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Effective Ampere force in developed magnetohydrodynamic turbulence
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The interaction between a large-scale uniform weak magnetic field B and a developed small-scale mag-
netohydrodynamic (MHD) turbulence is studied. It is found that the effective mean Ampere force in the
turbulence is given by F,, = —V(Q,,B’ /8mw)+(B-V)Q,B/4w. The turbulent magnetic coefficients Q, and
Q. are drastically decreased at large magnetic Reynolds numbers, whereas in the absence of turbulence
Q,=Q,=1. This phenomenon arises due to a negative contribution of the MHD turbulence to the mean
magnetic force. This is caused by the generation of magnetic fluctuations at the expense of fluctuations
of the velocity field. This effect is nonlinear in terms of the large-scale magnetic field. It is shown here
that in turbulence with a mean large-scale magnetic field, a universal k ~! spectrum of magnetic fluctua-
tions exists; this spectrum is independent of the exponent of the spectrum of the turbulent velocity field.
A variant of the renormalization group (RNG) method allows the derivation of the scaling and ampli-
tude of the turbulent transport coefficients: turbulent viscosity, turbulent magnetic diffusion, and tur-
bulent magnetic coefficients. A small parameter in the RNG method is the ratio e=B2/(87W, ) of the
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large-scale magnetic energy density to the energy density W, =(1/2)p{u?) of the turbulent velocity

field. .
PACS number(s): 47.27.—i, 47.65.+a, 52.35.— g

1. INTRODUCTION

Investigations of developed magnetohydrodynamic
(MHD) turbulence are important from the point of view
of various cosmic and laboratory applications. The main
property of the MHD turbulence is that random motion
of a conducting fluid can generate both a large-scale
mean magnetic field (see, e.g., [1-4]) and magnetic fluc-
tuations [5,6].

MHD turbulence at large magnetic Reynolds numbers,
R,,, was studied mainly in an approximation that is
linear in terms of the mean magnetic field. This treat-
ment leads to well-known effects: the a effect, the eddy
viscosity, the turbulent magnetic diffusion, and the tur-
bulent diamagnetism (see, e.g., [1-4]). These effects van-
ish in the case of homogeneous and isotropic turbulence
with a uniform mean magnetic field.

In this paper we investigate an effect which is nonlinear
in terms of the mean magnetic field. It is the effect of
variations of the mean magnetic force by developed
MHD turbulence. This means that the mean Ampere
force is given by

%

B2
87

_ A1 g,
F,=—V +-(BVIQB,

where B is the mean magnetic field. The magnetic
coefficients Q, and Q, determine the effect of the MHD
turbulence on the mean magnetic force. In the absence of
turbulence Q,=Q,; =1, while in developed MHD tur-
bulence the magnetic coefficients drastically decrease.
This phenomenon arises due to a negative contribution of
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the MHD turbulence to the mean magnetic force. For
R,, >>1, Q, can be negative and the “effective” magnetic
pressure, p,, =QpB2/ 8, changes sign. The case B>>1 is
considered, where B is the ratio of the gas pressure to
that of the mean magnetic field. Therefore the total (mag-
netic plus gas) pressure is always positive. In contrast to
both the a effect and turbulent magnetic diffusion this
phenomenon can arise in uniform magnetic field.

This effect can excite a large-scale magnetic instability
(see [7—10]). It leads to the formation of inhomogeneities
of the regular magnetic field at the expense of the energy
transferred from small-scale turbulent pulsations. This
phenomenon may serve as a mechanism of magnetic flux
rope formation in the turbulent convective zone of the
sun, stars, and spiral galaxies [7—10]. This effect causes
an observed anomalous increase (decrease) of the solar ra-
dius at the minimum (maximum) of the solar activity
[11,12]. In addition, this phenomenon may determine the
fine structure of the observed solar torsional oscillations
and solar meridional motions [12].

The renormalization group (RNG) procedure is em-
ployed for the investigation of the MHD turbulence at
large magnetic Reynolds numbers. The RNG method
comprises a replacement of real turbulence with a medi-
um characterized by effective turbulent transport
coefficients. This procedure enables us to derive equa-
tions for the transport coefficients: turbulent viscosity,
turbulent magnetic diffusion, and turbulent magnetic
coefficients. The RNG procedure used here (see also
[13]) is slightly different from the “classic RNG method
(see, e.g., [14-20]). Indeed, the differences between these
approaches are as follows.
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(1) We study here the interaction between the large-
scale magnetic field and background MHD turbulence.
In contrast to the “classic” RNG method, spectrum and
statistical properties of the background turbulence (a
medium with zero-mean fields) are assumed to be given
here. Furthermore, the background turbulence can be ar-
bitrary. In the “classic” RNG method, on the other
hand, an external random stirring force with Gaussian
statistics is introduced (see, e.g., [19]).

(2) A small parameter in the RNG procedure applied
here is e=Wy/W;, where Wp is the energy density of
the mean magnetic field and W, is the energy density of
the hydrodynamic motions of the background turbulence.
On the other hand, the parameter of the nonlinear in-
teraction is assumed to be small in the “classic”” RNG
method.

(3) The RNG procedure employed here performs a
direct renormalization of the MHD equations, whereas in
the “classic”” RNG method the Green’s function is renor-
malized; the “classic” RNG method has mainly beer
used in the study of the Navier-Stokes equation.

A limitation of the RNG procedure used here is associ-
ated with the assumption that the background turbulence
is considered to be known. For the RNG procedure, an
equation invariant under the renormalization of the tur-
bulent transport coefficients must be determined. For
this purpose, the recent results [8] for a simple model
with the high-order closure procedure are used.

II. “EFFECTIVE” MAGNETIC PRESSURE

Let us consider fully developed MHD turbulence with
Re>>1 and R,, >>1, where Re=u,l; /v, is the Reynolds
number, R, =uyly/7, is the magnetic Reynolds num-
ber, I, is the maximal scale of turbulent motions, u, is
the characteristic turbulent velocity, v, is the kinematic
viscosity, 17,, =c2/4mo is the magnetic diffusion, ¢ is the
speed of light, and o is the electrical conductivity of the
fluid. The dissipation due to the molecular viscosities v,
and 1},, is intrinsic only in the region [ <, and /; <<1,.

Now we discuss the meaning of the “effective” magnet-
ic pressure (see also {7,8]). For isotropic turbulence the
equation of state is given by

Pp=1W, +1w, (1

(see, e.g., [21,22]). Here Py is the total (hydrodynamic
plus magnetic) turbulent pressure, W,, =(h?) /8 is the
energy density of the magnetic fluctuations, and
W, ={pu?) /2 is the energy density of the turbulent hy-
drodynamic motion where u and h are random pulsations
of the hydrodynamic and magnetic fields and p is the den-
sity of the conducting fluid. The angle brackets denote
averaging over the ensemble of turbulent pulsations.

