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Effect of rotation on a developed turbulent stratified convection: The hydrodynamic helicity,
the a effect, and the effective drift velocity
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An effect of rotation on a developed turbulent stratified convection is studied. Dependences of the hydro-
dynamic helicity, thex tensor, and the effective drift velocity of the mean magnetic field on the rate of rotation
and an anisotropy of turbulent convection are found. It is shown that in an anisotropic turbulent convection the
a effect can change its sign depending on the rate of rotation. The evolution ef #ifect is much more
complicated than that of the hydrodynamic helicity in an anisotropic turbulent convection of a rotating fluid.
Different properties of the effective drift velocity of the mean magnetic field in a rotating turbulent convection
are found:(i) a poloidal effective drift velocity can be diamagnetic or paramagnetic depending on the rate of
rotation; (ii) there is a difference in the effective drift velocities for the toroidal and poloidal magnetic fields;
(ii ) a toroidal effective drift velocity can play a role of an additional differential rotation. The above effects and
an effect of a nonzero divergence of the effective drift velocity of the toroidal magnetic field on a magnetic
dynamo in a developed turbulent stratified convection of a rotating fluid are studied. Astrophysical applications
of the obtained results are discussed.
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I. INTRODUCTION BB exp y,t)cog w t+k-r), (1)

The turbulent transport of particles and magnetic fields
was intensively studied for the Navier-Stokes turbulencavhereB, is a seed magnetic fieldsg is the growth rate of
(see, e.g., Ref§1—4]). However, there are a number of ap- the mean magnetic field)g andk are the frequency and the
plications with other kinds of turbulence, e.g., turbulent con-wave vector of a dynamo wave. In the Sun, e.g., according to
vection. For instance, in the Sun and stars there is a develhe magnetic field observations, these dynamo waves with
oped turbulent convection that is strongly influenced by ahe ~22 yr period propagate to the equateee, e.g., Refs.
fluid rotation. [5-8,10). The magnetic field is generated in the turbulent

The mean-field theory of magnetic field was, in generalconvective zone inside the Sun. The growth of the mean
developed for the Navier-Stokes turbulence without takingmagnetic field is a combined effect of a nonuniform fluid
into account turbulent convectigeee, e.g., Ref§5—12)). In  rotation[the differential rotationV (5€2)] and helical turbu-
particular, the dependences of theeffect, the effective drift lent motions(the a effecy). The direction of propagation of
velocity, and the turbulent magnetic diffusion on the rate ofthe dynamo waves is determined by the sign of the parameter
rotation were found only for the Navier-Stokes turbulencea[d(5Q)/dr], wherer,6,¢ are the spherical coordinates
(see, e.g., Refd13-14), in spite of the fact that in many and Q is the angular velocity. When the parameter
astrophysical applications there are turbulent convection rea[ d(8€2)/dr] is negative, the dynamo waves propagate to
gions. A turbulent convection in different situations has beerthe equator. The helioseismology shows that in the solar con-
studied mainly by numerical simulationsee, e.g., Refs. vective zoned(5Q)/dr>0, and the existing theories yield
[17-23). a>0. This results in the fact that the dynamo waves should

In this paper we study an influence of rotation on a develpropagate to the pole, in contradiction with the solar mag-
oped turbulent stratified convection. This allows us to findnetic field observationésee, e.g., Ref§5-8,10).

the dependences of the hydrodynamic helicity, shtensor, In this study we found that in a developed turbulent con-
and the effective drift velocity of the mean magnetic field onvection thea effect can change its sign depending on the rate
the rate of rotation. of rotation and an anisotropy of turbulence. In the lower part

This study has a number of applications in astrophysicsof the solar convective zone the fluid rotation is very fast in
In particular, the evolution of the mean magnetic field in thecomparison with the turnover time of turbulent eddies. In
kinematic approximatiofwithout taking into account a two- this regiona>0. In the upper part of the solar convective
way coupling of the mean magnetic field and turbulent fluidzone the fluid rotation is very slow ang<0. This explains
flow) can be described in terms of propagating waves with ahe observed properties of the solar dynamo waves. The
growing amplitude, i.e., the magnitude of the mean magnetigrowth of the mean magnetic field is saturated by nonlinear
field B is given by effects(see, e.g., Ref424-28). The 22-yr solar magnetic
activity is also poorly understood. A characteristic time of
the turbulent magnetic diffusion in the solar convective zone

*Electronic address: nat@menix.bgu.ac.il is of the order of 2—3 yr and it cannot explain the character-
Electronic address: gary@menix.bgu.ac.il; URL: istic time of solar magnetic activity. We found that the fast
http://www.bgu.ac.ill gary rotation causes an additional effective drift velocity of a
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mean magnetic field that can increase the period of the dygular brackets denote ensemble averaging, and for simplicity
namo waves and provides the 22-yr solar magnetic activitywe consider turbulent flow with zero mean velocity. Here
po(2) is a dimensionless density measured in the units of
Il. THE GOVERNING EQUATIONS AND THE METHOD po(z=0). The equations for the turbulent fields are given by
OF DERIVATIONS

A? dv, dv,
Our goal is to study an effect of rotation on a developed (T‘A) WZ(ZQ‘VJ“Q'A)WJ“ZAQxW_gALS
turbulent stratified convection. This allows us to derive de-
pendences of the hydrodynamic helicity, theffect, and the +Vy, (5
effective drift velocity of the mean magnetic field on the
angular velocity. To this end we consider a fully developed aw
turbulent convection in a stratified rotating fluid with large E:(ZQ'V_‘Q'A)UZ’LWN’ ©
Rayleigh and Reynolds numbers. The governing equations
are given by Js 02 < ,
DU o 9 vt SN, (7)
D_t:_v — | +2uX Q—gS+f,, (2 o
0 whereQ2=—g-VS; A, =A— %192, Vy, Wy, andSy are

the nonlinear terms which include the molecular dissipative
terms[see Eqs(A10)—(A12) in Appendix AJ; the fieldg is
directed opposite to the axis and Q= (Q,,0),). We as-
sumed here that “Y|dA/9z|<A. Equation(5) follows from
whereu is the fluid velocity withV-u=A-u, D/Dt=4d/dt Eq. (2) after the calculatiofnV X (V Xu)],.

