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Isotropic and anisotropic spectra of passive scalar fluctuations in a turbulent fluid flow with a power law
«k~# spectrum are analyzed. The isotropic spectra occur in flows with zero mean external gradient of passive
scalar concentration and passive scalar fluctuations can be caused by an external source. On the other hand, in
the presence of nonzero mean external gradient of concentration, passive scalar fluctuations are anisotropic and
can be excited by “tangling” of the mean external gradient of the passive scalar by turbulent fluid flow. The
analysis is based on the renormalization procedure in the spirit of Mpifafuid Mech.106, 27 (1981); Rep.

Prog. Phys46, 621 (1983]. It is shown that the anisotropic 2 spectrum of passive scalar fluctuations is
universal, i.e., independent of exponegtin a turbulent velocity spectrum. In the particular case of the
Kolmogorov spectrum #=5/3) of turbulent velocity field the derived general spectra recover the known
spectra of passive scalar fluctuationk™>2 and k=" In addition, the ultimate Prandtl number for large
Reynolds numbers is estimated [PP£ 0.792) and is found to be in fairly good agreement with experimental
results.

PACS numbgs): 47.27.Ak, 05.60+w, 47.27.Qb

I. INTRODUCTION In order to elucidate the problem, in this section we
present a short review of the isotropic and anisotropic spectra
Passive scalar fluctuations in incompressible and comef passive scalar fluctuations obtained with simple dimen-
pressible turbulent fluid flow were studied quite extensivelysional arguments and approximate estimations. First, con-
(see, e.g.]1-7], and references thergimlue to the great Sider isotropic homogeneous and incompressible turbulent
importance of the turbulent mixing problem. However, somefluid flow with zero mean external gradient of a number den-
of the aspects of this phenomenon, e.g., the problem of speéity of passive scalar particles. The external source of passive
tra of the passive scalar fluctuations, are still not completelypcalar fluctuations is localized in region of scalesly,
understood. Isotropic and anisotropic spectra of the passiwherely is the energy containing scale of hydrodynamic
scalar fluctuations in different cases were analyzed in numeturbulence. The equation for a fluctuating componerf
ous studiegsee, e.9.}3,8—14) by means of different meth- passive scalar concentration in incompressible turbulent fluid
ods. The isotropic spectra occur in flows with zero mearflow u reads
external gradient of passive scalar concentration. In this case
passive scalar fluctuations_can be caused by an external a—q+(u~V)q=DAq+e, 1)
source. On the other hand, in the presence of nonzero mean at
external gradient of concentration, passive scalar fluctuations
can be excited by “tangling” of the mean external gradientWhel’eD is the coefficient of molecular diffusion ardis the
of the passive scalar by turbulent fluid flow. In this case theexternal source of the passive scalar fluctuations. As was
spectra of passive scalar fluctuations are called anisotropicfound by Obukho\8] and Corrsin[9] the spectrum of pas-
Some of the results on spectra of passive scalar fluctugive scalar fluctuations in a randge<k<min(k, kp) is
tions are a subject of discussion and controversy. Namelgiven by
the existence of the anisotrogi¢  spectrum of passive sca- 53
lar fluctuations was repeatedly discussed in the literature I'(k)ock ™", @
(see, e.g.[2,15—17). Although this spectrum was observed
in experiments(see, e.g.[17-19) its origin still remains
poorly understood. "
In this study we analyze the isotropic and anisotropic <q2>:J I'(k)dk; 3)
spectra of passive scalar fluctuations in a turbulent fluid flow 0
with a power law=k~# spectrum using the renormalization
procedure in the spirit of Moffatf20]. Notably, this ap- Ko=lo ', kp=Ip", Ip is the length scale in which molecular
proach allows us to derive all the known spectra of passivaliffusion is dominantk,=1,*, and |, is the “viscous”
scalar fluctuationgin scales from the maximum scale of tur- length scale at which molecular dissipation becomes domi-
bulent motions to the viscous scalincluding thek 3 spec- nant. For instance, for Kolmogorov turbulencé,
trum. «Re ¥ ,, where Re=ugly/v, is the Reynolds number,

where
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is the kinematic viscosity, and, is the characteristic veloc- in Eqg.(8) and an assumption of the Kolmogorov spectrum of
ity in scalel,. Thek~5/3 spectrum of passive scalar fluctua- hydrodynamic turbulencg(k)ok > yield the spectrum of

tions is obtained by means of dimensional analysis if onghe passive scalar fluctuations in this case:
assumes that

@ I'(K)ock TV Ng)2. (10)
a” )k
7(k) =const, Note that the latter spectrum of the passive scalar fluctua-
tions is anisotropic, i.e.,
E(k)ock75/3, (4)
D (k)ock 75SirP 6(VNg)?,
where
where
(k) =[ku(k)]™*,  u(k)=(u%) 5
K K o F(k)=f@(k)k25in0d0d¢,
@y [ Taoa, =]

and 6 is the angle between a wave vectoand VNg.
k The k=17 spectrum is also valid for isotropic passive
<U2>k=f E(k")dK’, scalar fluctuations YN,=0). In the case of the isotropic
passive scalar fluctuations this spectrum was derivéddh

andE(K) is the spectrum function of turbulent velocity field An estimate

u. Conditions(4) and (5) imply the following estimate of

magnitude of terms in Eq1): (u-V)g~ e and a condition DAg~(u-V)q 11
(eq)=const. Thek 53 spectrum of passive scalar fluctua- | , o _

tions depends on the exponent of the spectrum of turbulerd E- (1) is valid in this case. If we assume that in the range
velocity field. This spectrum exists in the region ko<k<k, the spectrum of passive scalar fluctuations is
ko<k<min(k, ,kp) and is independent of the molecular steep, then the main contribution in the- ¥)q term is from

Prandtl number B v,/D. fluctuations of passive scalaj(k’) of the inertial range
When Pg>1 in the regionk,<k<kp the spectrum of ko<!<’<kD and from quctua}tions of veIocity field(k") of
passive scalar fluctuations is given by the intervalkp<<k”<k,. This means that in theu( V)q
term the fluctuationg] andu are not correlated. The latter
IN(SET yields thek ~17”® spectrum of isotropic passive scalar fluctua-
tions:
(see[11,13)). This spectrum can be obtained if one assumes
that I'(k)yxk 1"3vq|?,
(A where an assumption of the Kolmogorov spectrum of hydro-
——=const (6) ;
7(K) ’ dynamic turbulencé& (k) <k 52 was used.