The equation describing the evolution of the total ener-
gy density Wy=W,+W, of the homogeneous tur-
bulence with uniform mean magnetic field B is given by
(see Appendix A)

Wy Wy
a8 T’
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where 7 is the correlation time of the turbulence in the
scale /. The second term in (2), W /7, determines the
dissipation of the turbulent energy. For a given time-
independent source of the turbulence I, the solution of
Eq. (2) is given by

1—exp ‘——;—} l

where W;=W,(t=0). Note that a time-independent
source of the turbulence exists, for example, in the sun.
For t>>r the total energy density of the turbulence
reaches a stationary value Wy=const=Ip7. It is in-
dependent of the mean magnetic field B. Therefore the
total energy density Wy of the homogeneous turbulence
with uniform mean magnetic field is conserved (the dissi-
pation is compensated by the supply of energy), i.e.,

W, + W,, =const. 3
For a statistically homogeneous medium Eq. (3) is
equivalent to the conservation of the total turbulent ener-
gy. Note that the uniform large-scale magnetic field per-
forms no work on the turbulence. It can only redistribute
the energy between hydrodynamic pulsations (i.e., fluc-
tuations of the velocity) and magnetic fluctuations.

By combining Egs. (1) and (3), one can express the
change of turbulent pressure 8Py in terms of the change
of the magnetic energy density 8W,,: 8Ppr=—8W,, /3.
It thus follows that the turbulent pressure is reduced
when magnetic fluctuations are generated (i.e., 3W,, >0).

The total turbulent pressure is also decreased by the
“tangling” of the large-scale regular magnetic field B
with hydrodynamic pulsations (see, e.g., [1-4]). The reg-
ular magnetic field, “entangled” with the hydrodynamic
pulsations, generates supplementary small-scale magnetic
fluctuations. In this case the density of the magnetic en-
ergy W,, depends on W) and Wjy, where Wy =B?/8r is
the energy density of the large-scale magnetic field B.
For weak mean magnetic fields (Wp << W), expanding
the function W,, in a series in Wj, one obtains

2
W= WO+ a, (W) ot oo @

WT=ITT

+WTexp[—£ ] ,

where W,(,f” is the energy density of the magnetic fluctua-
tions in the absence of a large-scale magnetic field. This
expression yields the variation of the magnetic energy
8W,,. The sign of a, is determined by the direction of en-
ergy transfer. It is positive when magnetic fluctuations
are generated and negative when they are damped. In
view of Eq. (4) the turbulent pressure takes the form

Pyr=P{"'~a,B*/24r ,
where P{®) is the turbulent pressure in the absence of the
mean magnetic field.

The turbulent magnetic pressure P, as well as the tur-
bulent hydrodynamic pressure P, are given by

_ 1 <n*) | o B?
Py= 3 8 =Pt 87

=2 |Spu®) ©_, B’
P == =p_ -,

u 3 2 u qu 877'
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Here P!” is a component of pressure in a medium with

zero mean field. Generation of magnetic fluctuations at
the expense of the energy of the hydrodynamic pulsations
corresponds to g, >0 and g, >0. The total turbulent
pressure is Pp=P,+P,=P® —(q,—q,)B?/8x7, where
a,=3(g, —q;). The total pressure is P =P, +Pr+Pp,
where P is the usual gas dynamic pressure of the plasma
and P;=B?/87 is the magnetic pressure of the mean
field. . ,

Let us extract a component which depends on the
mean (regular) magnetic field B:

_ B? _ B2 _ _ B?
Pm(B)=Pg +(qh—qu)‘8;*(1+qh —qu)“sz‘=ng

from the total pressure P. Then
B? fer-

where p =P, +P{?. The pressure p,,(B) is called the
effective magnetic pressure. It follows that in the pres-
ence of developed MHD turbulence it is possible to re-
verse the sign of the effective magnetic pressure
Pn(B)=Q,B?/87 if Q, <0 (i, 1+g; <g,). Note that
both the hydrodynamic pulsations and the magnetic fluc-
tuations contribute to the mean effective magnetic pres-
sure. However, the gain in the turbulent magnetic pres-
sure P, is not as large as the reduction of the turbulent
hydrodynamic pressure P, by the mean magnetic field B,
due to the different coefficients of W,, and W, in the
equation of state (1). Therefore a negative contribution of
the MHD turbulence to the mean magnetic force can
arise.

We consider the case when p >>B?/8m, so the total
pressure P is always positive. Only the effective magnetic
pressure p,, (B) can be negative (when Q, <0) while the
pressure Py as well as the values p, P,, P,, and Py are
positive. T

Note that Q,=1-—a, /3. When mean magnetic field B
is superimposed on the isotropic turbulence, the isotropy
will break down. Nevertheless Eq. (5) will remain valid;
only the relationship between Q, and a, will change. In
the next section we shall obtain the expressions for Q,
and other turbulent coefficients. Note that we use the
conservation law for the total turbulent energy only to
demonstrate the principle of the effect, but we shall not
employ this law to develop the theory of this effect (see
Sec. III and Appendix B). '

III. THE RNG METHOD
AND TURBULENT TRANSPORT COEFFICIENTS

In this section we describe the properties of the
developed MHD turbulence located within the range
1; <1<, Here [, is the maximal scale of the turbulent
motions. In the very small scales <, the molecular dis-
sipation is important. The RNG method is employed
here for investigation of the MHD turbulence.
Numerous works on turbulence are confined to a study of
the large-scale properties of flows by averaging the equa-
tions over the ensemble of the turbulent pulsations (see,
e.g., 1,23,24]). This averaging is carried out over the pul-
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" sations of all scales of turbulence. Such approaches can-

not allow one to investigate the turbulent transport.

On the other hand, the averaging in the RNG method
is performed over the pulsations of scales from I, to [,
within the inertial range of turbulence [; </, <.
Therefore turbulent viscosity v, turbulent magnetic
diffusion 7, and turbulent magnetic coefficients Q,, Q,
depend on the scale of the averaging /,. The next stage
of the RNG method comprises a step-by-step increase of
the scale of the averaging. This procedure allows the
derivation of equations for the turbulent transport
coefficients. For the RNG method an equation invariant
under the renormalization of the turbulent transport
coefficients must be determined.

Perform the first step of the RNG procedure, i.e., we
average MHD equations over the pulsations of the scales

“from I, to I,. The averaged equations for velocity v and

magnetic field H are given by

v - iz &
p‘at +(vV)v]—— Vir+Q, Py +41T(HV)H
+pvAv+pf , {6)
oH _
v—VX(VXH—nVXH-i-cE) ) (7)

where V-v=0, pf is the external force, and E is the exter-
nal electric field. The turbulent coeflicients v, 1, @, and
Q, depend on the scale of averaging /... If I, tends to the
dissipation scale /;, the functions v and 7 approach the
molecular magnitudes v, 7,, and the magnetic
coefficients @, and Q; tend to 1.

The form of Eq. (6) is chosen according to the recent
results [8] obtained with the aid of a simple model for the
high-order closure procedure. We will show that this

_equation is invariant under the renormalization of the

turbulent transport coefficients. For simplicity nonhelical
turbulence is considered. So the term VX(aH) is
dropped in Eq. (7), where « is the helicity of turbulence
(see, e.g., [1-4].

After this average, the range />[,_ corresponds to
“mean” fields, whereas the turbulent pulsations are in the
range [ <I,. Note that usually in a theory of turbulence
the space-time scales of mean fields are larger than the
main scales of the turbulence. However, in real condi-
tions such separation of the scales is usually done by con-
vention. For example, such requirements are violated in
many experiments with turbulence. The influence of the
fluctuations on the “mean” fields is described by the tur-
bulent coefficients v, 7, Qp, and Q..