+u-V, Q is the angular velocityy is the gravity field that By means of Eqs(5)—(7) we derive dependences of the
includes an effect of the centrifugal forgef, is the viscous hydrodynamic helicity, thex effect, and the effective drift
force, F(S) is the thermal flux that is associated with the velocity on the angular velocity. The procedure of the deri-
molecular thermal conductivityA=—p,Vpo, and N,  Vation is outlined in the followingfor details, see Appen-
=(yPo) VP, —py 'V . The variables with the subscript dixes A=Q. _ _

0 corresponds to the hydrostatic equilibritiwe., the hydro- (& Using Eqs(5)—(7) we derive equations for the follow-
static basic reference stite ing second moments:

DS

1
Br= U Nem T VRS, 3

VPo=pod, (4) fii(k)=Livp),  x(K)=Lw,p,),
and T, is the equilibrium fluid temperatureS=P/yP, F(k)=L(s,w), G(k)=L(w,w),
—plpg are the deviations of the entropy from the hydrostatic
equilibrium, P andp are the deviations of the fluid pressure ®,(k)=L(sv)), OKk)=L(ss),

and density from the hydrostatic equilibrium. The Brunt-

Vaisda frequencyQ, is determined by the equatiof? where [ (a,b)=(a(k)b(—k)) and v=py(z)u. The equa-
=—g-N,. To derive Eq.(2) we use the identity— VP  tions for these correlation functions are given by Hégl)—
+gp=—pol V(P/pg) +9S— PNy /po], where we assumed (A9) in Appendix A. In this derivation we assumed thaf

that |PNy/po|<|9S|, |PNy/pol<|V(P/po)|. This assump- <k

tion corresponds to a nearly isentropic basic reference state (b) The equations for the second moments contain third
whenN, is very small. For the derivation of this identity we moments and a problem of closing the equations for the
also used Eq4). We also consider a low-Mach-number fluid higher moments arises. Various approximate methods have
flow with a very small frequencﬁb, ie. |ﬁb|<\/g_f\ and been proposed for the solution of problems of this tygee,

~ . o e.g., Refs[1,30,37). The simplest procedure is the ap-
|Qp7[°<1, wherer is the correlation time of the turbulent proximation, which is widely used in the theory of kinetic

velocity field. Equation$2) and(3) are written in the Bouss- equations. For magnetohydrodynamic turbulence, this ap-

inesq approximation fo¥ - u# 0. This is more usually called proximation was used in Ref[32] (see also Refs.

“the anelastic approximation.” o _ [27,33,34). One of the simplest procedures, which allows us
Now we conS|d§r a purely hydrostatic isentropic basicy, express the third momentﬁ,XN, ... @y in Egs.(A4)—

reference state, i.eQp=0 (Np=0). Thus the turbulent con- (A9 in terms of the second moments, reads

vection is regarded as a small deviation from a well-mixed

adiabatic statéfor more discussion, see R¢R9]). We will © f(k)—fO(k)

use a mean-field approach whereby the velocity, pressure, fn(k) = f (k) =~ BT (8)

and entropy are separated into the mean and fluctuating

parts. Using Eqs(2) and (3) we derive equations for the and similarly for other third moments, wheré(k)

turbulent fields:v,= Vpo(2)u,, W=1po(2)(VXU),, ands  =epf;;(K), eis the unit vector directed along the axishe

=/po(2)(S—S), whereS=(S) is the mean entropy, the an- superscript (0) corresponds to the background turbulent con-
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vection (it is a turbulent convection without rotatiof®  wheref;;(k)=(v;(K)v;(—k)), W(k)=W(k)/8mk?, (k)

=0), and 7(k) is the characteristic relaxation time of the =f_(k /k)2W(k), andfi(jo)(k)eij:f(o)(k);

statistical moments. Note that we applied thepproxima-

tion only to study the deviations from the background turbu- 2 (u?)

lent convection which is caused by the rotation. The back- €= 3 m_

ground turbulent convection is assumed to be known. z
The 7 approximation is, in general, similar to eddy is the degree of anisotropy of the turbulent velocity fiald

damped quasinormal markowidBDQNM) approximation. =y, +u,e. Here Pi(K)=ai;—kij, kij=kik; K2, k=k,

However, there is a principle difference between these two; ke, k,=k-e, pi(jiﬂ(kL): 8 —kﬁ—eij , kiij

approachesgsee Refs[30,31]). The EDQNM closures do not = (k1)i(k.); /kf , ej=ee;, ando is the degree of anisot-

relax tlo fﬁui"bfitvm' f_i”‘f{'hthis p_rI(_)k;:e_duretd;)es_ not O:es‘f{”tb%py of the turbulent flux of entropgsee below. We assume

properly the motions in the equilibrium state, in contrast to A o — . -

the v approximation: Within the EDQNM theory, th.ere iS no tlhitc;(l;) i_sztr:gTét[)be\é(nkt)o_f thgTlfil;l)e/t?ck’er;(alr%;é;ét(g(m;’

dynamically determined relaxation time, and no slightly per-qz5/3 for the Kolmogorov spectrumko=1/1o, Iy is the

turbed steady state can be approadi¥]. In the 7 approxi- maximum scale of turbulent motionsg=1,/uy, andug is

mation, the relaxation time for small departures from equi- o o 0
librium is determined by the random motions in thethe characteristic turbulent velocity in the schjeMotion in

equilibrium state, but not by the departure from equilibriumthe background turbulent convection is assumed to be non-

Ref.[30]. As follows from the analysis performed B0] the helical. In Egs. (9) a”i' (10 we _neglected small terms
T approximation describes the relaxation to the equilibriumw(o())ﬁmzfo)) and~O(Af1>Z ). respectwfaly. l\gg)w we calculate
state(the background turbulent convectiomore accurately i =/ fii'(K)dk —using  Eq. (9):  f"=(f,/3)[4;
than the EDQNM approach. TL(.38/4)(6ij—eij)]. Note that—”4/3soe<oo. TheO lower

Note that we analyzed the applicability of theapproxi-  limit of & follows from the conditionfQ)=0 (or f{))=0).
mation for the description of the mean-field dynamics of theSimilarly, using Egs. (10)—(12) we obtain @
mean magnetic field and mean scalar fields by comparing the /@ (k)dk=®*. The parameterr can be presented in
derived mean-field equations using other methods such dbe form

the path-integral approach and the renormalization group ap-

proach(see Refs[35—39). This comparison showed that the o= 1+&a+D/(q—1) (15)
T approximation yields results similar to those obtained by 1+¢/3 ’
means of the other methods.