Now we consider the spectrum of the anisotropic passive
(k) = const. 7) scalar fluctuations in the intervé,<k<min(k, ,kp). The
spectrum in this interval can be obtained by means of(&q.
Condition (7) means that in the intervdd,<k<kp there is  whereby the coefficient of the molecular diffusi@nis re-
only one characteristic time of a random velocity field. placed by a scale dependent coefficient of the turbulent dif-
Until now we considered the isotropic spectra of passivefusion 7(k):
scalar fluctuations, i.e., passive scalar fluctuations with zero
mean external gradient of passive scalar. On the other hand, (u-V)Ng~ n(k)Aq, (12
when the external mean gradient of the passive sdaldg
#0, the spectra of passive scalar fluctuations are anisotropi@nd
Now let us discuss these anisotropic spectra. In this case
passive scalar fluctuations can be excited by “tangling” of u(k)
the mean external gradient of th i lar by turbulent (k) ~ =~ (13
gradient of the passive scalar by turbulen k
fluid flow. When VNg+#0 the equation for the fluctuating
component of the passive scalar concentration reads Equations(12) and (13) yield the spectrum of the passive
scalar fluctuations in the randgg<<k<< min(k, ,kp):

iq
— H(U-V)g=DAg=—(u-V)N,. ® I'(k)=k™3(VNg)?

First consider the case &1 and examine the range (see[10]). In Sec. Ill we derive the isotropic and anisotropic
kp<k<k,. An estimate spectra of the passive scalar fluctuatigimsscales from the
maximum scale of turbulent motions to the viscous Sdaje
DAg~(u-V)Ng (9  means of a renormalization procedure.
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Il. RENORMALIZATION PROCEDURE AND TURBULENT where V-V=0, the Reynolds turbulent-stress tensor
TRANSPORT COEFFICIENTS oij=—(uju;), and the flux of particlesV';=(qu;). The
quations for mean fields comprise the second moments for
he turbulent fields. To obtain a closed system of equations it
is necessary to find the dependence of the second moments
uju;) and(qu;) on the “mean” fields. To achieve this goal

In this section we consider properties of passive scala]
fluctuations in a turbulent fluid flow. The renormalization
procedurgsee, e.g.[20,21]) is employed here for investiga-
tion of the passive scalar fluctuations in turbulence with a< ; he followi d
mean gradient of passive scalar. Numerous works on turbd¥® PEriorm t.e oflowing procedure. )
lence are confined to a study of the large-scale properties of (1) We der_|ve equations f_or th? trbulent fleldsv—v
flows by averaging the equations over the ensemble of th ndg=n-—N in a frame moving with a local velocity of the

) . L . flowV.
fluctuations(see, e.g.[1-3]). This averaging is carried out mean '
over the quctuationg in all scales of turgulgnce. (2) Define a background turbulence as the turbulence

On the other hand, the averaging in the renormalizatiorYVithOUt mean gradients of both mean passive scalar concen-

procedure is performed over the fluctuations of scales fronjation VN=0 and mean Vel.oc'tWiVi:O' For simplicity
| tol, within the inertial range of turbulende<l, <lo. In the background turbulence is assumed to be homogeneous

the very small scaleb<I, the molecular dissipation is im- and isotropic. The solutions of the derived equatiof$ and

. . - (0)
portant. Therefore turbulent viscosityand turbulent diffu- 9 correspond to the background turbulence. -
sion 5 depend on the scale of the averaging The next (3) The goa_l of tf(]g prese(rcl)g study is to analyze a deviation
stage of the renormalization procedure comprises a step-bffOm the solutions™ and g™ due to the presence of both
step increase of the scale of the averaging. This proceduf@€an passive scalar gradieviN and gradient of the mean
allows the derivation of equations for the turbulent transpor |°1W Vivjb and e de”‘ée equations for the fields
coefficients. uM=u—ul® andq’=q-q.

We perform the first step of the renormalization proce- (4) We solve the integrodifferential equations for the
dure, i.e., average the Navier-Stokes equation and the equﬁemsu(l) andq‘® by iterations. We consider here the effects
tion for the concentration of the passive scalar over the flucthat are linear in the spatial derivatives of the mean fields
tuations with the scales front, to I, . The averaged V andN.

equations for velocity and concentration are given by _ (5 We calculate the second moments for the turbulent
fields in order to find the Reynolds turbulent-stress tensor
av 1 aij and flux of particles¥';,
E+(v-V)v=—;Vp+ vAV+T, (14

oij=o” = (uPuf®) = (u®uf")y —(uMufy,  (18)

an

—+(v-V)n=nAn+e, 15
ot T(v-V)n=nAn+e (15 W, =(q@uD)+(qPul®) + (g Duly, (19)
where V-v=0, € is the external source of passive scalaryhere Ui(jo):—<ui(0)uj(0)> is the Reynolds turbulent-stress

fluctuations,pf is the external forcep is the pressure. The tensor for the background turbulence. We assume that
turbulent coefficientsr and » depend on the scale of aver- <q(0)u_(0)>zo
{ :

agingl, . _ Substituting Eqs(18) and (19) into (16) and (17) yields
After this averaging, the rangé>l, corresponds {0 ihe equations for the mean fields. The described procedure
‘mean” fields whereas fluctuations are in the rangel, . enables us to derive equations for the transport coefficients:
The influence of the fluctuations on the “mean” fields is y,hylent viscosityr and turbulent diffusiory. The details
described by the turbulent coefficientsand 7. of the calculations are presented in the Appendix. The result

