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A nonlinear theory of magnetic fluctuations excited by random flow of a conducting fluid is
developed. A mechanism of amplification of magnetic fluctuations in the presence of zero mean
field, proposed by Zeldovich, is applied to the theory by means of a nonlinear equation derived from
the induction equation; the nonlinearity is associated with the Hall effect. To derive the nonlinear
equation we used a method [S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokoloff, Sov. Phys.
Usp. 28, 307 (1985)] the main idea of which is to replace the magnetic diffusion by the Wiener
process. The diffusive motion is described by means of an average over an ensemble of random
Wiener trajectories. The nonlinear equation describes the evolution of the correlation function of
the magnetic field and resembles the Schrédinger equation except for a variable mass and the absence
of the imaginary unit in the time-derivative term. The local spatial distribution of the magnetic
field is intermittent: the field is concentrated inside flux tubes separated by regions with weak fields.
In the limit of large Reynolds number the formulation is amenable to treatment by a modified WKB
method. The general properties of the nonlinear stationary asymptotic solution are confirmed by
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the numerical solution. The results obtained are of interest for the ionosphere of Venus.

PACS number(s): 52.30.—q, 52.25.Gj, 51.60.+a, 47.27.Jv

I. INTRODUCTION

Investigations of an origin and evolution of magnetic
fluctuations are important from the point of view of var-
ious cosmic and laboratory applications (see, e.g., [2-4]).
Many recent studies have focused on deterministic (see,
e.g., [>-8]) and random (see, e.g., [4,9-15] and references
therein) flows which can excite the magnetic fluctuations.

A mechanism of generation of magnetic fluctuations
with zero mean magnetic field was proposed by Zel-
dovich (see, e.g., [16,4]). In Fig. 1 we illustrate how
the mechanism operates. An original loop of magnetic
field is stretched [Fig. 1(b)], twisted [Fig. 1(c)] and
then folded [Fig. 1(d)]. These nontrivial motions are
three dimensional and result in an amplification of the
magnetic field. Magnetic diffusion leads to reconnection
of the field at an X point. If the turbulent flows of con-
ductive fluids tend to be one dimensional, for example,
because of the presence of an external field, magnetic
fluctuations are not generated (see, e.g., [4]).

As follows from [11,17] the turbulent magnetic field is
concentrated within flux ropes separated by regions of
weak field. Statistical properties of the turbulent mag-
netic field B can be described by means of the correlation
function W(r,¢) = (B(x,t)B(y,t)). Here the angular
brackets mean statistical averaging and B is the projec-
tion of magnetic field B on the directionr =x—y . A
linear equation 'desciibing the evolution of the correlation
function W of the magnetic field was derived differently
in [1,18-20] for a prescribed incompressible turbulent ve-
locity field u:
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(u(x,t) -u(y,t + 7)) = louo f(r)8(7) , (1)

where, for example, f(r) = exp(—r?), §(r) is the delta
function, 7 is the correlation time, Iy is the main scale of
turbulent hydrodynamic pulsations, and up is the char-
acteristic value of the turbulent velocity u. The results
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FIG. 1. The mechanism of amplification of magnetic fluc-
tuations [16].
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remain valid also for a velocity field with a finite corre-
lation time if the statistical characteristics of magnetic
field vary slowly in comparison with the correlation time
[21]. :
However, a level of the magnetic fluctuations cannot

be estimated from the linear model. In this paper a non-

linear theory of magnetic fluctuations excited by random
flows of a conducting fluid is proposed. We take into ac-
count the nonlinearity in the induction equation caused
by the Hall effect. An asymptotic stationary solution of
the nonlinear equation for the correlation function of the

magnetic field in the limit of large Reynolds number is ob- ..

tained. It is confirmed by the numerical simulation. On
the basis of this theory it is possible to explain magnetic
field observations in the ionosphere of Venus [22,23].

II. THE HALL EFFECT

The nonlinear equation describing the evolution of the
correlation function W for the magnetic field can be de-
rived from the induction equation

oB c
—_Vx(vixB+MBx(VxB)—anB) ,

ot
(2)

where 7 = c?/4mo is the magnetic diffusivity, o is the
electrical conductivity, v; is the ion velocity, e is the elec-
tron charge, n is the electron number density, and c is the
speed of light. The second term in Eq. (2) describes the
Hall effect. The induction equation (2) is derived from
the Maxwell equations and Ohm’s law.

