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Turbulent diffusion of chemically reacting gaseous admixtures
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We study turbulent diffusion of chemically reacting gaseous admixtures in a developed turbulence. In our
previous study [Phys. Rev. Lett. 80, 69 (1998)] using a path-integral approach for a delta-correlated in a time
random velocity field, we demonstrated a strong modification of turbulent transport in fluid flows with chemical
reactions or phase transitions. In the present study we use the spectral T approximation that is valid for large
Reynolds and Peclet numbers and show that turbulent diffusion of the reacting species can be strongly depleted by a
large factor that is the ratio of turbulent and chemical times (turbulent Damkohler number). We have demonstrated
that the derived theoretical dependence of a turbulent diffusion coefficient versus the turbulent Damkohler number
is in good agreement with that obtained previously in the numerical modeling of a reactive front propagating
in a turbulent flow and described by the Kolmogorov-Petrovskii-Piskunov-Fisher equation. We have found
that turbulent cross-effects, e.g., turbulent mutual diffusion of gaseous admixtures and turbulent Dufour effect
of the chemically reacting gaseous admixtures, are less sensitive to the values of stoichiometric coefficients.
The mechanisms of the turbulent cross-effects differ from the molecular cross-effects known in irreversible
thermodynamics. In a fully developed turbulence and at large Peclet numbers the turbulent cross-effects are
much larger than the molecular ones. The obtained results are applicable also to heterogeneous phase transitions.
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I. INTRODUCTION

Turbulent transport in flows with chemical reactions
is of great interest in various applications, ranging from
combustion to physics of the turbulent atmosphere of the
Earth (see, e.g., [1-9]). During the past several decades
turbulent transport of passive scalar and particles has been
the subject of active research (see, e.g., handbooks [10-15]
and reviews [16-21]). Many important problems, including
particle clustering in isothermal [22-29] and stratified [30,31]
turbulence, intermittency [32,33], effective diffusion [34], the
formation of large-scale inhomogeneous structures in spatial
distribution of particles, and different scalar fields in small-
scale turbulence [35—42], have been investigated in analytical,
numerical, and laboratory studies. However, the impact of
chemical reactions on turbulent transport has been studied
mainly numerically and in the context of turbulent combustion
(see, e.g., Refs. [2-5]).

A combustion process is a chemical reaction accompanied
by heat release. Turbulent combustion can proceed as a
volume-distributed chemical reaction (e.g., as a homogeneous
burning of the turbulent premixed gaseous mixture) or prop-
agate as a flame front in a turbulent flow separating fresh
unburned fuel and combustion products (see, e.g., Ref. [43]).
In both cases, turbulence is created by an external forcing and
can be enhanced by intrinsic instability of the flame front (see,
e.g., Refs. [1,3,44,45]).

Notice that the temperature and equilibrium composition
of combustion products are purely thermodynamic character-
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istics determined by thermodynamic equilibrium laws which
yield a relation between the initial and final stages. In this
case, chemical kinetics described by a one-step Arrhenius
model provides results which usually are in good agreement
with experimental data. On the contrary, in order to reproduce
transient processes that are accompanied by compression
and shock waves, it is necessary to take into account the
detailed chemical reaction mechanisms involving several hun-
dred chemical reactions. This complex chemistry determines
the chemical time scales, such as induction time and period of
exothermal reaction, competing with transport time scales in
formation of the zone of energy release. The latter determines
the evolution of the propagating flame (see, e.g., Ref. [46]).

In a turbulent atmosphere the most common are the volume-
distributed chemical reactions, while in atmospheric and
industrial applications propagation of the turbulent flame front
during wildfires is of particular interest (see, e.g., Refs. [6-9]).
In previous studies, most of the attention has been focused on
evaluation of nonlinear sources in the governing equations for
concentrations of chemical species. In such a description the
effect of chemical reactions on turbulent transport coefficients
has been neglected. For the first time the effect of chemistry
on turbulent diffusion was studied in Ref. [47] by means of
a path-integral approach for the Kraichnan-Kazantsev model
(see Refs. [32,48]) of the random velocity field, and it was
found that turbulent diffusion can be strongly depleted by
chemical reactions or phase transitions. It was also shown in
Ref. [47] that there exists an additional nondiffusive turbulent
flux of number density of gaseous admixture (proportional
to the mean temperature gradient multiplied by the number
density of gaseous admixture) and additional turbulent heat
flux (proportional to the gradient of the mean number density
of gaseous admixture) in flows with chemical reactions or
phase transitions.