Let us change the scale of the averaging by a small valug, given by
|Ak|<k, (where the wave numbek, =I_") and average
Egs. (14) and (15 over the fluctuations. Now in the region dv 7
k<k, —|Ak| the velocityV and concentratioN are the k- oK) (20)
mean fields whereas the regikp-k, —|Ak| corresponds to
the turbulent fields. Since Eg&l4) and (15) have been al-

ready averaged over the fluctuations in the scales that are d_": _ Pr(k) E(K). (21)
smaller thanl, , it is sufficient to average these equations dk 3vk?(1+P)

over fluctuations in the small intervél, —|Ak|<|k| <Kk, .

Herev=V+u, n=N+q, V=(v), N=(n), and the angu- Here Prk)=v(k)/ (k) is the effective Prandtl number and
lar brackets denote averaging over the ensemble of fluctudz(k) is the hydrodynamic energy spectra of the background
tions in the domairk, —|Ak|<|k| <k, . Therefore the equa- turbulence:

tions for the mean field¥ andN are given by

2 B
0
AV 1dp d E(k)=(ﬁ—1)(—)(—) ,
—J ) T =g ko/\ k
7 +(V V)VJ+p o vAV;—f; ix aij, (16 o/ \ Ko
N wherek,= Igl. For example, for the Kolmogorov spectrum
(?—+(V~V)N— nAN=— i\p, (17) of hydrodynamic turbulencg=5/3 (see, e.g.[22]). After
at axj

the change of variables EqR0) and(21) are reduced to
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dV_ 7
" 30 (22)

dzy Pr
dé~ v(1+pPn’ 23

wheredé= — (E/3k?)dk and
C(#E(K)  ug (Bl k)ﬂl_ E(K)

g‘fk sz Tzl pril\) TG
(29

The equation for the scale dependent Prandtl numbéa) Fs(
derived from(22) and(23):

dPr_ Pr(Pr—ay)( Pr+ay)
dé A(L+Py

(25

Herea;~0.792 and—a,~ —0.442 are the roots of the qua-
dratic equation 2°—7y—7=0. It follows from Eq. (25
that there is a special case for Rre P =a,~=0.792 when

not provide a closure for the dynamical problem of turbu-
lence. We study the interaction between the weakly inhomo-
geneous mean fields and background hydrodynamic turbu-
lence. In contrast to the RNG method, the spectrum and
statistical properties of the background turbulenegth
zero-mean fieldsare assumed to be known. Furthermore, the
background turbulence can be arbitrary. On the other hand,
in the RNG method an external random stirring force with
Gaussian statistics is introduced. We consider a situation
with very weak gradients of mean fields, and we study small
deviation from the background turbulence under the influ-
ence of small gradients of mean fields, e.g.,

VN ‘W(Vq)z)
NI N |

The spectrum of the background hydrodynamic turbulence is
located within a finite region of wave numbers frég 0 to

k,, whereko=151, k,=1,1, Iy is the maximum scale of
turbulent motions, and, is the “viscous” length scale at
which molecular dissipation becomes dominant.

the Prandtl number is constant in all scales of the turbulence. In the above renormalization procedure the spectrum of

The value 0.792 corresponds to the fixed point of &¥).
The dependence of the turbulent viscosityon ¢ can be
determined from(22) and is given by

2(&)= 2+1[§<k)—§] (26)
SR CREET, dls

the background hydrodynamic turbulence is not determined
and it is assumed to be known. This means that we do not
study the dynamic problem of the hydrodynamic turbulence,

and we consider a particular problem of weak response of
homogeneous and isotropic turbulence to a weak external
gradient of the mean passive scalar field. Such an approach
allows us to avoid the fundamental difficulties associated

where £4=¢(k=k,). A one-parameter set of solutions of with divergencies, either at high wave number or at low

Egs. (22) and (23) for the turbulent transport coefficients
v(Pr) and»(Pr) is given by

Re(P ~v(Pn  Pr{Prp—a;|“|Prp+ay|“ )
aPn= vo  Pr| Pr—a; Prta,| ’ @n
v(Pr)
n(P=—5", (29)
where Pg#a,,
a(l+a) a(1—ay)
al—m~0.642, az—m~0.358.

wave number. Common in our renormalization procedure

and in the renormalization group method is a step-by-step
averaging. However we do not perform a renormalization of

the background hydrodynamic turbulence as was done in the
RNG method(see[24]).

Now let us discuss the nonlinear terfsee Eqs(Al)—
(A6)]. We do not introduce a parameter of nonlinear interac-
tion that is assumed to be small in the RNG metlisele
[24]). The nonlinear terms are taken into account by means
of the renormalized turbulent diffusion(k) and renormal-
ized turbulent viscosity (k) for fluctuations with wave num-
bersk, <k<k,. However, we neglect nonlinear terms that
are associated with fluctuations in the small interval
k., —|Ak|<|k|<k, . It can be done for the following rea-

These turbulent coefficients depend only on the Prandtl nunsons. In the Appendix we estimated the magnitude of these
ber Pr. Equation{27) allows us to describe asymptotical be- honlinear terms in Eq4A1)—(A6) determined by the func-
havior of the Prandtl number Pr for large Reynolds numbetionalsB,(u;u) andS,(q;u). We also compared these non-

Rek) = v(K)/ vo>1:

(Pry—ay)(Pry+ap)*°%®

P& K) , (29

where Pek) =Re(k)Prp>1. This means that in most of the
inertial range(where PeK)= n(k)/D>1) the Prandtl num-
ber Pr tends to the ultimate value of"'P+=0.792. Equation
(29) for Pr(k) and the ultimate value of [% are in a fairly
good agreement with experimental resuftsr a review see

[23]).

