!,

~A1!

q~ k̂!1 iGhknSn~q;u!52 iGhknHn~N;u!1eGh ,
~A2!

where

Lmn~a;b!5E am~ k̂8!bn~ k̂2 k̂8!dk̂8,

Bmn~a;b!5Lmn~a;b!2^Lmn~a;b!&,

Hn~a;b!5E a~ k̂8!bn~ k̂2 k̂8!dk̂8,

Sn~a;b!5Hn~a;b!2^Hn~a;b!&,

Pjmn5D jmkn1D jnkm , P̄jmn5D jmkn ,

D jm5d jm2
kjkm
k2

,

k̂5S kv D , k̂85S k8
v8 D , Gg5

1

2 iv1gk2
, g5n,h.

Here we use incompressibility condition“•u50, and,
therefore

E un~ k̂2Q̂!QnN~Q̂!d3Q5knE un~ k̂2Q̂!N~Q̂!d3Q.

Define a background turbulence as the turbulence with
“N50 and“ iVj50. The equations foru(0) andq(0) for the
background turbulence are given by

uj
~0!~ k̂!1

i

2
PjmnGnBmn~u

~0!;u~0!!5Gn f j , ~A3!

q~0!~ k̂!1 iGhknSn~q
~0!;u~0!!5Ghe ~A4!

@see Eqs.~A1! and~A2!#. Note that the equations are written
in a frame moving with a local ‘‘mean’’ flowV. The corre-
lation functions of the background turbulence have the most
simple form~for example, they are homogeneous and isotro-
pic! only in this frame, while these correlations in the labo-
ratory frame are anisotropic@20,21#.

The equations for the fieldsu(1)5u2u(0) and
h(1)5h2h(0) are derived from~A1!–~A4!:

uj
~1!~ k̂!1

i

2
PjmnGn@Bmn~u

~0!;u~1!!1Bmn~u
~1!;u~0!!1Bmn~u

~1!;u~1!!#52 iGnP̄jmn@Lmn~V;u
~0!!1Lmn~V;u

~1!!#,

~A5!

q~1!~ k̂!1 iGhkn@Sn~q
~0!;u~1!!1Sn~q

~1!;u~0!!1Sn~q
~1!;u~1!!#52 iGhkn@Hn~N;u

~0!!1Hn~N;u
~1!!#. ~A6!

These equations describe the deviation from the background turbulence caused by nonzero mean field gradients“N and
“ iVj .

Let us estimate the magnitude of the nonlinear terms in Eqs.~A1!–~A6! determined by the functionalsBmn(u;u) and
Sn(q;u). The volume of the domain of integration ink8 space is very small. Indeed, the end points of the vectorsk8,
k2k8, andk fall within a thin spherical shell of the thicknessuDku @see Fig. 1~a!#. Thus, for example,

uPjmnBmn~u
~0!;u~1!!u.UkmE um

~0!~ k̂8!uj
~1!~ k̂2 k̂8!dk̂8U<k*U* E u

*
~0!u

*
~1!dv5pk

*
2 ~Dk!2E u

*
~0!u

*
~1!dv.

FIG. 1. Domain of integration ink space for the functionals
Bmn ~a! andLmn ~b!.
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HereU*5pk* (Dk)
2 is the volume of the domain of inte-

gration @see Fig. 1~a!#, u
*
( l )5u( l )(k5k* ). The other func-

tionals Bmn(u;u) and Sn(q;u) can be estimated similarly
and are proportional to (Dk)2.

Now we find the linear terms in Eqs.~A1!–~A6! related to
the ‘‘mean’’ fields¹ iVj and“N. The equation of the surface
that determines the domain of integration for the functionals
Lmn(V;u) andHn(N;u) is given byk*

2 5(k2k8)2. Because
uku5k* , the equation of this surface reduces to
uk8u52k* cosu, whereu is the angle betweenk andk8. The
volume of the domain of integration isU05pk

*
2 uDku @see

Fig. 1~b!#. Thus the termsLmn(V;u) andHn(N;u) in Eqs.
~A1!–~A6! are of order uDku. Therefore the functionals
Bmn(u;u);uDku2 @andSn(q;u);uDku2# can be dropped out
for small uDku!k* , wherek*.k0 . Now we estimate the
errors committed at each stage of averaging~due to neglect
of nonlinear terms! which can be accumulated. The error at
each stage of averaging isda;uDku2. A number of small
regions that yield the error can be estimated as
n*;kD /uDku. Now we assume that fluctuations of the back-
ground turbulence in these small regions are statistically in-
dependent. Therefore the maximum error committed at each
stage of averaging~due to neglect of nonlinear terms! is of
order

d5A(
a51

n
*

~da!2;AuDku4n*;uDku3/2.

Here we will take into account only terms;O(uDku).
Therefore we can neglect nonlinear terms that are associated
with fluctuations in the small intervalk*2uDku,uku,k* .

However, this does not mean that the nonlinear terms are
dropped out in allk space. At the first step of the renormal-
ization procedure the equations are averaged over fluctua-
tions of scales fromkn

21 to k
*
21 . Therefore the nonlinear

terms contribute to the turbulent transport coefficientn and
h in all scales except for only very small region of the spec-
trum: k*2uDku,uku,k* .

The equations for the fieldsuj
(0)( k̂) and q(0)( k̂) of the

background turbulence are reduced to

uj
~0!~ k̂!5Gn f j , q~0!~ k̂!5Ghe.