(c) We assume that the characteristic times of variation of E=(1,/1,)971-1, (16)

the second momentgk), x(k), ... ,0(k) are substantially ) ] ]
larger than the correlation timek) for all turbulence scales. Wherel, andl; are the horizontal and Overt|cal scales in
This allows us to determine a stationary solution for the secwhich the two-point correlation fu~nct|o@§ J(r)=(s(x)u(x
ond momentd (k),x(k), ..., 0(k) [see Egqs(A22)—(A30) +7r)) tends to zero. The parametérdetermines the degree
in Appendix Al. of thermal anisotropy. In particular, whén=1,, the param-

(d) For the integration ik space of the second moments eter£=0 ando=1. Forl, <l,, the parameteé=—1, and
f(k),x(k), ...,0(k), we have to specify a model for the
background turbulent convectiofwithout rotatior). Here
we use the following model of the background turbulen
convection, which will be discussed in greater details in
Appendix D:

o=—3/(q—1). The maximum valug ., of the parameter

(& is given by&n,=q—1 for ¢=3. Thus, foro<1 the ther-
mal structures have the form of column or thermal jdts (
<l,), and foro>1 there exist the two-dimension&2D)
droplet thermal structured ,(>1,) in the background turbu-
0) ~ W) lent convection.
fiy (k) =, W(K)[P;; (k) +ePj (k)] ©) The relationship betwee* and f, follows from Eq.
(A1) for the kinetic turbulent energyy(u?), and it is given
DO (k) =k K2 DP(k)e;P;; (k) +iF O(k)(exk);], by f,=2Ng7o®; /e, wherex=2¢6, /(e +2) and 5, =(3
(10) —q)/2(g—1). Note that for the Kolmogorov spectrur,
=5/3 andé, =1. In Sec. Il we will present results faf,
=1. For the integration itk space we used identities given
, (11)  in Appendixes B and C.
Thus, the “input parameters” in the theory include the
parameters that describe the model of background turbulent
FO(k)=—6i[®* - (exk)FO(k)/f, (120 convection, i.e., the degree of anisotropy of the turbulent
velocity fielde, the degree of anisotropy of the turbulent flux
of entropy o, the maximum scale of turbulent motiohg

(k) =7 W(k) "

2
20— 3(o— 1)(k—L)

GOk)=(1+&)fO(k)k?, 13
(k)=(1+2)T(k) (13 the turbulent velocityug= \(u?)= \/f(pog (the rms velocity
_ in the maximum scale of turbulent motions, and the exponent
0O(k)=20, W(k), (14 of the kinetic energy spectruap The input parameters also
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include the density stratification length and the angular B. The « effect

- 2
veIOC|ty Q. Note that f,=ug/(1+e/2) and @7 Now we find the dependence of theeffect on the angu-

=Uu/(25,97o). The above described procedure allows us tqar velocity. To this end we use the induction equation for the
determine the dependences of the hydrodynamic helicity, thgagnetic field
« effect, and the effective drift velocity of the mean mag-
netic field on the rate of rotation. JH

The considered model of a background turbulent convec- H:VX (UXH=7VXH),
tion written ink space is general enough and does not con-
tradict the known Nusselt number dependences on the Rayvhere 5 is the magnetic diffusion due to the electrical con-
leigh number. On the other hand, the observations of theuctivity of the fluid. The magnetic fieltH is divided into
turbulent convection on the surface of the Sun cannot givéhe mean and fluctuating partsi=B+b, where the mean
the Nusselt number dependence on the Rayleigh number, i.enagnetic fieldB=(H) and b is the fluctuating field. An
it is possible to obtain only one point in this curve. The equation forh=\/p,b follows from Eq.(20) and is given by
parameterss, ug, lg, 2, etc. can be calculated from the
solar observations. In addition, the direct numerical simula-

(20

E=(B-V)v—(v~V)B—(v-A)B+ %(B-A)w— Hu,

tions of turbulent convectiolisee Refs[18,22,23) are in
agreement with our model of turbulent convection.

Ill. EFFECT OF ROTATION

(21

whereHy are the nonlinear terms that also include the mag-
netic diffusion tern{see Eq(A47) in Appendix AJ. In order

In this section we present the results of the calculationd® derive an equation for the tensor, we introduce the elec-

(described abovefor the hydrodynamic helicity, thex ef-

tromotive force &=(uXb);=pg ‘gimnf x\A(k)dk, where

fect, and the effective drift velocity of the mean magnetchI(C)(k) (vi(k)hj(—k))= L(v; ,h;). A general form of the
field as the functions of the rate of rotation and the anlsotelectromotwe force is given by&i=a;Bj+(V effx B),

ropy of turbulence.

A. The hydrodynamic helicity
Using Egs.(A34) and (A38) in Appendix A we find the

dependence of the hydrodynamic  helicity ("
=(u-(VXu)) on the angular velocity:
w_ 1 130
== 5| T [T Va@) + y(w)sir g
+W¥, w)sm d1sin ¢, a7

(for details, see Appendix A where w=47,(Q), lo=Uq7o,

=2g7,®* 5, , sing=w-e, ¢ is the latitude o= Q/Q,
e is the unit vector directed along tleaxis, Lp=A‘1, and
the functions¥ ,(w) are given by Eqs(C1) in Appendix C.
Hereafter, we assume that, =1. For a slow rotation &
<1) the hydrodynamic helicity") is given by

o 120\ 1640 12 5 18
X ”_6 /SN 5 T5 %) (18
and forw>1 it is given by
37 |0U0
(V) e — —
X 3 ('—,ﬂo))\ 1+ sm2¢|>sm¢)| (19

Note that the meaning ab=4Q7,>1 is w large, but only

up to some upper limit, i.e., an intermediate range of values.
This implies that the rotation cannot be so fast as to affect the
correlation timer(k) of turbulent velocity field in its inertial

range. Also we assumed that the parameterand o are
independent ofv.