Let us discuss the Hall effect. We consider three-fluid
magnetohydrodynamics for electrons, ions, and neutral
particles. The momentum equations for electrons and
ions are given by (see, e.g., [24,25])

min;(%) = —Vp; ; X B)
(v, g o —vi), (9
men(%) = — Vp, —enE — ?(ve x B)
~ T e m v+ T amve), (4)
where . S

Ve,Vi, and u are the electron, ion, and neutral parti-
cle velocities, respectively; m. and m; are the electron
and the ion mass, p. and p; are the electron and the ion
Pressure; Tin, Ten, and T.; are the ion-neutral, electron-
neutral, and electron-ion collision times, respectively; ze
is the ion charge, and n; is the ion number density. A re-
lationship zn; = n is due to the electrical quasineutrality
of plasma and E is the electric field.

We neglect the inertia of electrons m.n(dv./ dt) in Eq.
(4) because m, € m; . Ohm’s law follows from Eq. (4):

. 1 1 Vp.
J U(E+MBX(VXB)+ZV;XB+?), (5)

where the electric current is j = en(ve — v;),V x B =
(4 /c)j, and we consider for simplicity the case 7o € Ten.

~ So the conductivity is 0 = e m’e,/ me. The second term

in Ohm’s law describes the Hall effect. The sum of Egs.
(3) and (4) yields

myn;

mn(‘%) =-Vp+:GxB)+ MM u_v), (6)

where p = p;+p. and we take into account that m. €« m;.

The second term in Eq. (6) is quadratic in terms of
the magnetic field and describes the influence of the mag-
netic field on the motion of plasma. It follows from Egs.
(2), (5), and (6) that this term corresponds to the cubic
nonlinearity (~ B37;/4nwm;n;lp) in terms of the magnetic
field in the induction equation. Here 7; is the characteris-
tic time of the ion component of the plasma and lp is the
characteristic scale of the magnetic field variations. On
the other hand, the nonlinearity in the induction equa-
tion caused by the Hall effect [the second term in Eq.

in

- {2)] is a quadratic nonlinearity in terms of the magnetic

field.

Now let us compare these two kinds of nonlinearity.
First, we consider the case T, > 7. It follows from
Eq. (6) that a variation of the ion velocity év; under the
influence of the generated magnetic field is

b < BJ.

(5 [ e
m;n;c

The cubic nonlinearity is not as effective as the quadratic
if
c
év; x B ——B x (VxB)|.
lov. _ l< 4men (VxB)
It yields the following criterion:
w1, (M

where wg; = eB/(m;c) is the ion gyrofrequency. Note
that an external force can determine the characteristic
time 7; of the ion component of plasma.

Now we study the case when the ion time 7; is much

longer than 7;,. Therefore, the solution of Eq. (6) is
given by
vizu— " (gp+ LB x (v xB) (8)
T ming P )

For an incompressible flow V - v; = V - u = 0 and the
pressure can be determined from Eq. (8):

A§=—11;v-[3x(vXB)].

It follows from (8) that the variation of the ion velocity
0v; under the influence of the generated magnetic field is

Sv; ~ —"_15 x B|.
m;nic
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Therefore, in this case the cubic nonlinearity is not as
effective as the quadratic if

WHiTin K 1. (9)

The effect of an external force F on plasma is reduced to
a change of the ion velocity by a value Tin|F|/min;. Tt
results in the appearance of an additional external emf in
the induction equation (2). It leads to the generation of
the seed magnetic field. In the intermediate case, when
Ti ™~ Tin, the criteria (7) and (9) coincide.

In this paper attention is restricted to the quadratic
nonlinearity; the cubic one will be considered in a sep-
arate paper. Therefore, in Ohm’s law (5) and in the
induction equation (2) we replace the ion velocity v; by
u.