Let us change the scale of the averaging on a small
value |Ak|<<k,, where the wave number k,=I;l.
After that we carry reaveraged Eqgs. (6) and (7) over the
turbulent pulsations. Now in the region k <k, —|Ak|
the fields V and B are mean ones, while the region
k >k, —|Ak| corresponds to the turbulent fields (see Fig.
1). Here k is the wave vector. Since Egs. (6) and (7) have
been already averaged over the pulsations of the scales
that are smaller than /,, it is sufficient to average these
equations over pulsations of the velocity u and the mag-
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FIG. 1. The procedure of scales elimination and reaveraging.

netic field h located in the small region
k*-—|Ak]<|k]<k*. Here v=V+u, H=B+h,
V={v), B=(H), and the angle brackets denote averag-
ing over the ensemble of turbulent pulsations in the
domain k, —|Ak| < |k| <k,. Then the equations for the
“mean” fields V and B are given by

37,
——+(V-V)V;

J B?
+ ax; {p+QP 87 ]

P17 j

Qs _ 0

477_(B V)B;—pvAV;,—pf;= ax, 8oy, (8
3B _
-a—t—VX(VXB—nVXB+cE)—V><(uxh) , )

where V-V =0, the generalized Maxwell-stress tensor (in-
cluding the Reynolds turbulent-stress tensor) is
2

boy=—0, <;:T_> 5ij+f_;(h,-hj)—p(u,-uj) , (10
8 is the Kronecker delta. The equations for “mean”
fields contain the second moments for the turbulent fields.
To obtain a closed system of equations it is important to
find the dependence of the second moments {h;h ; Y,
{u;u;), and (h;u;) on the “mean” fields. For this pur-
pose we shall perform the following procedure.

(1) We shall derive equations for the turbulent fields
u=v—V and h=H—B. Here we shall change to a frame
moving with a local velocity of the “mean” flows V.

(2) We shall introduce a background MHD turbulence.
It is the turbulence without the mean fields (V=0 and
B=0). For simplicity the background turbulence is as-
sumed to be homogeneous and isotropic. The solutions
u'? and h® correspond to the background MHD tur-
bulence. The goal of the present paper is the investiga-
tion of a shift from the background turbulence level due
to the presence of the mean fields.

(3) We shall derive equations for the fields u''’=u—u‘®
and h'V'=h—h!®, These equations describe the shift
from the background turbulence level due to the presence
of the mean fields.

(4) We shall solve the integro-differential equations for
the fields u'? and h'" by means of a method of iterations.
We consider here the effects that are quadratic in terms
of the mean magnetic field B and are linear in the spatial
derivatives of the mean fields V and B. Note that the
small parameter in the RNG procedure is e=Wg /W,
where Wy =B2/8m is the energy density of the mean

magnetic field, I, is the energy density of the hydro-
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dynamic motions of the background turbulence.

(5) We shall calculate the second moments for the tur-
bulent fields in order to find the generalized Maxwell-
stress tensor and the effective electric field:

50i]=50gg)—§—;(2(h,§1)h;°’>+<h,§”h,§”>)8,.j

Qs

-+ —

4

—puMu®) +(uPu)y +(uMufDY)y, ()
8E=(uXxh)

=<u(1)xh(l))+<u(0)xh(l)>+<u(l)xh(l)> , (12)

((h,-‘”h}‘”)-i—(h,-‘o)h}”)-i-(h}”h}”))

where 859

ij is the Maxwell-stress tensor for the back-
ground turbulence. Note that for the nonhelical tur-
bulence (u@Xh)=0.

Substitution of (11) and (12) into Egs. (8) and (9) yields
the equations for the mean fields. The described pro-
cedure enables us to derive equations for the transport
coefficients: turbulent viscosity v, turbulent magnetic
diffusion 7, and turbulent magnetic coefficients Q,, Q.
The details of the calculations are presented in Appendix
B. The result is given by

dv 7 SQS
&y - : + = K|, 3
T T | o) 14ﬂ_meM0() (13)
P
L . . N— AT (14)
dk 3vkX(1+P,,) olk)
do,  PL(3+P,)
a2 15v2k2(1+P,,
X | Wolk)— Q | 1+3P, M(k) (15)
0 4mp | 3+P, | ° ’
d dQ, P,
% =4 2, 1 )
dk dk 3vkX1+P,)
Q, Myk)
X | Wylk) 2w (4P |- (16)

Here P,,(k)=v(k)/n(k) is the effective magnetic Prandtl
number. The functions W, and M are the hydrodynamic
and magnetic energy spectra of the background tur-
bulence:

_ up | [k |
Wolk)=(By—1) —E; 7(:] )
hg | & | 7Pm
My(k)=(B,—1) [7(:] %, ’

where h is the characteristic value of the turbulent mag-
netic field and k,, =1, '~V R,,k, is determined by the
main scale of the magnetic fluctuations I,, and ko=1I5"
(see, e.g., [6]). For example, for the Kolmogorov spec-
trum of hydrodynamic pulsations B,=5/3, while the

Kraichnan spectrum of the magnetic fluctuations corre-
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sponds to B,, =3/2 (see, e.g., [1,4]). Equations (13)—(16)
satisfy the boundary conditions

Qs(k =kd)=Qp(k =kd)=1 , vk =kd)=’V0 ,
ﬂ(k—_—kd):nm L .

where k, =11,

Let us make a comment. For the sake of simplicity the
background turbulence is assumed to be homogeneous
and isotropic. The background turbulence, by definition,
is the turbulence without the mean fields. Application of
the mean magnetic field B upsets the isotropy of the tur-
bulence. We consider the case e= Wy /W, <<1. There-
fore the anisotropy of the turbulence is very weak (~¢).
This means that the eddy viscosity v and 7 can be regard-
ed as scalars if we ignore small corrections ~O(g). Asto
the turbulent magnetic coefficients @, and Q;, the contri-
bution of the turbulence to the mean magnetic force is at
least of the order of B2/8w (i.e., of the same order of
magnitude of the mean magnetic force). Therefore, by
contrast to v and 7, the mean magnetic force is strongly
modified in spite of small parameter e. We also for sim-
plicity consider a nonhelical turbulence: {v-(VXv))=0
and (h-(VXh))=0. In this case the mean magnetic field
B is not generated and assumed to be given. It is done to
reveal the pure effect of the reduction in the elasticity of
the mean magnetic field by turbulence and to make the
calculations more transparent for the reader.

Note that a state in which

Qs | 1+3P,

Wo(k)=—4—ﬂ; m;- My(k) (17)

is special [see Eq. (15)]. In this case
Q,(k)=const ,

fk W k)P, (5+3P, NP, —1)
kg vk )H1+P,)X1+3P,)

Q,(k)=exp

>0.

This means that the effective magnetic pressure in this
case is positive. Equation (17) can correspond to the
effective energy equipartition. It is different from the reg-
ular equipartition state: : :

My(k)
4mp

(see [1-4]). Comparison of Egs. (17) and (18) shows that
the level of the magnetic fluctuations can exceed that ob-
tained from the usual equipartition assumption (18) if
Q,<land P, <1.