—7;;(VXB);j— KIJK(aB)IJ [6X(V XB)]i=a;;Bj+bjjkB; ;
(see, e.g., Ref40] and Appendix A, where the tensors;;
and »;; describe thex effect and turbulent magnetic diffu-
sion, respectivelyV®" is the effective diamagneti@r para-
magneti¢ velocity, ;jc and & describe a nontrivial behavior
of the mean magnetic field in an anisotropic turbulence,

=V,B;, and @B);;=(1/2)(B; j+B;). Thea tensora;

|s determlned by a symmetric part of the tenagr i.e., by
aP=(1/2)(a;; +a;). The tensomy; is calculated in Appen-
d|x A. The « tensor is given by

1/120)\ .
aij:g(_l_ {sing[{ ¥ 4(w)+V5(w)sirt e} &
p
HWe(w)+Vo(0)sif e+ Vg(w)e;]

+H[Wo(w) + ¥ w)sifdl(ew;+ejo)} (22

(for details, see Appendix A where w;; = foi&)j , Bij=€€j,

and the functiongl ,(w) are given by Eqs(C1) in Appen-

dix C. Here we present asymptotic formulas for the isotropic
part (a{*"=ad;) of the & tensor. For a slow rotatione
<1) the parametew is given by

(loﬂ)( o 5)\) .
a~§ Lp 2—5—? Sln(f)|, (23)
and forw>1 it is given by
a~-— 32(|°u°)(2>\+§—3+(a 1)S|n2¢|)sm¢,
(24)

It is seen from Eqs18) and(23) that for a slow rotation and
isotropic background turbulent convectiom=£1 and ¢
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o o FIG. 2. a (solid line) and a, = — (1/3)7ox"") (dashed ling as
EIG. 1. Characteristic ranges of parameters with different be,nctions of the parametdd 7, for ¢, =15° and different values of
haviors of a effect (2) and the paramet_awx=—(1/3)~rox(”) (b). the degrees of anisotropya) =0 ando=1, (b) e=1.2 ando
The range | for thea effect (a) also exists for—2<A<0 and =2, (c) e=13 ando=0. In (c) the & effect is multiplied by 5.
—9/2<o<3.
we plotted in Figs. 2—4 the dependences of theeffect
=0), the parameter a~—(5/27)rox"), where x)  (solid ling) and a,=—(1/3)7ox* (dashed lingon the pa-
=(u-(VXu)). However, when the rotation is not slow, the rameter() 7, for different latitudesFig. 2 is for the latitude
latter relationship is not valid. ¢ =15°, Fig. 3 is for=35°, and Fig. 4 is forp,=90°).
The a effect depends on the degrees of the velocity anHere the parametera and «, are measured in units of
isotropy e and the thermal anisotropy. Asymptotic formu-  lqug/4L,. Figures 2—-4 demonstrate that the functions
las for a slow rotation 9 <1) and foro>1 show that there a({7) and e« ({)7) are totally different. For example, in
are several characteristic ranges of parameters with differetibe cases =13 ando =0, the« effect anda, have opposite
behaviors of thex effect. In Fig. 1a) these ranges are sepa- signs for allQ) 7y [see Fig. 4c)].
rated by the linesr=3(3—2\), c=3(1—\/2), ando=6 Figure Xb) shows the ranges of parameteks &nd \)
—5\N/2, where —2<\<2, —-9/2<¢<3, and G<¢,  with different behaviors ok, . In Fig. 1(b) these ranges are
<7/2. Herex=2¢/(e+2). Inranges | and Il ther effect  separated by linee=(9/41)(25\/12—1) and\=0, where
does not change its sign for &7y and ¢, . In particular, in  —2<\<2 and—9/2<¢<3. The numeration of the ranges
range l,a>0, and in range ll¢<0. In range V thex effect  in Fig. 1(b) for «, is the same as for the parametein Fig.
changes its sign at a certain value @fry for all ¢,. In  1(a). A comparison of Figs. (& and Xb) shows that ranges
ranges Il and IV thex effect changes its sign at a certain Il and IV (whereby thex effect changes its sign at a certain
value of ) 7y, and a certain range of latitudés . In range Ill  value of () 7y and a certain range of the latitude$) do not
the degree of thermal anisotropy>1 (which corresponds to  exist for«, . On the other hand, there is a new rariggnge
the 2D droplet small-scale thermal structure of the back¥VI) in Fig. 1(b) whereby the sign ok, changes from nega-
ground turbulent convectignand in range IV the degree of tive for a slow rotation to positive fob>1. The locations of
thermal anisotropyr<1 (i.e., a columnlike thermal struc- ranges Il and V forr, are different from that of the: effect.
ture). The a effect can be negative for a slow rotation only in Therefore, the behaviors of the parametgrand thea ef-
range Il. Note that the negatiwe effect corresponds to the fect are different in a rotating fluid.
propagation of the solar dynamo waves to the equator. The dependences of the effect on the latitudep, for
Our analysis shows that when the rotation is not slow, thalifferent values of the degrees of anisotrapyand o, and
« effect is determined not only by the contributions from thedifferent values of the paramet&r, are shown in Fig. 5. It
hydrodynamic helicity, but also its behavior is much moreis seen in Fig. &) that thea effect changes its sign a
complicated in a rotating fluid. In order to demonstrate this,~20°—40° for() 7,=>5 (this value of() 7, corresponds to the
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In view of the applications to astrophysics, the case with 4 (l,u o 5
. - . (1) 0™'o 2
the negativea effect for ¢,>0 is most important because ViP~—El 1T )l8l 6" 4(8+2)+0(w )
this provides a propagation of the solar dynamo waves to the P
equator according to the solar observatigsse, e.g., Refs. 5, o e—
[5-8,10). &0 1- 5~ 7et2) sin2¢y) |,  (27)
C. The effective drift velocity of the mean magnetic field |ZQ o 5(1-g)\ .
. . . ) v<2)% - - (wxe), (28
Now we determine the effective drift velocity/y Lp 6 9(e+2)
——(1/2)‘»3,(,Ja(AS VV+ V@ of the mean magnetic field _
using Eq.(A69), wherea{*¥=(1/2)(a;; —a;) and and forew>1 they are given by
W= 1|°% P i M '00 L
Vi¥=13 g Eq(w)+Ey(w)sin ¢+ Ez(w)sin’¢] VB~ — % e(1+sirf¢))— Sesin2¢)) |,
(29)
Eee[E4(w)+Ea(w)sin2¢|]sin(2¢|) : (25) Ly
V@~ —w 0 O)(a' 1)sirt (X e). (30)