Pr(k)~0.792+0.61

linear terms with the linear terms in Eq#1)—(A6) related
to the mean field¥;V; andN, whereV is the mean velocity.
These linear terms are determined by the functionals
Lon(V;u) and H,(N;u). We found that the “nonlinear”
functionals B,(u;u) and S,(q;u) are proportional to
(AK)?, whereas the termk,(V;u) andH,(N;u) in Egs.
(A1)—(A6) are of orderfAk|. In the Appendix we also esti-
mated the errors committed at each stage of averaging
to neglect of nonlinear termghat can be accumulated. The
maximum error is of ordefAk|32

Therefore the “nonlinear” functional®,n(u;u) ~|Ak|?

Notably the above renormalization procedure is essenfand S.(q;u)~|Ak|?] can be dropped out for small
tially different from the renormalization group method |Ak|<k, , wherek, >k,. However, it does not mean that
(RNG) described if24]. Indeed, in the present study we do the nonlinear terms are dropped out inkaBpace. In the first
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step of the renormalization procedure the equations are av-lll. RENORMALIZATION PROCEDURE AND SPECTRA
eraged over fluctuations of scales frap* to k, *. There- OF PASSIVE SCALAR FLUCTUATIONS

fore the nonlinear terms contribute to the turbulent transport v let us derive the isotropicMNo=0) and anisotropic

coefficient» and » in all scales except for only very small (g 0) spectra of the passive scalar fluctuations. Here
region of the spectrurk, —[Ak|<[k|<k, . VN is the external gradient of concentration. WHeM,

The equation forp(k) was first derived in[20]. This . g passive scalar fluctuations are excited by the “tangling”
equation/see Eq/(2.11) in [20]] is different from EQ21)in ¢ the mean gradient of the passive scalar concentration by
our paper. The cause of this difference is thal20] an 1y jent fluid flow. On the other hand, wh&N,=0 pas-
approximationw <k“z(k) was used. In our study we do not gje sealar fluctuations are caused by an external saurce

use this assumption and we choose the frequency Spectrigi s oquation for the fluctuating component of the concentra-
of the background hydrodynamic turbulence in the form oftion q reads(see the Appendix

the Lorenz profildsee Eq.(34)]. Integration inw space in
Eq. (A17) yields Eq.(21), which is different from Eq(2.11) aq
of Ref.[20]. Note that it is possible to use another model of a7
the frequency spectrum of the background hydrodynamic
turbulence. However, the assumptiar<k?7(k) cannot be In Eq. (30) we take into account the terms that are respon-
considered as general. sible for the generation of the passive scalar fluctuations by
The difference in the ultimate value of"Probtained in  the “tangling” of the mean gradient of the concentration of
[24] is caused by the fact that we do not renormalize theparticles VN, with hydrodynamic fluctuationsi®). The
background turbulence, which is assumed to be known. Iifu-V)q term in Eq.(30) is taken into account by means of
[24] the ultimate value of PF is 0.718. Note that recently the renormalized turbulent diffusiom [see the Appendix
the state of the art in the renormalization theories and thafter Eq.(A6)]. Now we rewrite Eq.(30) in Fourier space
unified mathematical formulation for passive scalar transporaind calculate the second moméaqtk,)q(k,)). The result is
problems were discussed [i85,26]. given by

Ag=—(u®.V)Ny+e. (30)

(a(ky)a(ky)y= —Gn&)G;(k)f frun(k,K—Q—Q")QmQiNo(Q)No(Q)dQdQ’ + G (k) G* (k)1 (k,K),  (31)

where @:(kl—kz)/z is the small-scale variable, and “a
K=k;+k; is the large-scale variable, and we neglect here mn(K,K")
terms~O(K?),

_E0T(k )

= =8 ( mn— | dk+k), (33)

L K K where the frequency componef(k,w) is chosen as the
fmn(k,K)=<u$1?> k+3 u'® —k+ 3 > Lorenz profile:
A . K . K K o) v(k)k? 1 B v(k)k? GG* (3
I(k,K): € k+§ € _k+E y T( ,(J))— T (,l)2+V2k4: AR ( 4)
(3. oo w
o)’ 7 —iw+ p(k)k® J' T(k,w)dw=1.

Inverse Fourier transform of E@31) in variableK yields
~ ~ ~ ~ Note that the time dependence of the correlation function
®(k,R)=G (k)G (K) fmn(k,R)VsNgV 1Ng W(k,7)=(u(k,t)u(k,t+ 7)) corresponds to a distribution:
W(k, 7) = E(k)exf — »(K)k?7]. Now we calculate the integral

+G,(K)G* (K)1(k,R). (32
Equation(32) allows us to derive spectra of passive scalar - _ E PP(k) | 2
fluctuations. First we consider anisotropic spectra. P(kR)dw= 8mk®?(k) | 1+ Pr(k) Sirf8(VNo)?,

(35)
A. Anisotropic spectra of passive scalar fluctuations

The anisotropidk ~ 2 spectrumConsider a case=0 and a  where d is the angle between vectoksand VN,. We used
range of wave numbeis,<k<min(kp ,k,). For the homo- here formula(A19). Integrating(35) over the angles irk
geneous and isotropic background turbulence, space, and using Eq26), definition
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- The result is given by
<q2(R)>zf f f@(k,R)sinededgokdedw A . o
X (K) =[G (k) + G (K ]I (K). (40)

Ef I'(k,R)dk, (36)  We assume that the source of passive scalar fluctuations is
homogeneous and isotropic and frequency indepen@dent
and identity(24) E=3k&(B+1), we find that it is a white nois¢ Thereforel (k)=1(k). Integrating(40)
over w space and over the anglesknspace we find
10(B8+1)