The system of Egs. (13)-(16) is nonlinear. In general,
it can be studied numerically for a given spectrum of the
background turbulence. This system can be simplified if
W,y >>M,. It corresponds to a weak level of the magnet-
ic fluctuations in the background turbulence. Note that
in this case there is a generation of the magnetic fluctua-
tions by the “tangling” of the large-scale mean magnetic
field with the hydrodynamic pulsations (see [1-4]). The
system of Eqgs. (13)~(16) for this model of the background

Wolk)= e e (18)
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turbulence is reduced to

dv _ 7 _
de  20v (19)

P
dn__ "m _ |
de  Vv(1+P,)’ @0
dQ, P2(3+P,)

=—Q -2 ___7_ . - 21
dx 2 5v¥(1+P,, )? @
aQ,  dQ; P,
dx Y & v(1+P,) "’ @2
where

Wo uy [k | 7P
k=— [ —>dk=—0 |

3k? 3kc2, ko

The equation for the magnetic Prandtl number is derived
from (19) and (20). It is given by
dpP,, P, (Pn,—a )P, +a,)

dk vA(1+P,)

23)

Here @;~0.79 and —a,~ —0.44 are the roots of the
quadratic equation 20y2—7y —7=0. The dependence of
the turbulent viscosity v on « determined from (19) is
given by

Vk)=vi+ Lk(k)—K4] , (24)

where k;=«(k ~k;). It follows from Eq. (23) that there
is a special case when the magnetic Prandtl number is
constant in all scales of the MHD turbulence. It is for
P, (k)=Pim=g,~0.79. This value corresponds to the
fixed point of Eq. (23). A one-parametric set of solutions
of Egs. (19)-(23) for the turbulent transport coefficients is
shown in Fig. 2 at P;=0.1, where P;=v,/7,,. These
turbulent coefficients depend only on the magnetic
Prandtl number P,,. Analytical expressions for these tur-
bulent coefficients are unwieldy and are presented in Ap-
pendix B [see Eqs. (B31)-(B33)].

The turbulent coefficients at k =1 describe the large-
scale transport coefficients due to the presence of the
MHD turbulence. These coefficients determine a contri-
bution of the MHD turbulence to the large-scale effects.
It is seen in Fig. 2 that when P, >0.15 the value @, is
negative.

The large-scale effects, such as the eddy viscosity v,
turbulent magnetic diffusion 7, and helicity o have been
considered earlier [13,18,25] by means of the RNG
method. Indeed, the equations for 7 and a have been de-
rived in [13], while the equations for v for hydrodynamic
turbulence have been obtained by [18]. In the case
W, >>M, the equations for 1 and v coincide with that
obtained in the present paper [compare Eq. (11.24) in [13]
with Eq. (B28) in Appendix B of our paper, and Eq. (2.21)
in [18] with Eq. (13) in our paper; for comparison we take
into account that the spectrum of the hydrodynamic pul-
sations W,=2E (k), see [13], and also we express the
spectrum of stirring force, see [18], in terms of the spec-
trum of the hydrodynamic pulsations W, of the back-

———————-———————
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FIG. 2. The dependence of the turbulent viscosity v, the tur-
bulent magnetic diffusion 7, and the turbulent magnetic
coefficients Q, and Q; on the magnetic Prandtl number P,, at
P d =0.1.

ground turbulence]. Note that the correlation function
(ul99) for the background turbulence is chosen in
[25] to be homogeneous and isotropic in the laboratory
frame. Actually, by definition the background turbulence
is the turbulence without the mean flows. Therefore the
background turbulence can be homogeneous and isotro-
pic only in the frame moving with a local mean flow V,
while the correlation function {94 {”’) in the laborato-
ry frame is anisotropic [13]. Therefore Eqgs. (13) and (14)
for v and 7 (see also the corresponding equations in
[13,18]) are different from that derived in [25].

The effects considered in [13,18,25] are linear in terms
of the mean magnetic field B. This means that the mag-
netic force in this approximation is not renormalized, i.e.,
0,=Q;=1. On the other hand, the nonlinear effects in
terms of the mean magnetic field are studied in this sec-
tion.

It follows from the results of this section that in the
turbulence with mean magnetic field a universal spectrum
of magnetic fluctuations exists. Let us discuss this ques-
tion in more detail. These magnetic fluctuations are ex-
cited by the “tangling” of the mean magnetic field by hy-
drodynamic pulsations (see, e.g., [1-4]). We study the
case of £<<1 so that the energy of the mean magnetic
field is much less than the energy of the hydrodynamic
pulsations. This mechanism is different from that of gen-
eration of magnetic fluctuations with zero-mean magnetic
field. The mechanism of excitation of the magnetic fluc-

tuations with zero-mean magnetic field was proposed by
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Zeldovich (see, e.g., [6,26], and references therein): an
original loop of magnetic field is stretched, twisted, and
then folded. These nontrivial motions are three dimen-
sional and result in an amplification of the magnetic fluc-
tuations. These fluctuations correspond to that of the
background turbulence with the magnetic energy M,.

Nonlinear theory of the magnetic fluctuations with zero-

mean magnetic field was considered by [27,28].
Now let us obtain the spectrum of the magnetic fluc-
tuations with large-scale mean magnetic field B. The

) equatlon for the turbulent magnetlc field h is glven by

dh
SFT
In Eq. (25) we take into account the terms that are re-
sponsible for the generation of the magnetic fluctuations
by the “tangling” of the me.an magnetic field B with hy-
drodynamic pulsations u'®. We consider the turbulence
with uniform mean fields. The nonlinear terms in Eq.

=(B-V)u”+qAh . (25)

~(25) are taken into account by means of the renormalized

turbulent magnetic diffusion 7 [see Appendix B after Eq.
(B6)]. Now we rewrite Eq. (25) in a Fourier representa-
tion and calculate the second moment (hmh,, Y,

(hp(B)h, (k")) =—(k-B)K'-B)G,G,
X {ulOF k), (26)
where
k= Z , Gp=[—in+pkIk*]™",

Gp=[—io +Bkk?]"",

B=wv,7n. Recall that here k >>I°_1, so that (k-B) is not
equal to zero. For the homogeneous and isotropic back-
ground turbulence

. Wo(KT(k,0) ko k,
Gy =—— S
x8(k+k", X))

where the frequency component of the spectrum T (k,w)
is given by [see Appendix B after Eq. (B30)]

v(k)k?
T

v(k)k?
T

1 ==
o +vikt
Substitute Eq. (27) into Eq. (26), integrate over w space

and over the angles in k space, and use Eq. (24). The
equation for the trace of the resultant tensor is given by

2

T(k,w)= G,G* .

M(k)=<h2(k)>———(ﬁo—1) k~'B2.  (28)

1+P

Here we consider the wave number k <<k,;. Solution of
Eq. (23) allows us to describe asymptotical behavior of
the magnetic Prandtl number P, for large Reynolds
number Re(k)=v(k)/v,>>1. For instance, for P, <<1
we obtain [see Eq. (B31)]

P, ~a;~0.68R,. (k) , 29)
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where R,,(k)=Re(k)P, >>1. This means that in most of
the inertial range [where R, (k)=n(k)/q,, >>1] the
magnetic Prandtl number P,, tends to the ultimate value
of Plm~(Q.79. Therefore in this case the magnetic
Prandtl number P,, is independent of k.

Thus Eq. (28) describes the spectrum of the magnetic
fluctuations M (k) in the presence of the mean magnetic
field B. Note that the magnetic spectrum is independent
of the exponent of the spectrum of the turbulent velocity
field. In that sense the k™! spectrum of the magnetic
fluctuations with mean magnetic field B is universal.
This result is valid only for the case € << 1.