130
v(2>6( )[Es(w) +Eg(w)sirfe l(wxe)  (26)

For w=0 this effective drift velocityv¥) corresponds to the
well-known turbulent diamagnetic velocitigee, e.g., Refs.
[5-9)). Indeed, since we suggested thagp(u?))~0, thus

(for details, see Appendlx)AWherer 0,¢ are the spherical
V(u?)/(u*)~L, ‘e and Eq.(27) for »=0 reads

coordinates, ¢|=m/2— 0, wXe= cosde,, w=esin o
—eycos¢y, and the function&(w) are glven in Appendix
C. For a slow rotation ¢<1) the effective drift velocities
are given by

120 o 5
v [ g a7, o
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FIG. 5. The dependence of the effect on the latitudep, for
different values of the degrees of anisotropy=1.2 and o=2 FIG. 6. The effective drift velocitiesa) V" for ¢=45°, (b)
(dashefdl £e=13 and 0=0 (solid), e=13 and c=2.2 (dashed- VEl) for ¢, =90° as functions of the paramet&r, for different
dotted, e=13 ando=0.415 (dotted, and for different values of values of the degrees of anisotropy:=13 ando=—2.2 (solid),
the parametef) 7. (8) Q7,=0.1, (b) Q7,=5. The dashed-dotted &=1.2 ando=2 (dashegl £=13 ando=0 (dotted, e=0 ando
line in (b) showsa/5. The latitude is measured in degrees. =1 (dashed

where ro=1o/uq. Figure 6 shows the effective drift veloci- (for details, see AppendixAwhereB=Br+ B,, is the mean

ties V(gl) and Vﬁl) as functions of the parametédr, for magnetic field with t?rgldalBT, a_nd the poloidalB,, com-

different values of the degrees of anisotropy. ponents, the ten_scafl- )_'S determined by EqAS9), and the
The effective drift velocityv® causes an additional dif- additional effective drift velocity is given by

ferential rotation. Indeed, let us introduce the angular veloc- (|0U0

ity difference 62, which is determined from the identity y(3)=_ .
P

o )[e[E7(w>+Es(w>sin2¢.+Eg(w>sin“¢.]

V@)= 50r(wxe). Comparison of this definition with Egs.
(28) and (30) yields equations foBsQ(r)er 1. Calculating 1
the r derivatives of5Q(r), we obtain equations that deter- + EeH[Elo(w)_E9(w)5ir]2¢l]3in(2¢|) (35
mine the differential rotation for a slow rotatiom1),

(for details, see Appendix A Note that for a slow rotation
a(8Q) 4130 o 5(1l-¢) (w<<1) the additional effective drift velocity is very small,
o sl 2/ Y 8 ey B2 ie,V®~0(w?), and forw>1 itis given by

P

loUg

T ) s
——|cose,
L,

and foro>1, V@~ 80
w

X {ecos¢ [\ +10—130— 18(o—1)sir ¢,]
+e,sing[N—o—18c—1)cos¢,]}. (36)

)(50) 1 (Iouo

PP ﬁ)(l—a)sinzqh. (33
p

The electromotive force has a te C)Bj, which for an Now we determine the total effective drift V6|0City in an
axisymmetric case contributes only to an additional effectivedXISymmetric case:
drift velocity V* of the mean magnetic field, i.e., [V(©@x B]i+ai(jc)5j —[VE X B+ VA x Bl (37)

ai(jC)Bj =[V®x (Bp—Bp) i (34 where
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VE =V -vE, yA =y +vE), B8 L., OQA=[V(6Q)XV(r A)]-e,, Ac=A-r;2, r,
Therefore, the effective drift velocitieé® andV(® for the ~ — ' Sin¢. and we have used the induction equation for the
toroidal and poloidal magnetic fields are different. The addi_medarééna\?vr;]et|cvf(|§)lcﬁs\e/:?é) e.g(.j, VRe\f/S([é_tgc])) ?End E:?;'(?’?L
tional effective drift velocityV® is a result of an interaction aEO ( ) id en'th tr:t ~and R 5_ N gs.(39) aE
of turbulent convection with inertial waves and Rossby( ) coincide wi at given in Refl5]. Now we seek a

waves. Indeed, a part of the teﬂiﬂff)(k)mﬁmﬂm where ~ solution of Egs.(39 and (40) in the form A,Bocexp(}t
Yo=2(Q-k)/k is the frequency of the inertial waves and Ti1K-X), wherek=ke, e=e,Xey, the unit vectore, is
Yr=2A 0Kk, /k? is the frequency of Rossby wavisee Eqs.  directed opposite (& (502),

34) and (A37)]. .
(34) and(A37)] Y= kl2—K2—ikUM [ (x/2+ikU®)2+ikD]M2,

IV. DISCUSSION “1
In this paper we have studied an effect of rotation on al_<=_—V-V(B), UtI=v3). g, and y= yetiwg. In the
developed turbulent stratified convection. This allowed us tdimit of large dynamo numbeiD| the maximum growth rate

determine the dependences of the hydrodynamic helicity, thef the mean magnetic fielgtg is given by
a tensor, and the effective drift velocity of the mean mag-
netic field on the rate of rotation and an anisotropy of turbu-

lence. We demonstrated that in a turbulent convectionathe which is achieved at the wave numbeg=(1/2)(|D|/4)"3

effect can _change its sign depending on the_rate of rotatiog\t this wave number the frequenays of the dynamo wave
and an anisotropy of turbulence. We found different proper- B