: PP(k) )k‘3(VN0)2, X (K) = 8721 (K). (41)

1+Pr(k)

I'ik,R)= F(k)

37 Now we assume that the flux of the passive scalar over the

where spectrum Is constant, I.e.,

kp
3 1 7 ~5-3p x(k)= X« (K (K")2dK' = const xo. (42
F(k)—l-l—TR (k)(ﬁ)Reg_l)' a= 3 fk

and Rg=Re(k=kg). In most of the inertial rangéwhere
Pek) = n(k)/D>1] the Prandtl number Pr tends to the ulti- xo(3—B)
mate value of P"=0.792[see Eq.29)]. Therefore in this X5 (K)="—=——k3
case the Prandtl number Pr is independerk ahd the spec-

trum of the passive scalar fluctuations in the presence of th@here we take into account thiag=koPe/3~#). Combin-
mean gradient of the concentration of particesly is de-  ing (43) and (41) yields

termined by Eq(37) with Pr=0.792. Notably, this spectrum

is independent of the exponent in the spectrum of the turbu- Xo(3—B) 3

lent velocity field. In this sense the anisotrogic® spectrum 1(k)= 87anPe " (44)
of the passive scalar fluctuations is universal.

The k=17 spectrum Consider the casé=0 and the Substituting(44) into Eq. (32), using(36), (A18), and inte-
range of wave numberky<k<k, (i.e., P1). In this grating over the angles ik space and ove® space yields
range the diffusion of the passive scalar is determined by
molecular transport, i.eg(k)=D. On the other hand, the (k)= X0(3_/3)( 1 )
kinematic viscosity v(k) is determined by the turbulent 2InPe | n(k)k3)"
transport. Integration of Eq32) over w space yields

Solution of Eq.(42) for k<kp is given by

InPe ' (43

(45

The k5 spectrum Consider a range of wave numbers

E(K) ko<k<min(kp ,k,). We rewrite Eq.(45) in the form
i F(k):xO<3—ﬂ>( Pr(k))
Then, integratind38) over the angles ikt space we find the 2InPe | v(k)k®/"

anisotropic spectrum of passive scalar fluctuations in th(?t

range of wave numbets, <k<k. - was found in this section that in range

ko<k< min(kp,k,) for large Reynolds number

(B—1) P& k\ A4 Rek)=v(k)/vy>1, and the Prandtl number

(VNO)ZZT F(k_> (VNp)?. Pr(k) = const=a;~0.792[see Eq.(29)]. Using the identity
0170 E(k)=3ké&(B8+1) and Eq.(26) we obtain

E(k)

FR)I= 3p7a

When 8=5/3 the spectrum is given by

a;(3—pB) [30(B+1) |12 k™52
) I‘(k)=XO 1(3=B) (30(B+1) . 48
2P k| B 2InPe 7 JVE(K)
F(k,R)=§F k_ (VNo)z.
0\ "o When 8=5/3 Eq.(46) yields
Note that the anisotropik™*"® spectrum depends on expo- K\ -5
nent in the spectrum of hydrodynamic turbulence. I'(k)~2.1 XoTo _)
FOInPe 0
B. Isotropic spectra of passive scalar fluctuations The isotropick‘lm spectrum Consider a range of wave
Consider a cas®& N,=0 and|#0. Equation(30) in k  numberskp<k<Kk,. The diffusion coefficient in this range
space is given by is determined by molecular transport, i.ei(k)=D. Solu-
R o tion of Eq. (8) with VNy=0 is given by
a(k)=G (k) e(k). (39
By means of Eq(39) we calculate the second moment, q(k)= —iG,,(k)f Um(k—Kk")kma(k")dk'. (47)

X*(ﬁ)z(q(ﬁ)e(—ﬁ)H(q(—ﬁ) e(R)). Comparing Eqgs(47) and (39) we obtaine(ﬁ):
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R A A TABLE I. Isotropic and anisotropic spectra of passive scalar
e(k)I—if Un(k—k")k/q(k")dk'. fluctuations. The casg=>5/3 corresponds to the Kolmogorov
spectrum for turbulent velocity field.

Therefore, . . .
Isotropic spectra Anisotropic spectra
K K 1 of the passive scalar of the passive scalar
) — o ST I 2
I(k,K)—<e k+ 5 )€ k+ 5 >—3<umum)(|Vq| ), ko<k<min(ko k)
(48  p>o: k= (5-42) k™3(VNop)?
B= 3 k=5 K~3(VNp)?
where kp<k<k,
B>0: k=B-4 k™ A74(VNg)?
<|Vq|2>= _f kr{nk%q(kr)q('ku)d'l\(rd'l\(u ﬂ= %: k*l7/3 k—l?lB(VNO)z

and we assume that in the rangg<k<k, the spectrum of _ d by * ina” of | aradi
passive scalar fluctuations is steep. Therefore the main cofidations are generated by “tangling” of an external gradient

tribution in I(R,k) is from fluctuations of the passive scalar of mean passive scalar fieMNo by a turbulent velocity

N ; field.
g(k") of the inertial rang&y<k’<kp and from fluctuations . ; - .
of velocity field u(k”) in the intervalky<k’<k,. This The mechanism of “tangling” of an external mean field

means thak>k',K": i.e., the fluctuations off andu are not by hydrodynamic fluctuations is not new. It is well known

R+K &+k
> al —k+ 5

9 2

correlated. Therefore from the theory of magnetic fluctuationpassive vector
: field) that the result of “tangling” of mean magnetic field is
1 a generation of anisotropic magnetic fluctuatigsse, e.g.,

<q > = §GD(k) £ (K)(Umum)(|Val?).  [21,27,28). The spectrum of these anisotropic magnetic fluc-
tuations is different from that of isotropic magnetic fluctua-
tions excited by the Zeldovich mechanism in homogeneous

Integration overw space and over the angles knspace and isotropic hydrodynamic turbulen¢see, e.g.[4,27,29).