When an external regular (mean) magnetic field is su-
perimposed on the plasma, it can magnetize electron
component of the plasma if wgyeTe; > 1 (see, e.g.,
[24,25]). Here wg, is the electron gyrofrequency. In
this case the magnetic fluctuations cannot be generated
because the motions of electrons tend to be one dimen-
sional. The physical reasoning behind the impossibility of
the generation lies in the need for three dimensionality of
the flow of the plasma. Note that the magnetic Reynolds
number defined on the ion component of the plasma can
be lower than the threshold of the self-excitation of the
magnetic fluctuations (the threshold value of the mag-
netic Reynolds number RS, ~ 66; see Sec. IV). There-
fore, in spite of the ion component of the plasma being
not magnetized yet by the external regular field, the gen-
eration of the magnetic fluctuations cannot occur for the
low magnetic Reynolds number. This case seems to be
typical for the ionosphere of Venus (see the discussion in
Sec. VI).

In the next section we will derive the nonlinear equa-
tion for the correlation function for magnetic field from
the induction equation after taking into account the Hall
effect.

ITI. THE NONLINEAR EQUATION

To derive the equation for the correlation function
W (r,t) we used a method developed in [1,20]. The main
idea of the method is to replace the magnetic diffusion by
the Wiener process (see, e.g., [4]). The diffusive motion
is described by means of an average over an ensemble of
random Wiener trajectories. A Wiener random process
is defined by the properties

M{Wt} =0 5
M{(we)i(we);} =25 ,

where M is the mathematical expectation over the
Wiener paths. It means that w; ~ t%/2 for t — 0, so
the Wiener process can describe diffusion. We use the
Lagrangian solution of the induction equation (see, e.g.,
[1]). The problem reduces to the analysis of the field
evolution B(t,r) along the Wiener path &,:

b=x- / V(=g ds 4 (20) P, . (10)
0

Here v = u — (¢/4nen)V x B. Equation (10) describes
a set of the random trajectories which pass through the
point x at time t. Because w; is a Wiener process, the
initial coordinates {; are random. Without the magnetic
diffusion (n = 0) the Wiener paths coincide with La-
grangian trajectories and &; is not random. The approach
is similar to the method of Feynman integrals over tra-
jectories in quantum mechanics and does not require the
assumption of the Gaussian statistics for the turbulence.
This feature is most important for the nonlinear prob-
lem because the statistical distribution of the effective
velocity v = u — (c/4men)V x B [see Eq. (2)] cannot be
given.

The solution of the induction equation (2) with the
initial condition B(t = to,x) = By(x) is given by

B;(t,x) = M{Gij(to,t,x,&)Boj (&)} (11)

where Gy; is the Green’s function determined by the
equation

d _ 8vi(t - 8$€s)
%'Gn (t07 t— 8,X, El) - _Gk] T

with the initial condition for t = s : Gy;(to,0,x,x) = §;;
[1]. According to Eqgs. (11) and (12), in a short time At
the magnetic field varies as

Bi(t+At,x) =M [(6,-,- + %ﬁ;—X)At) B,-(&)] . (13)

Let us calculate the tensor element B;B; with the help
of Eq. (13). Then the second moment is averaged over
the ensemble. The averaging is performed by two steps:
for the time intervals (0,t) and (t,¢+ At). This is possi-
ble if the statistical characteristics of the magnetic field
vary slowly in comparison with the correlation time. The
equation that describes the evolution of the second mo-
ment W;;(r,t) = (Bi(x,t)B;(y,t)) is obtained by means
of this technique of Wiener integration and expansion in
the short correlation time. It takes the form

OWytr) _ w0 0 1w 8
ot kg, it likg Win
W 2= T7% + o =W, 4

-+ nmarn Tij + am 8r,,t9rm ij (1 )

where

TS = VR() - Va0), Ve = (weZpe)) |

i = Ryl6i5 — fii(r) + f;(0), r=x—-y.

We consider this equation in the case statistically homo-
geneous, isotropic, and reflectionally invariant velocity
and magnetic fields. It means that the correlation ten-
sors in non-dimensional form for these fields are given

by

O

(as(x)a; () = [A(r)ang’ (-] a9
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where A(r) = F(r) for a; = u;, A(r) = W(r) for a; = B;
and A’ is the spatial derivative of A. The function F(r)
depends on a correlation function for the turbulent ve-
locity field: f(r) = [r3F(r)]'/3r%. Note that the choice
of the correlation function for the magnetic field in the
form of Eq. (15) does not exclude the intermittency of
the magnetic fluctuations. This is because the second
moment of the turbulent magnetic field does not contain
information on the structure of the typical distribution
of the magnetic field. The principal contribution to the
correlation function comes from widely spaced concen-
trations of the magnetic field. For a description of the
intermittency of the magnetic fluctuations one needs to
consider higher order moments [4]. _