Therefore the background turbulence is assumed to be given.
In order to derive equations for the turbulent coefficients

n andh we have to find the dependence of the second mo-
ments^uiuj& and ^quj& on the large-scale fields“ iVj and
“N. Let us consider, for example, a correlation function
^uiuj&,

^ui~ x̂!uj~ ŷ!&5E ^ui~ k̂1!uj~ k̂2!&exp@ i ~ k̂2x̂1 k̂2ŷ!#dk̂1dk̂2

5E Fi j ~K̂, r̂ !exp~ iK̂ R̂!dK̂,

where

Fi j ~K̂, r̂ !5E ^ui~ k̂1K̂/2!uj~2 k̂1K̂/2!&exp~ i k̂ r̂ !dk̂,

R̂5
1

2
~ x̂1 ŷ!, r̂5 x̂2 ŷ, K̂5 k̂11 k̂2 ,

k̂5
1

2
~ k̂12 k̂2!, x̂5S x

2t1
D ,

R̂ and K̂ correspond to the large scales, andr̂ and k̂ to the
small ones~see, for example,@21,30#!. The others second
moments have the same form. These correlation functions
are calculated atr̂50 andt15t2 .

At first we have to solve the system of the equations~A5!
and ~A6!. Let us consider here the effects that are linear in
the spatial derivatives of the mean fieldsV andN. We use
the method of iterations. The first iteration corresponds to the
solutions of Eqs.~A5! and~A6! when the right parts of these
equations equal zero:

uj
~ I !~ k̂!52 iGnP̄jmnLmn~V;u

~0!!,

q~ I !~ k̂!52 iGhknHn~N;u
~0!!.

Note that the termsBmn(u;u);(Dk)2 andSn(q;u);(Dk)2

are dropped. These solutions in the explicit form are given
by

uj
~ I !~ k̂1!.2 iGnE S d i j2

kikj
k2 DVi~Q̂!Qmum

~0!~ k̂12Q̂!dQ̂,

~A7!

q~ I !~ k̂1!.2 iGhE N~Q̂!Qmum
~0!~ k̂12Q̂!dQ̂, ~A8!

where k̂15 k̂1K̂/2. The second iteration produces terms
;O(Q2N2;Q2V2) which are neglected. Therefore
uj
(1)'uj

(I ) andq(1)'q(I ).
The second moments describing a deviation of the turbu-

lence from the background level can be obtained from Eqs.
~A7! and ~A8!. For simplicity, the background turbulence is
assumed to be homogeneous and isotropic, i.e.,

K um~0!S k̂1
K̂

2 D un~0!S 2 k̂1
K̂

2 D L 5
E~k!T~k,v!

8pk2

3S dmn2
kmkn
k2 D d~K̂ !. ~A9!

Integration in Eqs.~A7! and~A8! over the angles ink space
results in the following expressions for the second moments:

^um
~1!un

~0!&52
1

5
VmnE E~k!T~k,v!Gndkdv, ~A10!

^q~1!un
~0!&52

1

3

]N

]Rn
E E~k!T~k,v!Ghdkdv. ~A11!
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Here ^q(0)un
(1)&50, becausê q(0)un

(0)&50, and ^um
(1)un

(1)&
;^q(1)un

(1)&;O(Q2N2;Q2V2), where

Vmn5
]Vm

]Rn
1
1

6

]Vn

]Rm
.

Integration in ~A10! and ~A11! is performed overv from
2` to ` and overk from k*2uDku to k* . The following
integrals are used for the calculations of the second moments
in ~A10! and ~A11!:

E ~k•a!
ki
k2
sinududw5

4p

3
ai ,

E S d i j2
kikj
k2 D sinududw5

8p

3
d i j ,

E ~k•a!~k•b!
kikj
k2

sinududw5
4p

15
k2

3@~a•b!d i j1aibj1ajbi #.

Substituting Eqs.~A10! and ~A11! into the expressions for
tensors~18! and ~19! yields

smn5smn
~0!1DnS ]Vm

]Rn
1

]Vn

]Rm
D , ~A12!

Cm52~“N!Dh, ~A13!

where

Dn5
7

30
uDku E E~k!T~k,v!Gndv, ~A14!

Dh5
1

3
uDku E E~k!T~k,v!Ghdv, ~A15!

and we take into account that for smalluDku the integral
*F(k)dk;uDkuF(k8), wherek*2Dk,k8,k* . Substitut-
ing ~A12! and~A13! into Eqs.~16! and~17! yields the equa-
tions that coincide in form with Eqs.~14! and ~15!. This
means that these equations are invariant under the procedure
of the successive averaging, i.e., invariant under the renor-
malization of the turbulent transport coefficients. The term
“smn

(0) is dropped for the homogeneous background turbu-
lence and we take into account that^q(0)un

(0)&50.
Now we divide Eqs.~A14! and~A15! by Dk52uDku and

pass to the limit of smallDk. The minus sign arises because
the procedure of the successive averaging is performed from
small scales to large ones. Note that the background turbu-
lence is confined in the regionk0,k,kn . Therefore the
equations are not renormalized fork,k0 . The small values
of Dk imply that uDku!k0 . Then the equations for the tur-
bulent viscosity and turbulent diffusion are reduced to

dn

dk
52

7

30E E~k!T~k,v!Gndv, ~A16!

dh

dk
52

1

3E E~k!T~k,v!Ghdv. ~A17!

Using ~34! and integrating in Eqs.~A16! and ~A17! overv
space yield the equations for the turbulent coefficients~20!
and~21!. In the derivation we used integrals of the products
of Green functions:

E GaGa* dv5
p

ak2
, E GaGa*Gbdv5

p

ak4~a1b!
,

~A18!

E GaGa*GbGb* dv5
p

abk6~a1b!
. ~A19!
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