yields a spectrum of isotropic passive scalar fluctuations in a A similar situation occurs in the passive scalar transport.

range of wave numbeis; <k<k,: The difference between the latter case and magetissive
2 —p-a vector field case is that incompressible homogeneous and
(k)= (B—1) E§<|Vq|2>(£> (49) isotropic turbulent velocity field cannot cause self-excitation
3 Ko Ko ’ (exponential growthof passive scalar fluctuatiori& con-
trast to the exponential growth of the magnetic fluctuations
When g=5/3 Eq.(49) yields excited by the Zeldovich mechanignisotropic passive sca-
lar fluctuations can be excited by an external isotropic source

-1 as adopted in Corrsin-Obukhov theory.
Naturally, these two completely different mechanisms of
generation of passive scalar fluctuatidiexternal isotropic

Note that the scalar transport problem can be formally's_Ource and ‘.‘tanglmg” of an external gragllen_t of mean pas-
separated from the dynamical problem of turbulence. IndeedVe scalar fieldvNo t_’%,f turbulent velocity fieldresult in
we study the passive scalar fluctuations in a prescribed wdifferent spectrzi:gthk spectrum in the Corrsin-Obukhov
bulent velocity field. Therefore, the dependengk) as well ~ t€ory and thé spectrum in the anisotropic case.
as the rest of the hydrodynamic characteristics are the exter- I w0 these sourcegexternal isotropic source and “tan-
nal parameters of this problem and must be specified indedling” of an external gradient of mean passive scalar field
pendently. In this sense the hydrodynamic problem and thagxist smultaneogsly the passive _scalar flyé:/tauatlons can be
of passive scalar transport are independent. However, sindg9arded as a mixture 0f_'§°”°p('w'th the k> spectrum
we also determine the spectra of passive scalar fluctuatiorfd'd anisotropi¢with thek™* spectrum. It is conceivable to
we need the explicit dependence of the Prandtl numbe?“gg_eSt that in the case whgn there exists only one source of
Pr(k), e.g., »(k). This is the reason that we derived the Passive scalar f.Iuctuatlons, e, an extemal gradient of mean
approximate equation far(k) using the simple renormaliza- Passive scalar field, the r_esultln_g fluc_tg/atlon spectrum WI|| be
tion procedure. Certainly this procedure does not allow us t& mlfgure of two parts, isotropic~k ) and anisotropic
determine the spectra of hydrodynamic turbulepgavhich ~ (~K °). The latter suggestion can be verified experimen-
is assumed to be known. tally by measurements of correlation function of concentra-

Notably, we did not derive the spectrum different from thetion field inr space.
spectrum of the Corrsin-Obukhov theory. Indeed, ke
spectrum in the anisotropic case was derived in our study for IV. DISCUSSION
a different problem. In contrast to Corrsin-Obukhov theory,
we considered a completely different mechanism of excita- In this study we considered the isotropic and anisotropic
tion of passive scalar fluctuations. While Corrsin-Obukhovspectra of passive scalar fluctuations in a turbulent fluid flow
assumed the isotropic external source of fluctuations, wevith a power lawoxk~# spectrum by means of a renormal-
analyzed the case when passive scalar fluc- ization procedure. The results are presented in Table I. It is

2 P& )
=35 k—3<IVq| >(k—0
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where
Lmn(a;b)=f am(k )bn(k—k")dk’,
an(a;b):Lmn(a;b)_<|—mn(a;b)>a
Hn(a;b)=J a(k’)b,(k—k")dk’,
FIG. 1. Domain of integration ifk space for the functionals
B (@ andlon B, P Su(a;b)=Hy(a;b) — (Ho(asb)),
seen that the anisotropic 3 spectrum is universal. It is in- Pimn=4jmKnt Ajnkm,  Pjmn=AjmkKn,
dependent of the exponent in the spectrum of hydrodynamic Kk
turbulence. Note that the existence of tke® spectrum A=g —m
found in [10] was the subject of controversfsee, e.g., JmeTme e

[2,15,17). In the present study this spectrum has been de-

rived by the renormalization procedure as well as the known -~ [k} =~ [k 1 B

k=53 andk 17" spectra. Thé~ > andk 17" spectra of pas- - ( ) . K= ( o' ) Gy T 5T yk2 YR
sive scalar fluctuations exist only in a turbulent fluid flow

with the Kolmogorov spectrumg=5/3). Theinterval of Here we use incompressibility conditioN -u=0, and,
wave number&,<k<kp (i.e., Pg>1) cannot be studied by therefore

the renormalization procedure. In this region thie! spec-

trum exists{11,13. f Un(k—Q)QuN(Q)d3Q=k, f un(k— QIN(Q)d%Q.

APPENDIX: EQUATIONS FOR THE TURBULENT

TRANSPORT COEEFICIENTS Define a background turbulence as the turbulence with

VN=0 andV;V;=0. The equations fou’® andq® for the
Let us derive equations for the turbulent fields. The totalbackground turbulence are given by

pressure can be excluded from the equation of motion by

taking the “curl” of this equation. So we repeat twice the

vector multiplication of Eqs(14) and (16) written in k and

w space byk. Then we subtract Eq16) from Eq.(14) and R

Eq.(17) from Eq.(15), respectively, change to a frame mov- qV(k)+iG Ky Sa(qP5u ) =G e (A4)

ing with a local velocity of the mean flowg, and transform

Egs.(17) and(15) to k and » space. The result is given by [see Egs(Al) and(A2)]. Note that the equations are written
in a frame moving with a local “mean” flow/. The corre-

A = lation functions of the background turbulence have the most
Uj(K)+ 5 PjmnGBmn(Uiu) =G, fj=1G ,PjmpL mn( V), simple form(for example, they are homogeneous and isotro-
(A1) pic) only in this frame, while these correlations in the labo-
ratory frame are anisotrop{@0,21.
Q(K)+iG knSn(a;U) = —iG KH(N;U) + €G,, The equations for the fieldsu™=u—u® and
(A2)  hM=h-h are derived fromAl)—(A4):