The k ~! spectrum of the magnetic fluctuations was ob-

served in the interplanetary magnetic field at 1 A.U. in
the region of the solar wind (see [29,30]). This spectrum
seems to exist in the galactic disk (see, e.g., [31], and
references therein). In the first the k ™! spectrum of the
magnetic fluctuations was obtained by means of the di-
mensional analysis in [32] (see also [31]). Indeed, com-
parison of the terms

[(B-V)u|~n|Ah]

in Eq. (25) yields the spectrum of the magnetic fluctua-
tions:

BZ
M) ~Z-k W (k) (30)
n

where W (k)=~k ~'u*(k) is the spectrum of the kinetic
energy of MHD turbulence and M (k)~k ~'h%(k) is the
spectrum of the magnetic energy. Now we take into ac-
count that the turbulent magnetic diffusion n~u (k)/k.
Therefore Eq. (30) is reduced to

M(k)~k~1B? ‘ : (31)

(see [32,31]). )

The spectrum (31) of the magnetic fluctuations in the
presence of the hydrodynamic pulsations with the Kol-
mogorov spectrum <k "33 was found also in [8] by
means of the high-order closure problem. [Indeed, the
trace of the tensor f;; described by Eq. (3.9) in [8] yields
the k ~! spectrum.] Direct three-dimensional numerical
simulations [33,34] of the magnetic dynamo in hydro-
dynamic convection also reveal this spectrum of the mag-
netic fluctuation in the presence of the generated mean
magnetic field.

IV. LARGE-SCALE EFFECTS
AND ENERGY CONSERVATION LAW

In this section large-scale effects in the presence of the
developed small-scale MHD turbulence are considered.
A general diagram of the energetic processes described
here is shown in Fig. 3. In the very small scales / </, the
molecular and atomic effects are important. The input of
energy into the region is from an external thermal source
I. The region I; <l <l, corresponds to the MHD tur-
bulence maintained by an external source I;. The large-
scale effects are significant for / > L,. The energy of the
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FIG. 3. A general diagram of the energetic processes.

large-scale hydrodynamic flow and magnetic field is dissi-
pated into both the MHD turbulence and the molecular
motions. The first dissipation process is described by tur-
bulent viscosity vy=v(k =1) and turbulent magnetic
diffusion n=(k =1), while the second is governed by
the molecular viscosity v, and the molecular magnetic
diffusion 7,,. Generation of the magnetic fluctuations in
the MHD turbulence results in a decrease of both the
effective magnetic pressure and magnetic tension. The
influence of MHD turbulence on the large-scale magnetic
force can be described by the turbulent magnetic
coefficients Q,=Q,(k=1) and Q,=Q,(k=1). The
equations for the large-scale fields (see also [10]) are given
by

%t"_=_v [p+%32 +%(B-V)B+Fd+Fext ,
(32)

L —yX(VXB)+70AB , (33)
%1%+v-(pV)=o , (34)
pT %—f+(v-v>s =1+D,,,+-”;—T—v-<1>, (35)

where V and B are the velocity and magnetic field, re-
spectively, S =In{pp~7)/y is the entropy, ¥ is the ratio
of the specific heats, F,,, is the external force (for exam-
ple, the gravitational force F,,,=pg, g is the free-fall ac-
celeration), F, is the dissipation force due to the molecu-
lar v, and turbulent v viscosities, 7,="1,, +7r is the to-
tal magnetic diffusion, I is the external source of the
thermal energy, W is the density of the total energy of
the MHD turbulence, 7 is the characteristic time of the
dissipation of the turbulent energy into the thermal one,
D,, is the density of the power released due to the molec-
ular dissipation, and ® is the total thermal flow. The
turbulent diamagnetism and the a effect are not included
in Eq. (33) (see, e.g., [1-4]).

Consider now the energy conservation law. We multi-
ply Eq. (32) by the velocity V, Eq. (33) by (Q, /47)B, Eq.
(34) by ¥2/2, and add them. The result is given by




50 EFFECTIVE AMPERE FORCE IN DEVELOPED . .. 2723
3 |pV?:, . B2 oV |, @ 0,2
=~ -+ —V7. _ =5 xp =S5 2
EY ) Q,— Y. ] V-|Vip+ 2 -+ - BX(VXB)+ Y. ——VB
Q, _Qs )
+(Fy'V)—D,, —Dr+ p+TB v-v, (36)

where Dy is the density of the power released due to the
turbulent viscosity and the turbulent magnetic diffusion.
Equation (36) is the conservation law of the energy of the
large-scale flow and magnetic field pV?/2+Q,B? /8.

On the other hand, the conservation law of the total
energy after taking into account the MHD turbulence
has the following form:

z?z TLaa Qs +pE — Vg (B V) I+,

(37)

where e=U + Wy /p is the total internal energy. The to-
tal energy flux q is given by

o

q=pV +Z7—T—BX(VXB)

.o .p
2-i-e+

2,—9
+V =

An expression for the internal energy can be obtained
from the first principle of thermodynamics,

B%2+® .

Py
dU=TdS +—dp . (38)
P

Using Eqs. (34), (35), and (38) we get the following energy
equation:

D )=1+2T4p —pVV. (39)
ot T m

Subtracting Eqs. (36) and (39) from Eq. (37) yields the
conservation law of the turbulent energy Wr,

8 Wr
3 Wr=—V W) +Dp == -

P‘°>+Q 8 —9 B2 [(V-V). (40)

In the case of a homogeneous turbulence with uniform
large-scale fields Eq. (40) is in agreement with Eq. (2), ob-
tained from the equations for the turbulent fields in a
frame moving with a local velocity of mean flow V (see
Appendix A).

If Q,7Q, the MHD turbulence produces additional
work. It is converted into the energy of the large-scale
flow and magnetic field even in the absence of dissipation
[see last term in Eq. (36)]. The terms Dy, Iy, and Wy /7
describe the sources and dissipation of the turbulence.
The large-scale processes in view of the conservation laws
can be considered as an “open” system. In addition to

two dissipation channels Dy and D,, there is an addition-

al energetic channel described by the magnetic turbulent
coefficients Q, and Q;. This channel exists without dissi-
pation.

V. DISCUSSION

In the present paper the interaction of the large-scale
uniform magnetic field with developed background MHD
turbulence is considered. This interaction results in
modification of the mean Ampere force by the turbulence
at large magnetic Reynolds numbers. It is found that the
effective mean magnetic pressure is significantly reduced
due to negative contribution of the MHD turbulence to
the mean magnetic force. Under certain conditions the
effective magnetic pressure can change sign. This effect is
nonlinear in terms of the mean magnetic field.

The equations for the turbulent transport coefficients,
turbulent viscosity, turbulent magnetic diffusion, and tur-
bulent magnetic coefficients @, and Q; are derived by
means of the RNG method. The turbulent magnetic
coefficients determine the influence of the MHD tur-
bulence on the mean magnetic force. It is shown that in
the turbulence with mean magnetic field there is the
universal k! spectrum of magnetic fluctuations; this
spectrum is independent of the exponent of the spectrum
of the turbulent velocity field.