©2014 American Physical Society
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The effect of chemistry on turbulent diffusion has been re-
cently studied in Ref. [49] using mean-field simulations (MFS)
and direct numerical simulations (DNS). In these simulations
a reactive front propagation in a turbulent flow was investi-
gated using the Kolmogorov-Petrovskii-Piskunov (KPP) equa-
tion [50] or the Fisher equation [51]. This equation has also
been amended by an advection term to describe the interaction
with a turbulent velocity field [52,53]. In MFS of Ref. [49]
memory effects of turbulent diffusion have been taken into
account to determine the front speed in the case when the tur-
bulent time, 7y, is much larger than the characteristic chemical
time, 7.. It was found that the memory effects saturate the front
speed to values of the turbulent speed, while the nonlinearity of
the reaction term increases the front speed. This study allows
us to determine the dependence of the turbulent diffusion coef-
ficient versus the turbulent Damkohler number, Da, = 7o/7,.

In the present study we investigate turbulent transport
of chemically reacting gaseous admixtures in a developed
turbulence using a spectral tau approach (high-order closure
procedure), see, e.g., Refs. [12,54,55]. We have demonstrated
here the existence of the turbulent cross-effects, including
turbulent mutual diffusion of gaseous admixtures and turbulent
Dufour effect. The mechanisms of these cross-effects differ
from the molecular cross-effects known in irreversible thermo-
dynamics (see, e.g., Refs. [56]). In a developed turbulence and
at large Peclet numbers the turbulent cross-effects are much
larger than the molecular ones. These results are also valid
for heterogeneous phase transitions. We show that for a large
turbulent Damkohler number Da, >> 1 turbulent diffusion of
the admixtures can be strongly reduced by a large factor
Da,_, depending on the value of stoichiometric coefficients of
chemical species. In this paper, we illustrate effect of chemistry
on turbulent diffusion using simple global one-step chemical
reactions taking into account the reaction order. Such approach
provides qualitatively and often quantitatively correct physics.

The paper is organized as follows. The governing equations
and applied methods are formulated in Sec. II. Turbulent fluxes
of chemically reacting admixtures are determined in Secs. III
and IV. Comparison of theoretical predictions with numerical
simulations is given in Sec. I'V. Finally, in Sec. VI we draw con-
clusions and discuss the implications of the obtained results.

II. GOVERNING EQUATIONS

Advection-diffusion equation for the number density
ng(t,x) of chemically reactive admixtures in a turbulent flow
reads as follows:

an - A
8—f+v-(n,3 v) = — W, T) + Dng), (1)

where v(¢,x) is the instantaneous fluid velocity field, D(”lﬁ) =
div [p DgV(ng/p)] is the linear diffusion operator of ng (see,
e.g., Ref. [57]), Dg is the coefficient of the molecular diffusion
based on molecular Fick’s law, T is the fluid temperature,
—VﬂW(nﬂ,T) is the source (or sink) term and vg is the
stoichiometric coefficient that is the order of the reaction
with respect to species f3, 221:1 vg is the overall order of
the reaction, and m is total number of species. The function
W(n,g,T) satisfies the Arrhenius law as follows (see, e.g.,
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Ref. [58]):
W = Aexp(—Eq./RT)ITj_, (np)”, @)

where A is the reaction rate constant, £, is the activation
energy, and R is the universal gas constant. Evolution of the
temperature field 7'(¢,x) in a turbulent fluid flow is determined

by the following equation:
oT N N
5 - VT +(y — DTV -v) =qgWng,T)+ D(T),

3

where the term D(T) = p~! div [p xVT] determines
the molecular diffusion of the fluid temperature, x is the
coefficient of molecular diffusion of temperature, g = Q/pc,,
Q is the reaction energy release, ¢, is the specific heat at
constant pressure, o is the fluid density and y = ¢, /c, is the
ratio of specific heats. The density p and the velocity v of the
fluid satisfy the continuity equation,

ap

+V. =0, 4
» (pv) “
and the Navier-Stokes equation,

av 1 .

— +@-Viv=——VP+D,(v), (&)

at P

and D, (v) is the viscous term and P is the fluid pressure.

To study the formation of large-scale inhomogeneous
structures, Eqs. (1) and (3) are averaged over an ensemble
of turbulent velocity fields. Using a mean-field approach, we
decompose ng and T into the mean quantities, Ng and 7', and
fluctuations n; and 6, where n/, = 0and 6 = 0. We decompose
the velocity field in a similar fashion and assume for simplicity
the vanishing mean fluid velocity, U = 0. Averaging Eqs. (1)
and (3) over an ensemble of turbulent velocity fields we obtain
the equations for the mean fields as follows:

aﬁﬁ / 7 AT
=V npu) = v W+ D). 6)
aT — A
o T V- Qu)+ @y =20 -u) =qW+DT), ()
where u are the fluid velocity fluctuations, W = (W(n 8:1)),
and the angular brackets imply the averaging over the statistics
of turbulent velocity field. To obtain a closed system of the
mean-field equations one needs to determine the turbulent
fluxes (njg u) and (0 u) as well as (0(V - u)). To this end we
use the following equations for fluctuations ”;3 =ng — Nﬂ
and0 =T —T:
oy
— . u— u
; + (”5 (nﬂ )
= —vg(W = W) — V- (Ngu)+ D(n}). (8)
a0
m +V-Ou—(Ou)+ @y =0V -u)— (O -u)l
=q[W—-W]—(-V)T —(y — DT(V -u)+ D®).
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These equations are obtained by subtracting Eqgs. (6) and (7)
for the mean fields from Egs. (1) and (3) for the total fields.
Now we assume that the temperature fluctuations are much
smaller than the mean temperature, and the fluctuations of the
number density of admixtures are much smaller than mean
values. This allows us to expand the source term in a series,

W—-w (W b+ W 0+ O[(n))*; 6% 1, 0]
- = o n —_— ny);0°;,n
an,g Nﬁ p 3T T p p

= W(C, +Cp), (10

where we take into account that for the Arrhenius law (2),

dln W Vg dln W E,
= —a = — (11)
dng )x, Ng oT )+ RT

Here we introduced the following new variables:
) E
C,=Y Lunj, Cp=—%0 (12)
n B T —2 7
=1 No RT

where the evolutionary equations for C, and C} read as
follows:

%Jrv(c,;u— (Cl u))
R m V _ n
=—a,W(C, +Cp)— Y =LV - (Ngu)+ D(C}), (13)
=1 N
IC, / /
5, TV (Cru—(Cru)
+(y = DICH(V -u) — (C(V - u))]
=, W(C, + Cp) + D(CY)
o, — _
s [((w-V)T +(y — DTV -u)l, (14)
where
- VB qE,
A=) =, o, =-—g. (15)
,32:; N RT’

Using Egs. (13) and (14) and the Navier-Stokes equation (5)
we derive the following equations for the second-order
moments (C, u) and (C} u):

a(cz‘;ltuﬂ = —a, W((C, u;) + (Chpus)) + N(C, u;)
- Z vgl{u; u;) V; lnﬁﬁ + (u;(V -u))],
p=1
(16)
—a ¢ d Tra W ! ’ —

—(y — DT (V- u))]+ N(Cru;), (17)

where A/ (Cr u;) and N(C % u;) include the third-order mo-
ments caused by the nonlinear terms and the second-order
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moments due to the molecular dissipative terms,
NA{Cui) = —([V - (Cpw)lu;) + (D(C))uy)
—(C [ - VYu; + p~'Vip'l) + (C), Dy(uy)),
(18)
N(Chui) = —(IV - (Cpu) + (¥ = DCH(V - )] u;)
+(D(CP u;) — (Cr [ - Vu; + p~'V; p'l)
+(C;, Dy(uy)), (19)

and p’ are the fluid pressure fluctuations.

In the anelastic approximation for the low-Mach-number
flows (Ma = u/c; <« 1) and for hydrodynamic times that are
much larger than the acoustic times, the continuity equation
for surrounding fluidreads V - u = —(u - V) In p. We consider
the ideal gases. Therefore,

T (u;(V-u)) = (u;u;)(V;InP — V;In P). (20)

In a particular case when there is no external pressure gradient,
VP =0 (e.g., there is no mean flow), Eq. (20) yields the
following:

T (u;(V-u)) = (uju;)V,T, 21)

where P is the mean fluid pressure. This allows us to rewrite
Egs. (16) and (17) in the following form:

8(6;;1‘”:') — _anW((C,’l u;) + (C’T u;)) +N(Cr/1 u;)
—(uiu;)V; Y vgllnNg+InT],  (22)
p=1
B(C;)Ttuﬂ =aq, [W((C,/I u;) + (Cru;)) — Y (ui ) vj7i|
q

+ N(Ch u;i). (23)

Now we introduce a new variable C’' = C, + C;. Equa-
tions (13) and (14) allow us to derive an equation for the
second-order moment {(C’ u;) as follows:

9(C" u; V
% =~ (Clui) + N(C ui) — (uiuj)
x Zvﬂ VinNg+InT)+ ZO‘T ViT |
q
p=1
(24)

where 7:;1 = W(an —«,) is the inverse chemical time,
N(C u;) = N(C, u;) + N(C} u;), and the third-order mo-
ments J\A/(C,/l u;) and /\A/(C/T u;) are determined by Egs. (18)
and (19).