ties of the effective drift velocity of the mean magnetic field IS
in a rotating turbulent convection. In particular, a poloidal wg=—(|D]/4)%3— (1/2UD(|D|/4)12 (43)
effective drift velocity can be diamagnetic or paramagnetic
depending on the rate of rotation. There is a difference in thesee Ref.[41]). The negative sign ofvg implies that the
effective drift velocities for the toroidal and poloidal mag- gynamo waves propagate to the equator, in agreement with
netic fields, which increases with the rate of rotation. Wethe solar magnetic field observations. On the other hand, the
found also a toroidal effective drift velocity that can play a givergence of the effective drift velocity® of the toroidal
role of an additional differential rotation. _ magnetic field can cause an increase of the growth rate of the
Some of the results obtained in our paper using theé mean magnetic field wher>0. The change of the sign of
approximation are observed in the direct numerical simulathe o effect depending on the rate of rotation and anisotropy
tions of the stratified turbulent convecti¢see Ref[23]). N f tyrbulent convectiorsee Sec. Il B can explain the ob-
particular, it was found in Refl23] that thea effect can  served direction of propagation of the solar dynamo waves.
change its sign depending on the rate of rotation. It was also Note that a meridional circulation in the solar convective
demonstrated in Ref23] that there is a difference in the one can also cause an equatorward drift of the solar dynamo
effective drift velocities for the toroidal and poloidal mag- ave (see, e.g., Ref§5,42,43). However, it was shown re-
netic fields, and that an observed toroidal effective drift ve-cently in Ref.[44] that the meridional velocity, which is
locity in Ref. [23] can play the role of an additional differ- required for the equatorward propagation of the solar dy-
ential rotation. _ _ namo wave with the periog 22 yr, should be of the order of
Now we apply the obtained results for the analysis of an_10_12 m/s. Such large meridional velocities are not ob-
axisymmetrica(} dynamo. The mean magnetic field in an seryed on the solar surface. On the other hand, we found that
axisymmetric case is given t=Be,+ V X (Ag,), whereA  the effective drift velocities of the mean magnetic field have
is the vector potential. The equations BrandA in dimen- 5 meridional componentalong e;). This velocity has the
sionless form are given by maximum /() .~10-12 m/s in the upper part of the so-
JB A lar convective zone. Therefore, this meridional effective drift
—+UV~(V(B)G15)=D(QA)+ASB, (39)  velocity of the mean magnetic field can cause the equator-
at ward propagation of the solar dynamo wave in the upper part
of the solar convective zone. Note that the meridional circu-
%4_ rIl(V(A)_V)(rLA):aB_l_ASA, (40) lations in the solar qonveption zone and the meridional com-
ponent of the effective drift velocities of the mean magnetic
field are different characteristics, because the first velocity
where the Iength is measured in units of the thickness of thgescribes |arge-sca|e fluid mot|omh|ch may cause advec-
convective zone., , the time is measured in units bf/ 7+, tion of the mean magnetic field by the large-scale fluid mo-
the velocity is measured in units ofr/L., the turbulent tions, i.e., by the mean flonand the second velocity deter-
magnetic diffusionnr=1,uy/3, Ug is the characteristic tur- mines the drift velocity of the mean magnetic fi¢lhich is
bulent velocity in the scal¢,, D=R,R, is the dynamo originated from the mean electromotive for€e-(uxb)).
number,R,=L.a, /77, andR,= Lﬁ(éﬂ)* Inr. Herea is We found also that in the upper part of the solar convec-
measured in units of the maximum valug of the « effect,  tive zone, thea effect does not change its sign, i.e., it is
(6Q), is the characteristic differential rotation in the scale positive. But in the lower part of the solar convective zone

ve=(3/4)(|D|/14)?*+ /2, (42)
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the « effect changes its sign, because the param@tey
increases with the increase of the depth of the solar convec: . . . . * .
tive zone, and ther effect becomes negative. Therefore, in%qﬂat'on(“l yields the relationship betweeh; andf, :
the lower part of the solar convective zone the negative fe =2Mg7oD; /e

effect is responsible for the equatorward propagation of the o _ _

solar dynamo waves. On the other hand, the meridional ef- 2. Modification of turbulent convection by rotation

fective drift velocity of the mean magnetic field in the lower ~ Now we study a modification of turbulent convection by

part of the solar convective zone is very small and, thus, itotation. To this end we derive equations for the following
cannot be used for the explanation of the equatorward propaecond moments:

gation of the solar dynamo wave.

ensemble of fluctuations we obtaifu?)=(S?(g%/|Q2)).

Therefore, both effects, the meridional effective drift ve- fij(k):f_(vi ), x(K)=L(w,v,),
locity of the mean magnetic field in the upper part of the
solar convective zone and the sign reversal ofd¢heffect in F(k)=L(s,w), G(k)=L(w,w),
the lower part of the solar convective zone, can cause the
equatorward propagation of the solar dynamo wave. d(k)=L(s,v)), OK) =L(s,s),

Note that in the present study we did not discuss the mag-
netic buoyancy effects which play an important role in theysing Egs. (5—(7), where L(a,b)=(a(k)b(—k)) and v
creation of strongly inhomogeneous magnetic struct(ses,  _ [, 7). The equations for these correlation functions are

e.g., Refs[6,34,35,45,49. given by
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1
—r =~ (kg l//A)( f(k)— EG(k)> —irx(k)
APPENDIX A: DERIVATIONS OF Egs. (17), (22), (25), (26),

AND (35) +gl(k)F(_k)+XNa (AS)
1. The conservation equations dP (k) Qg 1 )
Equations(2) and (3) yield the following conservation o Ef(k)_ E(Ikwﬂ_l’//A)F(k)_leq)Z(k)
equations for the kinetic energw,=pou?/2 and for Wg
=poS?2: +9, (kO (k) + Dy, (A6)
W, /ot+V -F,=1,—Dy, (A1) IF(k) Q3 _
i o o= g X (ki) @) +Fy,
where the source terms in these equations d&e dG(k)
e ‘ —=2kihoxi(K) - 20 xe(K) + Gy, (AB)
=—po(u-g)S andls=—1,Q/g", the dissipative terms are d
D,=—po(u-f,) and Dg=pSV-F,, the fluxes areF, 5
=u(W,+P) andFs=uWs. Equations(Al) and(A2) yield 90 (k) = _Z%q)R(k)_l_@N (A9)
a conservation equation fM/Ezquﬁ/ngrWs, Jt g
where
&WE/é)t‘FV'FE:_DE, (AS)

Pr(k)=[P(k)+P,(—k)]/2,
where the dissipative term i§E=DuQ§/gz+ Dg and the
flux is FE=Fuﬁ§/g2+ Fs. Equation(A3) does not have a
source term and it implies that without the dissipati@e(  and similarly for other second moments,, v, . . . @ are