Now let us take the trace of the tensor W;; in Eq. (14),
use Eq. (15) and the identities which are presented in the
Appendix, and then multiply the resulting equation by
r? and integrate it between the limits 0 and r. This pro-
cedure leads to the differential equation for the function
w:

aw 1 4 m 3m/
o _ = lw 2 _m ' _ .
8  m(rN) { + (r m)W' 2rmW]
The tensor element W;; and the correlation function W
are related by W;; = W+7W’/3. The resulting equation
describing the evolution of the correlation function W of
the magnetic field takes a simpler form when it is formu-

lated in terms of an auxiliary function ¥ = r2W/3+/2m.
Then the equation reads

8_\P__ 1,, " _ AN ] B_N
= ——m(r,N)W U(r,N,N,N,Bt . (16)

The nonlinearity N is defined by

N=w" i (17)
The variable mass m and potential U are given by
2 _(m)? ¢ 6N |

=t s T ™ (18)

m~t =mgi(r) +2(N - Ni) , (19)

where we have used the definitions
2
mg(r) = 2R + 511 - F(r)],

5o PE-N)
3r2 ’
N,=N(r=0).

Equation (16) is written in dimensionless variables: coor-
dinates and time are measured in the units Iy and lp/uo,
in which /y is the main scale of turbulent hydrodynamic
pulsations; it is of the same order as the density vari-
ation scale of neutral gas and up is the characteristic
value of the turbulent velocity u. The magnetic field B
and correlation function W are measured in units of b
and b%; b = 4menlouo/v/3c . The magnetic Reynolds
number R,, = uglo/n > 1.

The nonlinear term N(r,T) in Eq. (16) is due to the
Hall effect. N corresponds to a correlation function of

the electric current

N=- ( v3 ) (4(x,t) - 3(¥,1))

enug

(20)

where j is the projection of the electric current j on the
direction r = x —y.

We have assumed a stationary homogeneous, isotropic
velocity field u [see Eq. (1)] which has a scale of order
unity in normalized units. The exponential form could
be replaced just as well by any rational function whose
small » form is of the type f(r) =~ 1—r2 . This is done for
simplicity and to make the calculations more transparent
for the reader. The theory remains valid for the most
general case of velocity distribution. If N =0, Eq. (16)
is linear. In the next section we shall consider the linear
theory of the magnetic fluctuations.

IV. THE LINEAR THEORY

Now let us consider the case N = 0. Equation (1)
describes the evolution of the correlation function of the
magnetic field and resembles the Schrédinger equation
except for a variable mass and the absence of the imagi-
nary unit in the time-derivative term. In the limit of large
magnetic Reynolds number the formulation is amenable

_to treatment by a modified WKB method (see, e.g., [26]).

We seek a solution to the linear equation for ¥ of the form
¥ = exp(27t)®(r). The linear equation is reduced to the
eigenvalue problem

L 5" 2y 1 Up(r)] =0, (21)

mo(r)

with the boundary conditions &(r = 0) = &(r = oo) = 0.
Here the potential Up is

__ 2 _(mg? [
Uo = mer?  4mj + r (22)
The spatial distribution of the function Ug is shown in
Fig. 2. The solution of Eq. (21) has the discrete (for
Us < 0) and continuous (for Uy > U,) spectra, where the
value U, is shown in Fig. 2. The range of the quasidis-
crete spectrum is located in 0 < Uy < U,. The discrete

Up(r),

-1

0.5 1 1.5 2 2.5 r

FIG. 2. The spatial distribution of the potential Us.
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spectrum describes the self-excitation of magnetic fluc-
tuations, while the continuous spectrum corresponds to
the dissipation of magnetic energy. The solution of Eq.
(21) for the discrete spectrum in the vicinity of minimum
of the potential well U is considered early in [27,28]. In
this paper we find solutions of Eq. (21) for the contin-
uous spectrum and for the discrete spectrum near the
threshold of the self-excitation of magnetic fluctuations
(see also [30]). A

The domain of definition of the function ®(r) has three
characteristic regions, in which the mass mo(r), the po-
tential Up, and Eq. (21) can be reduced to