It should be noted that the anelastic approximation is used in
the continuity equation for the surrounding fluid. The chemical
time appears only in the equation for the number density
for species and the temperature equation. Since the ratio of
spatial density of species is assumed to be much smaller than
the density of the surrounding fluid (i.e., small mass-loading
parameter), there is only one-way coupling, i.e., no effect of
species on the fluid flow. Due to the same reason, the energy
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release (or absorbtion of energy) caused by chemical reactions
is much smaller than the internal energy of the surrounding
fluid. This implies that even small chemical time does not
affect the fluid characteristics.

III. TURBULENT FLUX OF C

The equation for the second-order moment (24) includes
the first-order spatial differential operators applied to the
third-order moments A/ FIV [see Eqs. (18) and (19)]. To close
the system of equations it is necessary to express the third-order
terms A/ FUD through the lower-order moments F (see, e.g.,
Refs. [10,12,54]). We use the spectral T approximation, which
postulates that the deviations of the third-order moments,
N FI)(K), from the contributions to these terms afforded
by the background turbulence, N FM-0(k), can be expressed
through the similar deviations of the second-order moments,
FI(K) — FILO(K) as follows:

j\"/F(IH)(k) _ J\"/F(HI,O)(k) — _% [F(H) (k) _ F(H’O)(k)],

(25)

(see, e.g., Refs. [54,55,59]), where t, (k) is the scale-dependent
relaxation time, which can be identified with the correlation
time 7(k) of the turbulent velocity field for large Reynolds
and Peclet numbers. The functions with the superscript (0)
correspond to the background turbulence with zero gradients
of the mean temperature, the mean number density, and the
mean fluid density.

In order to elucidate the spectral T approach in the following
we present the explicit form of terms in Eq. (25) corresponding
to the second-order moments, FV(k) = (C) (k) u;(—k)), and
the third-order moments N FUD(k) = N (C! u; )y,

NAC, uiy — N(C) uy)y)

n i

— (W (k) — (R (k)L (26)
(k)

Similarly, one can formulate Eq. (25) for all other third-order
and second-order correlators involving velocity, temperature,
and species number density fluctuations in k space. Validation
of the t approximation for different situations has been
performed in numerous numerical simulations and analytical
studies (see, e.g., the review in Ref. [60] and the discussion in
Ref. [59], Sec. 6).

The 7 approximation is in general similar to eddy-damped
quasinormal Markovian (EDQNM) approximation. However,
some principle difference exists between these two approaches
(see Ref. [12,54]). The EDQNM closures do not relax to
equilibrium, and this procedure does not describe properly
the motions in the equilibrium state in contrast to the t
approximation. Within the EDQNM theory, there is no dynam-
ically determined relaxation time, and no slightly perturbed
steady state can be approached [54]. In the T approximation,
the relaxation time for small departures from equilibrium is
determined by the random motions in the equilibrium state,
but not by the departure from equilibrium. We use the 7
approximation, but not the EDQNM approximation, because
we consider a case when the characteristic scales of variations
of the mean number density of admixtures and the mean
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temperature are much larger than the integral turbulence
scale. Analysis performed in Ref. [54] showed that the T
approximation describes the relaxation to equilibrium state
significantly more accurately than the EDQNM approach.

The t approach is a universal tool in turbulent transport
that allows to obtain closed results and compare them with the
results of laboratory experiments, observations and numerical
simulations. The 7 approximation reproduces many well-
known phenomena found by other methods in turbulent
transport of particles and magnetic fields, turbulent convection,
and stably stratified turbulent flows [59-61].

Note that when the gradients of the mean temperature
and the mean number density are zero, the turbulent heat
flux and the turbulent flux of chemical admixtures vanish,
and the contributions of the corresponding fluctuations [the
terms with the superscript (0)] vanish as well. Consequently,
Eq. (26) reduces to /\A/(C,’, uix = —(C, (k) u;(—Kk))/t (k). We
also assume that the characteristic time of variation of
the second-order moments are substantially larger than the
correlation time t(k) for all turbulence scales. Therefore,
the steady-state version of Eq. (24), written in the Fourier
space, yields the following formulae for the turbulent flux
(C'(K)u;i(—K)):

(C'(k) ui(—k))
= —Tei(k) (u;(K) u j(—K))
x |3 s V0 Ny +InT) + ga, vT|. @
p=1

where 7' (k) =t + v~ (k).

To integrate in k space we need to choose a model of
the background turbulence. In order to separate the turbulent
transport effects caused by the chemistry from those caused
by inhomogeneity of turbulence we consider isotropic and
homogeneous background turbulence, (u;(k)u;(—k)) (see,
e.g., Ref. [62]),

I/t2 ET(k) k,’ ki
(ui(K)u;(—Kk)) = 08717[8’7 - k—zj} (28)
where Er(k) = (u — kg Yk / ko)™ is the energy spectrum
function with the exponent 1 < u < 3, t(k) =21 (k/ko)' ™"
is the turbulent correlation time, g = £/u is the characteristic
turbulent time, and u is the characteristic turbulent velocity
in the integral scale ¢.