The effect of the negative magnetic pressure
Pm=Q,B*/(87) should not be confused with the lower-
ing of magnetic pressure by turbulent diamagnetism (see
[36,37]). Recall that the nature of turbulent diamag-
netism also differs significantly from diamagnetism in
classical electrodynamics. The former is a kinematic
effect that removes the magnetic field from a region of in-
tense turbulent pulsations. The total magnetic energy
does not depend here explicitly on the magnetic permea-
bility. It follows that turbulent diamagnetism, in contrast
to the “classical” case, does not modify the Ampere
force. When a magnetic field is taken out of a turbulent
region its strength is reduced, and the magnetic pressure
P,,=B?/(8m) decreases in this region. The sign of the
magnetic pressure, however, remains positive here. In
contrast to turbulent diamagnetism, the reversal of the
sign of the magnetic pressure is a dynamic effect. In this
case the structure of the Ampere force is explicitly al-
tered. Note also that this effect can amplify the magnetic
field in a turbulent region.

Since the effective magnetic pressure p,, may become
negative, a magnetic instability can be excited [7-10].
This leads to the formation of inhomogeneities of the
large-scale regular magnetic field. Taking these effects
into account one can describe the initial phase of sunspot
formatijon in the solar convective zone and explain the

origin of the magnetic flux tubes in stars and spiral galax-
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ies (see, e.g., [35,38,7-9]). The phenomenon gives rise to
the energy source for short-period (units of tens of
minutes) solar oscillations and it explains 11-year oscilla-
tions of the solar radius (see, e.g., [35,39,40,10,11]). De-
crease of the elasticity of the large-scale magnetic field
(0<Q, <1) affects the fine structure of the observed solar
torsional oscillations and the solar meridional motions
(see, e.g., [41,12]).
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APPENDIX A: EVOLUTIONARY EQUATION
FOR THE TOTAL TURBULENT ENERGY DENSITY

Let us derive Eq. (2). The velocity v(r,t) and the mag-
petic field H(r,t) in the turbulent medium can be
represented in the form v=V+u and H=B-+h, where
V={v), B={H). The pulsations of the density are as-
sumed to be weak. The momentum equation and the in-
duction equation for the turbulent fields u and h in a
frame moving with a local velocity of the large-scale
flows V are given by

ou

—a;--—“(llV)V_ p 47TP
F,+F,
T+ T A
P
%—lt‘=V><(uxB—anXh)+(h-V)V-—h(V~V)+G ;
(A2)
V-u=0, (A3)

where P, is the pulsations of the hydrodynamic pressure,
F, is the viscous force, F, is a random external force, and
T and G are terms nonlinear in the pulsations and de-
scribe the energy transport over the spectrum of MHD
turbulence )

{hX{VXh))—hX(VXh)

T={((u-V)u)—(u-V)u+t+
47p

G=VX(uXh—{uXh)).

The pulsations are concentrated in small scales. So the
derivatives of the large-scale fields are small in compar-
ison with the derivatives of the turbulent fields. Now let
us derive equations describing the evolution of the second
moments. For this purpose we rewrite the MHD equa-
tions (A1)—(A3) in a Fourier representation and repeat
twice the vector multiplication of Eq. (A1) by the wave
vector k. The result is given by

du,,(k,t) ;(k-B _
7 ='l(‘i""T;)—)'hm(k,t)-—Tm(k,t)~v0k2um(k,t),

(A4)

VP, hX(VXB)+BX(VXh)
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dh,, (k1) ,
=i (kB (k)= G (k) =k (1)

(A5)

where T=kX(kXT)/k2 Recall that here k >[5, so
that (k-B) is not equal to zero. Let us introduce the
second moments and consider quasihomogeneous tur-
bulence. In this case, for example, dependence of the
second moment f,,,(r,R,t)={u,(x,t)u,(y,t)) on
R=(x+y)/2 is not as strong as on r=x—y. This means
that

Fon k)=, (k,t)u,(—k,2)) ,

Bon (k1) =Ch,, (K, )1, (—Kk,1)) .
Let us multiply Eqs. (A4) for u,,(k,) by u,(—k,t) and
Egs. (A4) written for u,(—k,t) by u,(k,z), add them,
and average over the ensemble of turbulent pulsations.
We use the same procedure for other correlation func-

tions. It results in the equations describing the evolution
of the second moments (see [8]):

Afmn _ i(k-B)d,,,

7 r + Ay —2Vok 2 frun + Frnn » (A6)
dh""'==i(k-B)¢ +R,,—2n,k*h,, , (A7)
dt me s me THm e
g%=i(k-B) fmn—::; +Cp — Vot 0 e -
(A8)
Here

D (K1) =X pun (K, 1) — X (— K, 8)
Xon (Ko )= h,, (k,)u,, (—Kk,1)) ,
F,(k,t)=(F,(k,t)u,(—k,t))
+{u,, (k,0)F,(—k,1)) ,
_ kX[kXF,(k,1)]

F(k,t)=——"——.
F(k,1) pEn

_ The third moment is given by

A (&, 1)={T,, (k,t)u,(—k,1))
+{u,, (k, )T, (~k,2)) .

The expressions for the remaining moments R,,,, and C,,,,,
are similar.

We consider MHD turbulence with a uniform large-
scale magnetic field. Let us multiply Eqs. (A6) and (A7)
by p/2 and (87)”!, respectively, and add them. The
equation for the trace of the resultant tensor is given by

d [ptury vy ] _ _
7 5 + 8 |, L(k)+Ip(k)—D(k), (A9)

where Ip(k)=pF,, /2 is the spectral density of the
power of the external source maintaining the turbulence,
and
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2 2
—op? |y 280 )+ (h?)
D{k)=2k" |vo=— T g |,
_PAmm | Rum
L(k)= > + o

Note that the terms containing the large-scale regular
magnetic field B are eliminated from Eq. (A9). This
reflects the fact that the uniform large-scale magnetic
field performs no work on the turbulence. It can only
redistribute the energy between hydrodynamic pulsations
and magnetic fluctuations.

We change over to coordinate space in Eq. (A9). Cal-
culations similar to those described in [42] yield

[Ldk=-v(®,)=0,

where ®, =upu?/2-+hX(uXh)/4m is the energy flux of
magnetic fields and flows in the homogeneous turbulence.
In coordinate space Eq. (A9) is reduced to

Wy Wy

(A0
ot L (A10)

where the total energy density is Wy=W,+W,, and 7 is
the correlation time of the turbulence in the scale /,. The
second term in (A10), W /7, determines the dissipation
of the turbulent energy. This form of the dissipation re-
sults from the condition that the energy flows be constant
over the spectrum. Note that Eq. (A10) is in agreement
with Eq. (40).

APPENDIX B: EQUATIONS FOR THE TURBULENT
TRANSPORT COEFFICIENTS

Let us derive equations for the turbulent fields. Sub-
tract Eq. (8) from Eq. (6) and Eq. (9) from Eq. (7), respec-
tively, change to a frame moving with a local velocity of
the “mean” flows V, and transform to the k and Q
spaces. The result is given by

5

47p

uy () + 2Py Gy | N0 50) ~ =N,y (3 )

=G f;—iG, |Bypn L (V312)
_2

4mp ’ (B1)

PiyuLmn(B;h)

hf(E)_iSjmnGnNmn(u sh)
=G, &; TG ;[ S Limn V3B Sjpun L (4 3B)] 5
(B2)

where
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Lpn(a;b)= [ a,(@b,(k—2)dg ,
N,.la;b)=L,,(a;b)—(L,,la;b)),
me"=Ajmkn+Ajnkm ’ ijn=Ajmkn ’

kK
L =8, — ,
jm Jm k2

"2

Simn =8jmkn =8 km =8k, —Apk,,
Simn=8jmky »
g;=ic[kXE(K)]; , Gg=(—io+pk)™".