1 2
—_—~ — U
mo Rm’ 0

2

¥ - 58=0,

4
Y Ror2
0<r<aR;Y? (23)

1
W = W, exp(27t) x

Dyr=%/2 cos(pln(r)/ In(Rm) + B)

1 2, 8 g, o _
EN—S—T s Uow—g, P +73¢—0, 0—4—5’)',
‘ aR;M? <r <bR;M* (24)
1 2 4 _, 2 _

me "3 Do~ ga® ‘(72*3”)‘1"0’

r > 1. (25)

Here a ~ b ~ 1. It follows from Egs. (23)-(25) that an
asymptotic solution for the correlation function W(r,t)
is given by

for0<r< a.R,_nl/2

for aR,?.% <r< b}?;,i (26)

—Dy(/3yr~%2 +r73) exp(—/37yr) forr > 1,

where p? = (o — 1/4)1n® (). The constants Dy, D,, 3
and the growth {or damping) rate « of the magnetic fluc-
tuations can be determined after sewing the function W
and the derivative W' at the boundaries of these regions.
The general form of the growth (or damping) rate v of
the magnetic fluctuations is given by

3 p?

- (27)

In the vicinity of the minimum of the potential well U,
[for p «'In(Ry,)] the growth rate of the magnetic fluctu-
ations is given by (27) with p =~ 27k/+/5, k = 1,2,3, ...
(see [27,28]). The phase angle 8 ~ /2 + mm,m =
0,1, £2, ...

Near the threshold of the self-excitation of magnetic
fluctuations (v < 1) the parameter p in Eq. (27) is given
by p ~ (2/V5)[rk + g(¥)], k = 1,2,3,... (see [30]).
Here g(v) ~ 1 is a slowly changing function. The phase
angle 8 ~ arctan[ln(R,,)/2p] + 7m, m = 0,+£1,+£2,....
A critical magnetic Reynolds number, which corresponds
to v =0, is given by

Ry ~ exp(2p/V3) (28)
where g(0) ~ 0.91. For the main mode (k =1) RZ =

65.8. This result agrees with the direct numerical sim-
ulation of the three-dimensional magnetohydrodynamics
turbulence (RS & 65.0; see [10]) and the numerical so-
lution of Eq. (16) for N = 0 (RS =5 66.0; see [29]).

The damping rate of the magnetic fluctuations is given
by C

pz

1*(Rn)

Here the parameter of the continuous spectrum p >

Y4 = (29)

[
In(R,,). The phase angle 8 ~ mm, m = 0,+1,+2,....

In the next section we shall obtain the nonlinear
asymptotic and numerical solutions of Eq. (16) for the
correlation function W of the turbulent magnetic field.

V. THE NONLINEAR ANALYSIS

Near the threshold of self-excitation of the magnetic
fluctuations, the system tends to a steady state after
several correlation times. It is also in agreement with
the direct_three-dimensional (3D) numerical simulation
of the magnetic field generation by a prescribed Arnold-
Beltrami-Childress (ABC) flow of the conducting fluids
[31). In particular, the Hall nonlinearity results in a satu-
ration of the growth of the magnetic field. The magnetic

‘Reynolds number threshold for the self-excitation of the

magnetic field is R,, ~ 66 (see Sec. IV). First, it is im-
portant to find the stationary solution of Eq. (16).

The correlation function W satisfies the following
boundary conditions: W(r =0) = W, and W(r = o0) =
0. Let us study the properties of the solution of Eq. (16)
for small r, » < 1. The function ¥ and the nonlinearity
N in this range can be reduced to

T Tyr? e, (30)

N=N,+ (Ng—1/5)r% 4 ... . (31)
The boundary condition W(r = 0) = W, and the defi-
nition ¥ = r2W/3v/2m yield ¥4 = W, /(3v/R,,) . The
analysis of Eqs. (16) and (17) in the vicinity of r = 0
provides a relationship between N, and W,:

N, = —10R,W,N; .
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The function ¥(r) has three characteristic regions in

which the mass, the potential, and Eqs. (16) and (17)

can be reduced to

2(Ng +1) o

n
¥+ 32

=0,

aR;Y* <r <1y (33)