After integration in k space we obtain the turbulent flux
(C'ui) = [(C'(K)u;(—K)) dK,

(C,Mi> = —Dg Zvﬁ Vj(lnﬁﬂ+ln7)+ZaT VJT ,
p=l 1
(29)

where D! = tyu3/3 and the turbulent diffusion coefficient
reads as follows:

(30)

DI = DI [1 _ In1 +2DaT)i|,

2Da

T

where Da, = 1p/7. is the turbulent Damkohler number.
Here we used that [ Terr(k)(u;(K) u;(—K)) dk = DL8;;. The
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asymptotic behavior of the turbulent diffusion coefficient is as
follows: When Da, < 1, the turbulent diffusion coefficient is

4D
T = DI DaT<1 - ;T>, G31)
while for Da, > 1itis
InDa
DE=D (1- z). 32
e ( 2Da, ) 52)

Equations (27) and (29)—(32) allow us to determine the
turbulent transport coefficients for gaseous admixtures and
temperature field (see the next section).

IV. TURBULENT TRANSPORT OF ADMIXTURES
AND TEMPERATURE

Using Eqgs. (10) and (11) we rewrite Eqgs. (8) and (9) for
the fluctuations of the number density of admixtures, n}} =
ng — Nﬁ, and the fluid temperature field, 6 = T — T, in the
following form:

an;S

— V= ()

= - W(C, + Cp) = V- (Ngu)+ D(ny), (33)
a6
m +V-Ou—(Ou))+y =IO -u) -0V -w)]
=qW(C, +Ch)—(u-V)T —(y — DT(V -u) + D).
(34)
To close a system of the mean-field equations we determine the

turbulent fluxes (n}; u) and (6 u). Equations for these second
moments read as follows:

o(n’; u; _ —
<n;tu > = —vﬁW(C'ui) — (ui I/tj) VjNﬁ
—Np iV -w) + N(nju;),  (35)
3(6 u;)

=gqW(C'u;) — (uju;) V;T

ot
— (= DT (V- w) + N (O u;).  (36)
where N <”:3 u;) and N (6 u;) include the third-order moments
caused by the nonlinear terms and the second-order moments
due to the dissipative terms in Egs. (33) and (34) and the
Navier-Stokes equation as follows:
Ninyuiy = —(IV - (g w)lu;) + (D(n)y) u;)
— ([ - Vyu; + p~'Vip'l) + (ny Dy (),
(37)
N{@ui) = =V - @ w + (y =0V - w)]u;)
+(DO)ui) — (60 [ - Vyu; + p~'Vip'l)
+ (0 Dy(u). (38)

Next, we apply the T approximation to Eqs. (35) and (36),
written in k space: ./\f(n;3 Uj)x = —(n}}(k)u,-(—k))/r(k) and
J\A/‘(Q u;)xk = —(0(K)u;(—Kk))/t(k). Taking into account that
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the characteristic time scale of variation of the second moments
is much larger than the turbulent time t(k), we arrive at the
following steady-state solutions for the second moments:

(nly () u; (—K)
= —7(k) e W(C'(K) ui (—K)) + (u; (k) u j(—k))
x (ViNg+ NgV;InT)], (39)
(00) u;(—k)
= —T()[—qW(C'(&) ui(—k)) + y (u; (k) (k) V; T,
(40)
where the flux (C’(K)u;(—Kk)) is determined by Eq. (27).
After integration in k space, we finally arrive at the following

equation for the turbulent flux of reacting admixtures, (n}; u),
and the turbulent heat flux, (6 u),

(nyu)=—DyVNg+ Y DYP(B)VN, + Ve Ng,
A=1:0#£8 @1

(ou) =—-DT VT — Z DPEVN,. (42)
=1

In Egs. (41) and (42) we used the following notations:
Dg is the coefficient of turbulent diffusion of the number
density of admixtures,

2
Vv
D§=DOT[1— £

— D ; 43
Ng (o, — o) (a,)j| )

®(Da,) is the nondimensional function,

1 In(1 + 2D
dDa,)=1— — I_M
Da 2Da

T

; (44)

T

D%’ITD (B) is the coefficient of the mutual turbulent diffusion of
the number density of admixtures,

DYT(B) = Df —"*
A0y — OlT)

®(Da,); (45)

Ve is the effective velocity of the number density of
admixtures due to the turbulent thermal diffusion,