L
Ui” (k) + 5 PjmnG Bm(U@iu@) =G, (A3)

L o
uft (k) + 5 PimnGu[Bmn(U'”5u™) + Bryp(u5u@) + Bg(u®;u®) 1= =G Pl Linn( ViU @) + Ling( ViU,
(A5)

AP(K) +iG ke[ Sy(a@5uM) + (g ;u @) + 8,(gD;u®) 1= ~iG Ko Hn(N;u@) +Hy(N;u®) ], (AB)

These equations describe the deviation from the background turbulence caused by nonzero mean field ghddaanits

Let us estimate the magnitude of the nonlinear terms in Ey§)—(A6) determined by the functionaB,,,(u;u) and
Sa(q;u). The volume of the domain of integration ki space is very small. Indeed, the end points of the vedtors
k—k’, andk fall within a thin spherical shell of the thicknegsk| [see Fig. 1a)]. Thus, for example,

|ijann(u<°>;u<1>)|zkmf uQ (k" yu{P(k—k")dk’ sk*u*J ugf’)u;”dw:wkimk)zj uOuMde.
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Here U, =k, (Ak)? is the volume of the domain of inte- -~ -~ A ~oa o
gration [see Fig. 1@)], u’=u(k=k,). The other func- Fij(K’r):f (Ui(k+K/2)u;(—k+K/2))exp(ikr)dk,
tionals B,,,(u;u) and S,(q;u) can be estimated similarly
and are proportional toA(k)Z. ~ 1 o A

Now we find the linear terms in Eq6A1)—(A6) related to R=Z(x+y), r=x=y, K=kitka,
the “mean” fieldsV;V; andVN. The equation of the surface
that determines the domain of integration for the functionals 1. . X
Lnn(V;u) andH,(N;u) is given bykiz(k—k’)z. Because k= =(k;—ky), §(=( )
|k|=k,, the equation of this surface reduces to 2
|k'|= 2k, cosd, whered is the angle betweek andk’. The
volume of the domain of integration id,=7k2|Ak| [see
Fig. 1(b)]. Thus the term4.,,(V;u) andH,(N;u) in Egs.
(A1)—(A6) are of order|Ak|. Therefore the functionals
Bmn(U;u)~|Ak|? [and S,(qg;u) ~|Ak|?] can be dropped out
for small |Ak|<k, , wherek, >k,. Now we estimate the
errors committed at each stage of averaditige to neglect
of nonlinear termswhich can be accumulated. The error at
each stage of averaging &,~|Ak|%. A number of small
regions that vyield the error can be estimated
n, ~kp/|Ak|. Now we assume that fluctuations of the back-
ground turbulence in these small regions are statistically in- ui')(ﬁ)z G P (V:u(©)
dependent. Therefore the maximum error committed at each ] vi jmnEmnt T '
stage of averagingdue to neglect of nonlinear terins of

R andK correspond to the large scales, andndk to the
small ones(see, for example[21,30)). The others second
moments have the same form. These correlation functions
are calculated at=0 andt,=t,.

At first we have to solve the system of the equatiohs)
and (A6). Let us consider here the effects that are linear in
the spatial derivatives of the mean fieldsand N. We use
the method of iterations. The first iteration corresponds to the
solutions of Eqs(A5) and(A6) when the right parts of these
equations equal zero:

order (k)= =G koHq(N;u®).
— Note that the termﬁmn(u;g)~(4k)2 and Sp(_q;u)fv(Ak)zl
5=\ (8,7~ TAK[An, ~|AK|¥2 &r/e dropped. These solutions in the explicit form are given
a=1
. . . , kiki| .
Here we will take into account only terms O(|AK]). U}I)(kl):—lGVJ' (5.J._I'(_ZJ)Vi(Q)Qmug?)(kl_Q)dQ,

Therefore we can neglect nonlinear terms that are associated
with fluctuations in the small intervad, —|Ak|<|k| <k, .
However, this does not mean that the nonlinear terms are
dropped out in alk space. At the first step of the renormal- g (k)= —ian N(Q)Qmu'@(k,—Q)dQ, (A8)
ization procedure the equations are averaged over fluctua-
tions of scales fromk;* to k,*. Therefore the nonlinear A o
terms contribute to the turbulent transport coefficierand ~ Where ky=k+K/2. The second iteration produces terms
: : ~0O(Q?N?;,Q?v?) which are neglected. Therefore
7 in all scales except for only very small region of the spec- oy D (1)
trum: k, — | Ak|<|k| <Kk, . uj'~uj’ andq~q'. N o
The equations for the fields(o)(ﬁ) and q(O)('k) of the The second moments describing a deviation of the turbu-
y lence from the background level can be obtained from Eqgs.
(A7) and (A8). For simplicity, the background turbulence is
assumed to be homogeneous and isotropic, i.e.,

(A7)

background turbulence are reduced to

u®k)=G,f;, g2k =G,e.