12 . 2 . 2 . ,
o~ ~—_— - P = 4N, 2
m R'n‘i‘ZNd"', U m'rz’ ¥ 7'2‘11 0, %N—"ZN*, UN—T—2’ ‘I’"—r—2‘1’=0,7‘>>1.
(34)
-1/2
0<r<aRZM (32)  Here we take into account that [N,| > 1 and the point
re = aR;} exp(n/2) corresponds to W(r =rg) = 0. The
1 ~ 2 +2Ngr2, U~ _4(N a+1) . agymptotic solution for the correlation function W of the
m Ry ’ 3 ’ magnetic fluctuations is given by
]
1 for05r<aR;;1/2
W =W.x 3 (a/r)§ Rt cos{ln[yRm(r/a)]} for aRn} <7 <o , (35)
—Dr—3 for r >» 1.

Herea~1and D <« 1. IntheregionOSr<a.R,_n§f the
solution W = W, = const coincides with that of the lin-
ear problem [see Eqs. (23) and (26)]. It means that the
strong nonlinearity (the large electric current |N.| > 1)
cannot suppress the generation of the magnetic fluctua-
tions in this region. The magnetic field seems to be force
free (j x B = 0) in this region and so the flux tubes

are twisted. In the second region (aR,_n% < r < 19) the
function W decreases drastically; here the nonlinearity
restricts the level of the magnetic fluctuations. The first
and the second regions correspond to the flux rope. For
T > ro the function W is negative.

Let us now discuss the significance of the negative cor-
relation function. Consider a flux rope that is surrounded
by other ropes. We examine the variation of the mag-
netic field as a function of distance from the flux rope.
The magnetic fields from the other flux ropes cannot con-
tribute to the correlation function W because (B) = 0.
The only nonzero contribution to the function W is from

the magnetic field of the flux rope itself. Outside the

flux rope (r > ro) the directions of the magnetic fields
are opposite that inside the tube because of the condition
V-B = 0. The contribution from these magnetic fields
for 7 > 7 to the correlation function W is therefore neg-
ative. )

The general properties of the nonlinear asymptotic so-
lution (35) are confirmed by the numerical stationary so-
lution of Egs. (16) and (17). These equations can be
reduced to : T

%w” = o+ (T + D), (36)
2UN" = o+ (Up+U)¥ . (37)

Here the functions ¢ and U are given by

- 4 2 ) 4 2
U=N(r—2+§mmo(F') ) —N’I:;-i— (N'—gF,)],

2

2 r
=ao0 + = F'¥' — N —bN'
P =ao¥ + 3 3v2m} ° ’
where
_m 2 2 F _
ap = ?(F’) — st “bo = 2¥'+mT[2F" ~3N").

At the point r = ro the function ¥ = 0. Therefore, Eq.
(37) has a singularity at this point. In numerical sim-
ulation this point is passed analytically. The numerical
stationary solutions for the correlation function W and
the nonlinearity N for R, = 100 are presented in Figs. 3
and 4. The solutions satisfied, the boundary conditions

W(r—o00)=0, (38)
N(r—00)=0 (39)

exist for W, = 0.36 and N; = 0.99. The obtained value of
W. is also in agreement with the direct 3D numerical sim-
ulation of the magnetic field generation by a prescribed
ABC flow of the conducting fluids [31]. In particular,
the saturation of the growth of the magnetic field by the

W)

0.3

0.1

0 —<—

103 wer)|
0 0.4 0.8 r

FIG. 3. Numerical stationary solution for the correlation
function W of the magnetic field for R, = 100.
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FIG. 4. Numerical stationary solution for the nonlinearity
for Rm = 100. The function N(r)/N, is plotted at the vicinity
T = ro with higher resolution (b).

Hall nonlinearity occurs at W, =~ 1. A slight difference
in W, is due to the difference of the considered flows of
the conducting fluids.

The correlation function W = 0 at the point r = rg =
1.181?,,_,,1/ 2, For r > rq the function W is negative. The
correlation function W in the region r > 7 is plotted
in Fig. 3 scaled up by the factor 103W. This is done
because the magnitude of the function W is very small
in this region.