=0) the valuefWedV is conserved, where in the latter for- the third moments, which are given by
mula the integration over the volume is performed. For the

D, (k)=[P,(k)—DPA—k)]/2i,

convectionQ2<0 and, thereforeWs~W,|Q32|/g?. Averag- fn(k)=L(Vn,v) +L(vz, V),
ing Eq. (Al) over an ensemble of fluctuations we obtain a . .
relationship between the flux of the entropy and the dissipa- xn(K)=L(Wy,v,) +L(w,Vy),
tion of the kinetic energy in a stationary turbulent convec- . )
tion: (u;S)g;=(u-f,). Similarly, averaging Eq(A3) over an dn(K)=L(Sy,v,) tL(s,Vy),
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Fn(k)=L(Sy,w)+L(s,Wy),
Gn(K)=L(Wy,w)+L(w,Wy),

On(k)=L(Sy,s)+L(s,S),

and
—Jpoe AV X[V X{(u-V)u—-f,}]},  (A10)
Wy=poe [V X (uxw+f,)], (A11)
sN:—M{(u.V)(%O +Ti0div Fk(i\/p_o) ]
(A12
Ua=Q- A, ho=2(Q-K)/K, yr=2A0k, /K%, andg, (k)

=g(k, /k)2 We assumed that (1/AY< %3
duce the following variables:

Xp(K) =Ko xr(K) + ¢y x1(K),
Xm(K) =Ktho x1(K) = A xr(K),
Fo(K)=KioFr(k)— ¥ F(K),

Fm(K)=kiroF(K)+ ¢\ Fr(k),

which allow us to rewrite EQ94A4)—(A9) as follows:

Now we intro-

df (k) 2
ot = X020, (PR, (AL3)
Ixn(k
Xg( )—i/fom(ngL(k)Fp(k)er(p) (A14)
Ixm(K) 1
X( <k¢g)< (k)= 3G (k) |~ drxy(k)
— g, (K)F (k) +x ", (A15)
%=iFm<k>+¢R®.<k>+gL<k>®<k>+q><NR>,
(A16)
P, (k) 1 o
g = e~ YRPRI) OV, (A17)
Fj;t(k) = (ki) 2@ (k) + F{P, (A18)
k
ath( Lo (ko)D) +FD (A19)
dG(k)
= 2xm(k)+ Gy, (A20)

PHYSICAL REVIEW E67, 026321 (2003

IO (k)
N

(A21)

where we have neglected small terms proportiona(llﬁnﬁg.

Next, we use ther approximation, which allows us to
express the third momentg, (P, ... @ in Egs.(A13)—
(A21) in terms of the second momerjtsee Eqs(8)], where
the superscript (0) corresponds to the background turbulent
convection(it is a turbulent convection without rotatio@)
=0), and 7(k) is the characteristic relaxation time of the
statistical moments. We consider the background turbulent
convection withy(®(k)=0.

We assume that the characteristic times of variation of the
second moment$(k), x,(k), ..., ®(k) are substantially
larger than the correlation timek) for all turbulence scales.
This allows us to get a stationary solution of E¢a13)—
(A21):

f(k)= (k) = 2¢[ (k) + 7(K)g, (k) Pr(K)],
(A22)
XR(K)= = a1 (K) + Ko thrino(K), (A23)
x1(K) =K pa(k), (A24)
Dgr(k)= CD(O—)(IZ), (A25)

1+ ¢

@,(k)=—(ﬁ(f;;gl;), (A26)
FrK)=kipq® (k) = pr Pr(k), (A27)
F1(k)=F (k) — kg @r(K), (A28)
G (k) =GO(k) +2(kirg)? 1 (K), (A29)
0(k)=00) k), (A30)

where we have changedigr— g, Tiho— o, Thyx— by ,

1
ma(k)=— > [efOK) = 7(k)g, (k) Pr(k)

1+44yg

X(1—-2¢3)],

7(k)g, (K)Pgr(k)
k)= kKy— ——=— ~ 7
oK)= puq(k) 1"’%) )

and fO(k)—GO(k)/k?>=—ef©(k). Here we neglected
the terms~O[(Aly)?]. We will show below that the first
term in Eq.(A23), x2)(k) = — ¢, u1(k), contributes to the
a effect, whereas the second term in H&23), x{2(k)
=k pruo(k), contributes to the additional effective drift
velocity. Thus, Eqs(A22)—(A30) describe a modification of
turbulent convection by rotation.
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3. The correlation tensor of velocity field where w=Q/Q and we have used the identityyq s
The functionsf (k), G(k), andy(k) determine the corre- = —472Q0%A(wX €),w.Kmn. The integration ink space in
lation tensorf;; (k)= (vi(k)v;(—k)): x1.2= [ x1AK)dk yields
fi(k)=fP 0+ P k), (A31) 1 m "
X1=— 125 S|n¢|{(a-+3)¢l{| m}
2
1@ (k) = ( ) ‘f(k)P,J(k) (f(k)——G(k))P(“(kl) + (7o 9)¢1{M Dt =3(0—1)pr{enMEN+(N/2)
X[MEN2w) =210 2) T (A38)
. 2 _ X . ~ ~
HAO A "'AJ”(")}’ (432 XoH(@X @il 1)) ~MEA(@)]=0,  (A39)

where w=47,Q, u5=2g7,®* 5, , singy=w-e, lo=Uqy7y,

F9)(k) = (1/2k4){[i (k- @B — (A/2)B(P) P{X}=2X(20)~X(w),  eg. ¢ {IE=212(20)

—i2k ek xr(K) HL (k- ©BP —(1A/2BM  —10w),
k2 AP) o _
ZkLA” Ixi(K)}, (A33) |i(]-p)(w)=(6/7Twp+l)f yplij(yz)dy, (A40)
0
and Py0)=0; k. kg =kl /K, =k + (k-0
H(k) =46 —e, k))i(k,) /K>, ei=ee;, N
and(AL()P)—(k )6+ (k. ><e§ é,),( L)*’>—L(|< <&k, MiP (@)= (6/mwP l)fo YPMij(y?)dy,  (A41)
+(k, ><e) (k)i and B('{")—(k xe)i(k,);