. _ ot K)o . K _E()T(k )
Therefore the background turbulence is assumed to be givefiUm | K+ 2 Up”| —k+ 21T 8ake
In order to derive equations for the turbulent coefficients
v and » we have to find the dependence of the second mo- K Kk A
ments(u;u;) and(qu;) on the large-scale field¥;V; and X| Sn— _mrn) S(K). (A9)
VN. Let us consider, for example, a correlation function k
(uiup),

Integration in Eqs(A7) and(A8) over the angles ik space
results in the following expressions for the second moments:

(i Gou )= [ (ko koexichot ko9 akdk, .
<u§nl>u§,°>>=—§vmnf E(k)T(k,®)G,dkdw, (A10)

:f Fii(K.F)expiKR)dK,

<q<1>u<°>>:—Eﬁ E(k)T(k,)G,dkdw. (A11)
where : 3 R, T
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Here (q@uMy=0, becausegq@u(®)=0, and (uPut)  and we take into account that for smalk| the integral

~(qWuM)~0(Q3N%,Q?V?), where JF(K)dk~|AK|F(k"), wherek, —Ak<k'<Kk, . Substitut-
ing (A12) and(A13) into Eqgs.(16) and(17) yields the equa-
Ny, 1V, tions that coincide in form with Eq914) and (15). This
Vinn= IR, + 6 JR,, means that these equations are invariant under the procedure

of the successive averaging, i.e., invariant under the renor-
Integration in(A10) and (Al1l) is performed overw from malization of the turbulent transport coefficients. The term
—o to  and overk from k, —|AK| to k, . The following ~ V¢{% is dropped for the homogeneous background turbu-
integrals are used for the calculauons of the second moment@nce and we take into account ﬂmgo)u(o)> 0.

in (A10) and (A11): Now we divide Eqs(A14) and(A15) by Ak=—|Ak| and
k. 4 pass to the limit of smalAk. The minus sign arises because
f (k-a) k_'zsingd 6dp= ?Wai ' the procedure of the successive averaging is performed from

small scales to large ones. Note that the background turbu-
lence is confined in the regioky<k<k,. Therefore the
j (5__ _ kikj)sinaded _ 8_775__ equations are not renormalized fo<k,. The small values
K =3 % of Ak imply that|Ak|<k,. Then the equations for the tur-
bulent viscosity and turbulent diffusion are reduced to

f k-a)(k-b) Wisinadade= 27 k2
(k-a)(k- )Fsma 0 T

%: 370 E(K)T(k,w)G,dw, (A16)
X[(a' b)&ij'f'aibj'f'ajbi].
Substituting Eqs(A10) and (Al1l) into the expressions for dzn 1
tensors(18) and(19) yields dk §f E(KT(k 0)G,do. (A17)
0 Ny, IV, . . Lo
=0 +Ay( + ) (A12) Using (34) and integrating in EqQ9A16) and (A17) over o
dR, IRy space yield the equations for the turbulent coeffici@®
and(21). In the derivation we used integrals of the products
Vn=—(VN)Az, (A13)  of Green functions:
where -
*
7 j GG} dw— JG G* 2 Gpdo= —k4(a+ﬂ)'
_ 1 * * — 7T
An= §|Ak|j E(k)T(k,0)G,dw, (A15) f GaGaGBG'Bdw— m. (A19)
[1] G. Batchelor,The Theory of Homogeneous Turbuleti€am- [9] S. Corrsin, J. Appl. Phy2, 469 (195)).
bridge University Press, Cambridge, 1975hnd references [10] A. D. Wheelon, Phys. Re\l05 1706(1957).
therein. [11] G. K. Batchelor, J. Fluid Mectb, 113 (1959.
[2] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics [12] G. K. Batchelor, I. D. Howells, and A. A. Townsend, J. Fluid
(MIT Press, Cambridge, MA, 1975Vol. 2, and references Mech.5, 134 (1959.
therein. [13] R. H. Kraichnan, Phys. Fluidsl, 945 (1968.
[3] W. D. McComb, The Physics of Fluid Turbulend€larendon, [14] P. G. Saffman, Phys. Fluid2, 1786(1969.
Oxford, 1990, and references therein. [15] R. Bolgiano, Phys. Revi08 1348(1957; J. Geophys. Res.
[4] Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff,he 63, 851(1958.
Almighty ChancéWorld Scientific, London, 1990 and refer-  [16] A. D. Wheelon, J. Geophys. Re83, 849 (1958.
ences therein. [17] C. H. Gibson, Proc. R. Soc. London484, 149(1991).
[5] M. Avellaneda and A. J. Majda, Philos. Trans. R. Soc. London[18] J. P. Clay, Ph.D. thesis, University of California at San Diego,
A 346, 205(1994), and references therein. 1973.
[6] T. Elperin, N. Kleeorin, and I. Rogachevskii, Phys. Re\6E [19] C. H. Gibson, W. T. Ashurst, and A. R. Kerstein, J. Fluid
2617(1995. Mech. 194, 261(1988.
[7] T. Elperin, N. Kleeorin, and I. Rogachevskii, Phys. Rev. Lett. [20] H. K. Moffatt, J. Fluid Mech106, 27 (1981); Rep. Prog. Phys.
76, 224 (1996. 46, 621(1983.

[8] A. M. Obukhov, Izv. Akad. Nauk. SSSR Ser. GeofiB, 58 [21] N. Kleeorin and |. Rogachevskii, Phys. Rev. 3D, 2716
(1949. (1994.



53 ISOTROPIC AND ANISOTROPIC SPECTRA OF PASSIVE ... 3441

[22] L. D. Landau and E. M. LifshitzFluid Dynamics(Pergamon, [27] Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloffjag-

Oxford, 1987. netic Fields in AstrophysicGordon and Breach, New York,
[23] W. M. Kays, J. Heat Transfet16, 284 (1994. 1983, and references therein.
[24] V. Yakhot and S. A. Orszag, J. Sci. Complif.3 (1986. [28] A. Ruzmaikin, A. M. Shukurov, and D.D. Sokolofflagnetic
[25] M. Avellaneda and A. J. Majda, Commun. Math. Ph$81, Fields of GalaxiedKluwer, Dordrecht, 1988

381 (1990; Phys. Fluids A4, 41 (1992; Phys. Rev. Lett68, [29] N. Kleeorin and I. Rogachevskii, Phys. RevbH, 493(1994).

3028(1992. [30] P. N. Roberts and A. M. Soward, Astron. Nacl296, 49

[26] E. V. Teodorovich, Adv. Mech13, 81 (1990. (1975.