Note that the nonlinear solution is much more strongly
localized than the linear one. This is a result of the strong
dependence of the mass m on the distance r in the non-
linear case. In the vicinity of r = r¢ the mass drastically
decreases from R,, >> 1 to the value R,,,/|N,|. Forr > 1
the mass is of the order of |N,|~! <« 1. The dependence
of the mass m on the distance r for the linear (curve 1)
and nonlinear (curve 2) cases is shown in Fig. 5. The
sharp drop of the mass in the nonlinear case determines
the strong localization of the function W.

The question of intermittency cannot be treated in our
framework because we have truncated the hierarchy of
moment equations at the energy equation or second mo-
ment level. We point out, however, that the strong lo-
calization of the correlation function W indicates qual-
itatively a tendency toward intermittency, but we can-
not quantify this further. Future studies will be oriented
to extend the moment hierarchy and thus deal with the
problems of energy flow and intermittency.
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2

- 10

i 2 r

FIG. 5. The dependence of the mass on the distance r for
the linear and nonlinear cases.

VI. DISCUSSION

The results obtained are of interest for the ionosphere
of Venus. Filamentary magnetic structures were observed
in the ionosphere of Venus [22]. The general properties of
these small-scale magnetic field structures are as follows
(see, e.g., [32,33]).

(i) Flux ropes are observed only in the regions where

the average large-scale magnetic field is practically zero.

(ii) The flux ropes’ axes have, in general, random in-
clinations.

(iii) The magnetic structures are stationary on the
time scale on which the Pioneer Venus Orbiter spacecraft
passes through them.

(iv) The cross section of the flux ropes is of the order
of a few tens of kilometers.

Several mechanisms have been proposed to explain the
origin of magnetic flux ropes [34-36]. The most difficult
feature to understand, namely, the formation of the flux
ropes in the absence of a large-scale regular magnetic
field, has, however, remained unelucidated. The problem
of their origin and evolution still remains, therefore, a
subject of investigation, although the phenomenon was
discovered in the ionosphere of Venus in 1979 [22].

According to the nonlinear theory considered in this
paper the flux ropes observed in the ionosphere of Venus
can be interpreted as magnetic fluctuations excited by
random hydrodynamic flows of ionospheric plasma with
zero mean magnetic field. On the basis of this theory
we describe the general properties of the flux ropes in
the ionosphere of Venus (see also [23]). In particular,

the theory explains why flux ropes are not observed if

there is a strong regular large-scale magnetic field, i.e.,
when the ionopause is low. The appearance of a strong
regular interplanetary magnetic field in the ionosphere of
Venus causes the turbulent flow of ionospheric plasma to
become one dimensional and thus flux ropes cannot be
generated. The characteristic lifetime of the turbulent
flux ropes is of the order of the turnover time of turbu-
lent eddies. In the ionosphere of Venus this time is of the
order of several minutes. Despite of the random char-
acter of magnetic fluctuations, therefore, the spacecraft
observations show a stationary picture of flux ropes (see
also [32]). For the ionosphere of Venus /o ~ (1—10) x 10°
cm, ug & (2 —20) x 10° cm s, n & 10* — 10° cm™?,
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and R,, = 70 — 150. The characteristic cross section of
the flux ropes is about lgR,;l/2 >1—10km. It is in
agreement with the observation of the flux ropes in the
ionosphere of Venus [22].

The theory gives the mean square of the magnetic field
(B%). The turbulent magnetic fields exist in the form
of magnetic ropes separated by the regions with weak
magnetic field. Let us estimate the maximum value of
magnetic field inside the flux tube. The mean square of
magnetic field is

B~V [ Bravy, (40)

where V; is the volume of the flux rope, V, is the volume
of a turbulent eddy, and B,, is the magnitude of the
magnetic field inside the flux tube. The volume are given
by

Vi = b(loR;YY?, V,=13. (41)

Thus the maximum value of the magnetic field inside the
flux tube is B

B,, ~ ”—Z'ﬂRf,{z,/W, ~ 50 — 100nT , (42)

which is consistent with observed values.

ACKNOWLEDGMENTS

Application of the theory to the ionosphere of Venus
have been done with A. Eviatar. The helpful discussions
with A. Eviatar have led to significant improvements of
this work. We have benefited from stimulating discus-
sions with A. Ruzmaikin and D.D. Sokoloff. We would
like to thank I. Aranson for his assistance in carrying out
numerical calculations. The work was supported by the
Israel Ministry of Science.

APPENDIX

To derive Eq. (16) we use the following identities:

2 .
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