Here B=w, 7, and the symbol Z denotes a four-vector, i.e.,

k

(4]

f=

The total pressure can be excluded from the equation of
motion by taking the “curl” of this equation. So we re-
peat twice the vector multiplication of Egs. (6) and (8)
written in k and Q spaces by k.

The equations V-u=V-h=0 yield

PipnLn (Vi) =8, [0, (K ~0)Q,V,,(0)d0 ,
SimnLon (Vi) =8, [ h,(£—0)0,V,,(0)dD .

This means that only the derivatives of the “large-scale”
velocity V enter in Egs. (B1) and (B2). Thus uniform
“mean” flows do not affect the dynamics of the tur-
bulence. The latter is a consequence of the Galilean in-
variance. On the other hand, the uniform magnetic fields
B.change properties of the MHD turbulence. This is a
reason for the difference between homogeneous flows V
and uniform magnetic fields B. The latter cannot be
eliminated from the MHD equations.

Let us introduce a background MHD turbulence. It is
the turbulence without the regular large-scale fields
(V=0 and B=0). The solutions u'® and h'”’ correspond
to the background MHD turbulence. The background
MHD turbulence is determined by the equations

i

u{O(k)+ 5 Pimn G N (@0 @)
Qs (0).,(0)y | =
g N B | =G fy, BY)
hOE) =Sy Gy N (V38O =G ¢ (B4)

[see Egs. (B1) and (B2)].

The momentum equation (B1) is different from that
usually used in the RNG method (see, e.g., [18,19]). The
“mean” fields in Egs. (B1) and (B2) are explicitly separat-
ed from the turbulent fields. In addition the equations
are written in a frame moving with a local “mean” flow.
The correlation functions of the background turbulence
have the most simple form (for example, they are homo-
geneous and isotropic) only in this frame, while these
correlations in the laboratory frame are anisotropic [13].

The equations for the fields u'’=u—u'” and

h'"'=h—h'? are obtained from (B1) and (B2):
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(1)(]‘3)+_P Gv[Nmn(u(O);u(1))+Nmn(u(”;u(0))+Nmn(u“)§u“))]

2 jmn

o

+iG, |P,,,- ,,,,,(Vu“”)——

h{K) =S, G, [

jmn

an[ imn L

These equations describe the shift from the background
turbulence level due to the presence of the mean fields.

Let us estimate the nonlinear terms in Eqs. (B1)-(B6)
determined by the functionals N,,,(a;b). The domain of
integration in q space is very small. Indeed, extreme
points of the vectors q, k—q, and k fall within a thin
spherical shell of the thickness |Ak| [see Fig. 4(a)] due to
the turbulent pulsations. Thus, for example,

B N (450 = |y, [ 2@ )R~ )iy
<k, U, [uPuld0
=mk2 (AP [ uPuldQ .

=k ,(Ak)? is the volume of the domain of in-
tegration [see Fig. 4(a)], u(,,”=u”)(k=k*). The other
functionals N,,,(a;b) containing the magnetic field h and
velocity u are estlmated similarly. They are proportional
to (Ak )%

Now we find the linear terms in Egs. (B1)-(B6) related
to the “mean” fields V and B. An equation of the surface
which determines the domain of mtegratlon for the func-
tionals L,,,,,(V b)and L,,,(B;b) is given by k2 =(k—q)>.
Because |k|= k., the equation of this surface reduces to
lq]=2k, cosf, where  is the angle between k and q.
The volume of the domain of integration is
Uy=nk2|Ak| [see Fig. 4(b)]. So the terms L,,,(V;u),
L,,(B;h), L,,(V;h), and L, (u;B) in Egs. (B1)-(B6)
are of order |Ak|. This means that the functionals
No.(a;b)~|Ak[?> can be dropped out for small
|Ak| <<k, where k, >k,. However, it does not mean
that the nonlinear terms are dropped out in all k space.
At the first step of the RNG method the MHD equations

Here U,

FIG. 4. Domain of integration in k space for the functionals
N,, (@and L,, (b).

po ~——Pjypp L (B3 1)

Nm,,(u(m;h(”)-FN (ufl).h(O))+N (u(l);h(l))]

Q (1)
ijann(V;u arr mp jmn mn(B;h ! ) (BS)
mn (V3B OVt S Ly (43 B) =16 [Snn L (V3B D)+ Lo (V5 BY] . (BE)

are averaged up to the scale k,!. Therefore the non-
linear terms contribute to the turbulent transport
coefficients v, 7, Q,,, and Q, in all scales except for only a
very small region of the spectrum: k, —|Ak| < |k|<k,.
The equations for the fields u{*(k) ) and h{UE) of the
background MHD turbulence are reduced to

ufk)=G,f;, hK)=G,e; .

The background MHD turbulence is assumed to be
given. The problem of an origin of the effective external
forces is not considered here. The goal of this paper is a
study of the shift from the background turbulence level
due to the presence of the regular large-scale fields. It is
important for the investigation of the interaction of the
mean magnetic field with the small-scale MHD tur-
bulence.

In order to derive the equations for the turbulent
coefficients v, 1, Q,, and Q, we have to find the depen-
dence of the second moments {h;k;}, (uu;}, and
(h; u; ) on the large-scale fields V and B. Let us conSIder,
for example, the correlation function { u;u; i Y

(,R)uy 9= [ Cu(Bu k)

Xexpi(k,2 +k,9)dk,dk,
=fFij(£,?)exp(ikﬁ)dﬁ R

where
Fy(R?)= [(uB+R /2)u;( =k +R /2)) exp(ikp)dk ,
ﬁ"‘% ¥, ?P=2-9, k=7€1+7‘\2:

£=§u€l—£2>, 2

X
—t, 3

R and R correspond to the large scales, and ? and & to
the small ones (see, for example, [43]). The other second
moments have the same form. These correlation func-
tions are calculated at #=0 and ¢, =1,.

At first we have to solve the system of the equations

(B5) and (B6) Let us consider here the effects that are

B quadratlc in terms of the mean magnetic field B and are

linear in the spatial derivatives of the mean fields V and
B. We use the method of iterations. The first iteration
corresponds to the solution of Egs. (B5) and (B6) when
the right parts of these equations equal zero. These solu-
tions are
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—iG,

uf(k)= Pjopn Ly (V50

s

- pP,m,,L,,,n(B;h“”)] ,  (B))

Q

(0)
(k) =iG, flk—klg-— 7,(Qu
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R =iG 1S, pp Ly (V38 )48, L (@ B,
(B8)

Note that the terms N,,(a;b)~(Ak)? are dropped.
These solutions in the explicit form are given by

(0)
B(Qh(m) k_ﬂh__ e

—ﬂ(k B)[—iQ+2v(k-K)]A O+ (k,-B)a® | |dD
) . '[ 1 v(k- )]j 1° )j Q’ (Bg)

hE)~iG, [

where £, =k+R /2, the background fields 4 and A©@
depend on 73 Q, and the large-scale fields V and B de-
pend on 0.

In order to obtain the second iteration we have to re-
place in (B7) and (B8) #'® and »‘® with 4‘? and 4'?, re-
spectively. The result is given by

Q

u}"’(l?l)=—4_wsp‘Ganf[k‘B(Q)]'[k'B(Q‘ )]“}0’

Xd@ldé , (B11)
Q b )
KR~ —=6,G, J 1B [k-B()1®

xd0,d0 . (B12)

Here the background fields u‘® and A‘® depend on

1—0~—0,. The terms <O(K?) are dropped in Egs.
(B11) and (B12). The solutions %" and AV are the sum
over the first and the second iterations. The third itera-
tion, ~max(B3K2B;K?V), is neglected.