Ver =—Dg'°VInT; (46)
DETD is the coefficient of turbulent thermal diffusion,

m Ea
( aT) <ZVX+VRT):| >

A=l

D™ =pl|1l—-—2L
N/S (an _O(T)

(47)

DT is the coefficient of turbulent diffusion of the temperature,

q
D' =Dly |1+ ——"—— ®(Da,)
VT(an_ar)
m Ea
X vg + — ; 48
> v Y o7 (48)
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and D[PF is the coefficient that describes the turbulent Duffor
effect,

D/ME—pl — 1% D). 49
A N @ —a) (Da,) 49)
Here we wused that [ te(k)T(k)(u;(K)u;(—k)) dk =

DOT 7. ®(Da,);;. The asymptotic behavior of the function
®(Da, ) is as follows: when Da, < 1, the function ®(Da,) is

4Da,

®(Da,) = + 0(Da?), (50)
while for Da, > 1,itis
oDay=1- (1 mba (51)
a.)=1— — .
! Da, 2Da,

Let us discuss the mechanisms of the effects that are
described by the different terms in Egs. (41) and (42) for the
turbulent flux of reacting admixtures, (n}} u), and the turbulent
heat flux, (0 u). In addition to the turbulent diffusion terms
in the turbulent flux of reacting admixtures, —Dg Vﬁlg, and

the turbulent heat flux, — DT VT, there are different turbulent
cross-effects that are discussed below.

The term Vg Nﬂ = —Nﬂ DgTD VInT in the expres-
sion (41) for the turbulent flux of reacting admixtures, (n:3 u),
describes the phenomenon of turbulent thermal diffusion. This
effect has been predicted theoretically [35,36] and detected
in different laboratory experiments in stably and unstably
temperature-stratified turbulence produced by oscillating grids
or a multifan generator [30,38,40]. Turbulent thermal diffusion
has been also detected in direct numerical simulations [42]
and is shown to be important for atmospheric turbulence
with temperature inversions [41] and for small-scale particle
clustering in temperature-stratified turbulence [30,31].

The phenomenon of turbulent thermal diffusion in
temperature-stratified turbulence causes a nondiffusive tur-
bulent flux (i.e., non-counter-gradient transport) of gaseous
admixtures in the direction of the turbulent heat flux and
results in the formation of large-scale inhomogeneities in
the spatial distribution of gaseous admixtures, so admixtures
are accumulated in the vicinity of the mean temperature
minimum. A competition between turbulent thermal diffusion
and turbulent diffusion determines the conditions for the
formation of large-scale gaseous clouds with the characteristic
scale thatis much larger than the integral scale of the turbulence
and the characteristic lifetime that is much larger than the
characteristic turbulent time.

The physics of the accumulation of gaseous admixtures in
the vicinity of the maximum of the mean fluid density (or the
minimum of the mean fluid temperature) can be explained as
follows. Let us assume that the fluid mean density p, at point
2 is larger than the fluid mean density p; at point 1. Consider
two small control volumes “a” and “b” located between these
two points, and let the direction of the local turbulent velocity
in volume “a” at some instant be the same as the direction
of the mean fluid density gradient V p (i.e., towards point 2).
Let the local turbulent velocity in volume “b” at this instant
be directed opposite to the mean fluid density gradient (i.e.,
towards point 1).

PHYSICAL REVIEW E 90, 053001 (2014)

In a low-Mach-number fluid flow with an imposed mean
temperature gradient (i.e., an imposed mean fluid density
gradient), one of the sources of gaseous admixtures fluctua-
tions, n}; X —Tg N,g (V-u), is caused by a nonzero V -u =
—(m -V)Inp #0 [see the second term on the right-hand
side of Eq. (8)]. Since fluctuations of the fluid velocity
u are positive in volume “a” and negative in volume “b,”
we have V-u < 0 in volume “a” and V-u > 0 in volume
“b.” Therefore, the fluctuations of the gaseous admixtures
number density n;S X —Tp N,g (V-u) are positive in volume
“a” and negative in volume “b.” However, the flux of gaseous
admixtures n;g u is positive in volume “a” (i.e., it is directed
toward point 2), and it is also positive in volume “b” (because
both fluctuations of fluid velocity and number density of
particles are negative in volume “b”). Therefore, the mean flux
of gaseous admixtures (n;S u) is directed, as is the mean fluid
density gradient V p, toward point 2. This forms large-scale
heterogeneous structures of gaseous admixtures in regions
with a mean fluid density maximum.

The term )5 1p D%’[TD(,B) VN, in the expression (41)
for the turbulent flux of reacting admixtures, (n;S u), describes
the mutual turbulent diffusion of admixtures. Let us discuss
the mechanism of this effect. It is known in irreversible
thermodynamics that the mutual molecular diffusion of ad-
mixtures is caused by interaction between gaseous admixtures
due to collisions of molecules of the admixtures. In turbulent
flow with chemical reactions inhomogeneities of the number
density of one of the reagents causes fast change (during the
chemical reaction time scale 7.) of the number density of other
components due to the shift from the chemical equilibrium.

The inhomogeneities of the number density of the admix-
ture cause heat release (or absorption) due to the thermal
effects of the chemical reactions, i.e., additional nondif-
fusive turbulent heat flux, that is determined by the term
-y, D)TDE VN, in the expression (42) for (9 u). This flux
can be interpreted as turbulent analog of the molecular Duffor
effect known in irreversible thermodynamics.

V. COMPARISON WITH NUMERICAL SIMULATIONS

In this section we compare the obtained theoretical de-
pendence of turbulent diffusion coefficient Dg /D] versus
turbulent Damkohler number Da, with the corresponding
results of MFS performed in Ref. [49], where a reactive
front propagation in a turbulent flow was studied using
the Kolmogorov-Petrovskii-Piskunov-Fisher equation. To de-
scribe the interaction with a turbulent velocity field an
advection term was added to this equation, so advection-
reaction-diffusion equation reads as follows [49]:

on LV () n

J— (nv) = —

ot T,
where n = ng is a stable equilibrium solution of Eq. (52).
After averaging Eq. (52) the following mean-field equation
was obtained in the following [49]:

ON N *N N

RN T— = —

ot ot2 7,
where D7 is the sum of turbulent and molecular diffusion co-
efficients. The second term in the left-hand side of Eq. (53) that

(1 - i) + DAn, (52)

no

N _
1— —> + D7 AN, (53)
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FIG. 1. Comparison of the theoretical dependence of turbulent
diffusion coefficient Dg /D[ versus turbulent Damkohler number
Da, with the corresponding results of MFS performed in Ref. [49].

is proportional to the memory time 7 determines the memory
effects of turbulent diffusion. One-dimensional Eq. (53) was
solved numerically in Ref. [49] to determine the dependence
of the front speed, s,, on turbulent Damkohler numbers. Here
the reaction speed, s, = (d/dt) f (N /ng)dz, is determined by
differentiating the concentration integrated over the whole
domain and approximating the asymptotic front speed with
the value at the time when the front has reached the other end
of the computational domain.

Comparison of the theoretical dependence of turbulent
diffusion coefficient versus turbulent Damkohler number with
the corresponding results of MFS is shown in Fig. 1, and it
demonstrates a very good agreement between the theoretical
predictions [see Eqs. (43) and (44) with vg =1 and «, =
1 /N,g > «,] and numerical simulations of Ref. [49]. To
obtain the function D; (Da, ) we have taken into account that
s, = 2(Dg /)% (see Refs. [47,49]). Note that a detailed
comparison of the theoretical results with DNS requires a
specially designed DNS that is a subject of separate ongoing
study.

VI. DISCUSSION AND CONCLUSIONS

In this study we investigated effects of the chemical
reactions on turbulent transport and turbulent diffusion of
gaseous admixtures. To elucidate physics of the obtained
results we consider examples of chemical reactions proceeding
in a stoichiometric mixture. For a small concentration of
reactive admixtures, Nﬁ < Nf, the characteristic chemical
time 7, varies from 1073 s to 1072 s, where N r is the ambient
fluid number density. For typical values of turbulent velocity in
atmospheric flows uy = 1 m/s and integral scale £ = 100 m, we
obtain characteristic turbulent time 7y = £/u¢ = 107 s, so the
case of large turbulent Damkohler numbers, Da, = tp/7. > 1,
is of the main physical interest. Let us also estimate the ratio
o, /o, in the expression (43) for the coefficients of turbulent
diffusion. Using Eq. (15), we rewrite equation for «, in the
following form:

T, ( E
ozT%_—f< _”2>. (54)
Ny \RT
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We take into account that the temperature of the reaction
products equals the fluid temperature, T = Ty, the reactive
species are strongly diluted, Nﬁ <N r.and E,/ RT varies in
the range from 10 to 100. For a small-enough concentration of
the reactive admixtures, o, /o, ~ (E,/RT)"'(N;/Ng) > 1.

The stoichiometric coefficient vg in Eq. (1) is known
as the order of the reaction with respect to species 8. In
practice, the overall order of the reaction is defined as the
sum of the exponents of the concentrations in the reaction
rate, v, = Z;';:] vg. For a simplified model of a single-step
reaction the overall order of the reaction is the molecularity
of the reaction, indicating the number of particles entering
the reaction. In general, the overall order of most chemical
reactions is 2 or 3, though for complex reactions the overall
order of the reaction can be fractional one [6,58].