The second moments describing a shift of the tur-
bulence from the background level can be obtained from
Egs. (B9)-(B12). For simplicity the background tur-
bulence is assumed to be homogeneous and isotropic, i.e.,

R R
0) = | =
(am kE+ 5 ]a,, k+ 5 >
C, ko) k. k
=% —mn , B13
el WS ]au?) (B13)

wherea=uand C, =W, ,ora=hand C,=M_; 8(y)is
the Dirac delta function; W (k,0) and M (k,0) are the
spectra of the hydrodynamic and magnetic pulsations of
the background turbulence, respectively.

Integration in Egs. (B9)-(B13) over the angles in k
space results in the following expressions for the second
moments:

G
Vj(Q.h(O))_BJ_(Q.u(O))_ —;—(k-B)'[ _iﬂ+'27)(k'K)]uJ§°)+(k1'B)u}m ]d@ ,

(B10)

(uVu ‘°>>—«?anfw G, dkdw
2 |9 )
~ 35 |4 by [ W, GGk dkdw
(B14)
2 | @ ’
(1), (Y — =5 2
R T yon b [ M, G, G2k dkdo>
(B15)
(1), (0)
(h{Pno) = 38R fMGdkdco
2 | QO | )
-2 Tﬂ;]bmn [ M,.G,G kdkdo
(B16)
(h‘”h‘”)— bm,,fW G,Gikdkdw , (B17)
Q.
(g Oy — =5
(uiPro) 12Ow_P(amB,,)
X [M,G,(2—GvkNdkdw ,  (B18)
<u<°>h“>)— 5 (@nB,) fW Gy (nkz)dkdw
1 *
B19
3 aR *dkdo , (B19)
(ulMn{My=0, (B20)
where
3B, OB, , 1
(amBn)=_a_lg'+ 3R, sy bpy=B"8,,—3B,B, ,
W 13V,
* — 2y~ —_
G (lCl)+Bk ) ’ mn aR 6 aR

Integrations in (B14)-(B19) are over » from — © to
and over k from k, —|Ak| to k. The following integrals
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are used for the calculations of the second moments in
(Bl4)—(B19)'

f(ka)

sm@df)dtp——i—al ; S e

3
i [sij—%’} smeded¢=—§315,.j,
[ (k-a)k-b) [a,.,.— sinfd0dp
1165" 2[(a-b)8;,;— La;b;+a;b,)] .

Equations (B14)-(B19) are inserted into the expres-
sions for the generalized Maxwell-stress tensor (11) and
the effective electric field (12) that yields

80y =p(3,, ¥, >Av—%:AQp T g AQ +80 ),
(B21)
SE=—(AXB)A7 , (B22)
where
=liakl [ W.Gv+~5—Q‘~M G, |do, (B23)
14mp n
Aq=3|6k] [W,G3do (B24)
AQ, =—Qs IAklf w.G,G —4Q’ M,G,G, |do,
mp
(B25)
k2
AQP=4AQ,+QP—3—|AkifG,, w,G}
— 2?rspM G, |ldo,
(B26)

G,=G,+G} /2, G,=G,+G} /2. After substitution of
(B21) and (B22) into Egs. (8) and (9), it is seen that the
form of these equations coincides with that of Egs. (6)
and (7). This means that these equations are invariant
under the procedure of the reaveraging, i.e., invariant un-
der the renormalization of the turbulent transport
coefficients. The term 80'C) is dropped for the homo-
geneous background turbulence.

Now we divide Egs. (B23)-(B26) by Ak = —-IAkI and
pass to the limit of small Ak. The sign “minus” arises be-
cause the procedure of the reaveraging is performed from
small scales to the large ones. Note that the background
turbulence is located in the region k, <k <k,, where
k;=I;'and k,=I; . Therefore the MHD equations are
not renormalized for k <k,. The small values of Ak im-
ply that Ak <<k,. Then the equations for the turbulent
viscosity, turbulent magnetic diffusion, and turbulent
magnetic coefficients are reduced to
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dV_____ 7 SQS

=30 PG Tamp MG |40 (B27)

dg__ 1 .

=—3[W.Gdo, (B28)

4o, 2 - 0

szlks [ lW,,G,,GV— &y, G,G, |do

(B29)

dQ, _, 40, . 9

= dk—Qp3fG WGy =5, M., |do.
(B30)

The spectrum of the hydrodynamic pulsations of the
background turbulence is given by

W, (k,o)=Tk,0)Wyk) .

The spatial component of the spectrum Wy(k) in the
inertial interval is

2 -8B
k 0
The frequency component T'(k,w) is the Lorenz profile
_ | vk)k? 1 _ | kK2 ,,,
T(k,ﬂ)) [ a)2+1/2k4 = p Gva ’

[ rikodo=1.

Note that the time dependence of the correlation func-
tion W (k,7)="{u(k,t)u(k,t +7)) corresponds to a dis-
tribution: W (k,7)=W,(k)exp[—v(k)k?r]. The spec-
trum of the magnetic fluctuations of the background tur-
bulence is given by

M (k,o)=ulk,o)Myk),

where
_ [ mk)k? 1 | plk)k?
, wk,o) - co2+772k4* - G,,G'f, s
R | [k |7
Myk)y=(8, —1) |[— | | ===
olk)=(B,,—1) km] k,,.] ,

k,,=17!is determined by the main scale of the magnetic
fluctuations /,,. Integration in Egs. (B27)-(B30) over w
space results in the equations for the turbulent
coefficients (13)-(16). A use was made of integrals of the
products of Green functions:

[G.Gtdo=—"5, [G,6:6Gdo=—T"—,
e ak*a-+B)
GlGLGdo=—7"—oo,
R
G,GGpGhdo=——"—.
[ 6.6:656840= i

The equations for the turbulent transport coefficients
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(13)-(16) can be solved analytically in the case W, >>M,,.
The result is given by

P )= WP,) P, |Pj—a; || Pyta, %
R\ P )= ==, | P —a, | |Putas| °
(B31)
(P )= wP,)
M, )= Pm ’
p,+1 )" P, —a, || Py+a, |7
Qs(Pm)_ Pd+1 Pd_al Pm+a2 ’
(B32)
Wy
Q,(P, )=~ 3@‘*‘431(“1“‘02)
1-p7!
P, QJ2)¥ ! (2)
X[ "= ————dz—4Q, |,
Py (z+a,) 9
(B33)
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where P;=v,/1,,a,,
wp, )= |Em T "y =¥(P =P,
m!— Pm+az ? d m d’»
a2(1+a1) 1(1—a2)
=2 U 064, a,= ~0.36 ,
fxl a1+a2 64 % 1+02
4
=2 40,
Y 1 =a)(14ay)
. a1(3+a1) 136
YT ¥ a ey tay
02(3+a2) 1
= ~3.0, =—~0.81.
& (1+a2)(a1—02) Bl a1+a2

Equation (B31) allows us to describe asymptotical
behavior of the magnetic Prandtl number P,, for large
Reynolds number Re(k)=w(k)/vy>>1 [see Eq. (29)].
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