Let us consider first the simplest chemical reaction
A — B, assuming a large turbulent Damkohler numbers,
Da, > 1. An example of such chemical reaction is the
dissociation: O, — O+ O. As follows from Egs. (43)
and (51), turbulent diffusion of the number density of
admixtures is D} = DI /Da, = t.u}/3, which means that the
turbulent diffusion of admixture is determined by the chemical
time. This is in agreement with the result obtained in Ref. [47]
where a path-integral approach in a turbulence model with a
very short correlation time was used. The underlying physics
of this phenomena is quite transparent. For a simple first-order
chemical reaction A — B the species A of the reactive
admixture are consumed and their concentration decreases
much faster during the chemical reaction, so the usual
turbulent diffusion based on the turbulent time 7y > 7., does
not contribute to the mass flux of a reagent A. The turbulent
diffusion during the turnover time of the turbulent eddies is
effective only for the product of reaction, B. Applicability of
the obtained results requires the condition Pe/Da, >> 1 to be
satisfied, where Pe = u%l'o /3 is the Peclet number.

For multicomponent second-order or third-order chemical
reactions, the impact of chemistry on the turbulent diffusion is
more complicated. Let us determine the turbulent diffusion
coefficients for the second-order chemical reaction that is
determined by the following equation:

A+B— C+D. (55)

An example of such a chemical reaction is H + O, — OH +
O. The numbers of species in Eq. (55) are stoichiometric
coefficients which define number of moles participating in
the reaction. The stoichiometric reaction whereby the initial
substances are taken in a proportion such that the chemical
transformation fully converts them into the reaction products
can proceed as the inverse reaction also. For the reaction given
by Eq. (55), we obtain «, = Z/N, where Ny = Ng = N.
On the other hand, using Eq. (43) for the turbulent diffusion
coefficients of species A and B, we obtain

D}z =3Dj (1+Da’'). (56)

Correspondingly, for the third-order reaction, A + B + C —
D + E, we find

Digc=3Dj (1+Da'), (57)

where we have taken into account that in this case o, = 3 /ﬁ.
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Consider the stoichiometric third-order reaction with dif-
ferent stoichiometric coefficients of the reagents 2A + B —
2C (for example, the chemical reaction 2C 4+ O, — 2CO or
2H, + O, — 2H,0).Inthiscase,a,, = 2 /ﬁ, and the turbulent
diffusion coefficients of species A and B are as follows:

Dy =D{/Da,, Dj=3Dj(1+Da').  (58)

Since the species A have a larger stoichiometric coefficient
and, correspondingly, larger number of moles participating
in the chemical reaction, they are consumed more effec-
tively in the reaction and the turbulent diffusion coefficient
for the species A decreases much stronger than that for
species B.

Note that the derived in the present study theoretical depen-
dence of turbulent diffusion coefficient versus the turbulent
Damkohler number is in a good agreement with that obtained
in Ref. [49] using MFS of a reactive front propagating in a
turbulent flow and described by the Kolmogorov-Petrovskii-
Piskunov-Fisher equation.

The turbulent thermal diffusion coefficient in the case of a
large turbulent Damkohler numbers, Da, > 1, is

D™ = DI {1 —vp == (;%) [1- O(Dar_')]}v (59)

which implies that the turbulent thermal diffusion is only
slightly sensitive to the chemical reaction energy release in
the case of small concentration of the reactive admixture,
(Ng/N ¢)(E./RT) < 1.

The mutual turbulent diffusion of the number density of
admixtures (determined by D}'™®) and the turbulent Duffor

PHYSICAL REVIEW E 90, 053001 (2014)

effect (determined by D}P") are caused only by the chemical
reaction, see Eqs. (45) and (49). The mechanisms of these
cross-effects [e.g., heat flux caused by concentration gradient
(Dufour effect), mutual diffusion of the number density of
gaseous admixtures, or turbulent thermal diffusion] differ from
molecular cross-effects.

The effect of strong suppression of turbulent diffusion also
holds for the heterogeneous phase transitions. It is plausible
that this effect explains the existence a sharp boundary of the
clouds containing very small droplets (of the order of several
microns) and a visible diffusive boundary for raindrop clouds
consisting of 300- to 500-um droplets.

It should be noticed that in the case of nonstoichiometric
reactions, when the substances with higher stoichiometry
(molecularity) [A in Eq. (58)] is excessive in the initial mixture,
e.g., appears in an amount larger than that required according to
the stoichiometric equation, the turbulent diffusion coefficient
of the species A tends to zero, so molecular diffusion can be
important. Experimental evidence that coefficient of turbulent
diffusion changes in the presence of a second-order chemical
reaction has been recently reported in Ref. [63].
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