— (k. Xe)_j(kL)i_- For the derivation of EQ$A32) and(A33) M (y)=emnnlijmn(y), 1(2), andl;;mn(2) are determined by

the velocityv, is written as a sum of the vortical and the Egs. (B1) and (B2) of Appendix B, and the exponer

potential components, i.ey, =V X (Ce)+V, ¢, wherev =1,2,3,4 is determined by in the expressions for the hy-
=v,+v,e, W=—A,C, A ¢=Av,/2—dv,l9z, V.v  drodynamic helicity, thex effect, and the effective drift ve-

=(A/2)(v-€), V,=V—ge- V). We also used the identities 10city (see below: For examplep=1,2 in Eq.(A38). Equa-
(kl><e) (kae)J_kf ff)(kﬁ and k- e)B(M) k2A <M) tion (A38) yi_elds _the angular_ ve_Ioci_ty dependence of the
—K2 25,0k, (se€, e.g., Ref47)). In Eq. (A33) we neglected hydrodynamic helicityy*), which is given by Eq(17).
the terms~O[(AI0)2] We will use Eqgs(A32) and (A33)
for the calculation of the hydrodynamic helicity and the 5. The electromotive force
effect. In order to derive an equation for thetensor, we intro-
duce the electromotive force

4. The hydrodynamic helicity

Now we find the dependence of the hydrodynamic helic- &=(ux b>i:exp(/\2)8imnj xE(kdk,  (A42)
ity x®)=(u-(VXu)) on the rate of rotation and anisotropy
of turbulence. Irk space the hydrodynamic helicity is given |, hare X(C)(k)ZI:(U' h)=(vi(k)h;(—k)) is the cross-
io I i j

b ~
y helicity tensor. Using the equation far=V X(Ce)+V ¢

XK= —iginmkifmn(K)exp(Az) +v,€, we obtain
=(1+k%K?) xr(k)exp(A2), (A34) X (k) =k Hi(kxe)i& (k) +[K2 e — (ki— k&)
X (k+i1A12)1¢{9(K)}, (A43)

where we have used Eq6A32) and (A33). The function
exp(A2) in Eqg. (A34) implies that we have used the transfor-

(c) )
mation u=exp(Az/2)v. Equation(A34) can be rewritten as  Where X{7(K) =ex(P (k) =L(v,.hy) and &k)=L(wh).

Using Egs.(5)—(7) and(21) we derlve equations fof(k),
YR =exp ADoK, (A35) X0, andZi)=L(sh:

3 .
where —e =1+ (ko= )XV (k) + &y, (A44)

X2(K)= = ¥ pa () (14 KZKE), (A36) X(c)

=100+ k™ (kg + ) EK) +ighpa® + 9, (K) &

X2(K)=— 47202\ (0X €) o Kmnta(K) (1+K2/K?),

(A37) P (A45)
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9% _ 9
Franl A °F (A46)
where&y, x\&, and{y are the third moments:
&(k)=L(Wy,h)+L(w,Hy),
X9 () =L(Vy,h)+ L, Hy),
LK) =L(Sy,h)+L(s,Hy),
and
Hy=VpoV X (UXb—E— 7V Xb); (A47)
Y= A, Yo=2(Q-K)/K, yr=2A0,k,/K? and
=ty M2 ieR _
[ UZ,W = I(Bk)e,f”(k) Af(k)BJ,
(A48)
[ oh -
I(W)=L(W,E)=—|(B~k)X(W)(k)—AX(k)B,
(A49)
[ oh o
I(5)=L(s,ﬁ)=—|(B~k)<I)(k)—A<DZ(k)B, (A50)

k=k+(iA/2)e and " (k)=L(w,v) is given by
XM () =k A x(K)[e(k2—iAk,/2) —k(k,~1A/2)]
—iG(k)(kxe)}. (A51)

Note thaty(k)=x™"(k)-e. Now we use ther approxima-

PHYSICAL REVIEW E67, 026321 (2003

netic field in an anisotropic turbulencd; ;=V;B;, and
((?B),J (1/2)(B; j+Bj;). In this study we determine only
the tensora;; and the velocity{? . The calculations of the
other coefficients defining electromotive force are a subject
of a separate paper. The tensgr=a(> +a{*¥ follows from
Egs.(A43) and(A52)—(A54), where

aP=aP+al+al, (A55)

©, (A56)

where a{¥ = (1/2)(a;; +a;;) and a{*9=(1/2)(a;;—a;) are
the symmetrlc and antlsymmetnc parts of the tersgpr and

al®(k) =ki; prs1(k,2)[ 21 (k) + (k) — G(k)/K?

+27(k)g, (K)Pr(K)], (A57)
alP (k) = (eik; + ki) sa(k, 2)[ #a G (k) —kx; (k)
+kr(k)g, (K)F (k)] (A58)
f(k)+ G(K)/k2+27(k kYD x(k
2k = ( (K)+G(k) 1+; 9.0,
Q
X Ko = x1(K) (Kij rs1(K,2)
+[(exk)ik;+(exk)ki]s(k,z)
X[kf(k)+kr(k0g. (K PrK)=daxi (K], (z5)

aD (k) =[2K2ejmenPmn(K) + (X K)ik; — (€x k) ki Is,(K,2)
X[kf(k) = poxi (k) +k7(k)g, (k) Dr(k)], (AB0)

tion and assume that the characteristic times of variation of
the second momentg, £, and x{© are substantially larger a(e)(k) K[2&ijm(eXK)m—eik;+ejki]s,(k,2)

than the correlation time(k) for all turbulence scales. This

allows us to get a stationary solution of Ega44)—(A46):

&K) =71 (K) + (kg — ) X(K),  (A52)
2 .
@_TAHYOTIVR) ) o
(1+lﬂ§2)2 [ ( l/IQ I/IA) ( )]1

(A53)

and {(k)= 71, where we changedyr— g, To— g,

TYN—= P -
the electromotive force is given by

5i:(1iij+(V(d)X B)i_
—[6X(VXB)];
Eaiij+bijkBi’j

Uij(VXB)j_Kijk(&é)ij

(A54)

(see, e.g., Ref40]), where the tensora;; and 7;; describe

Now we take into account that a general form of

*{kpal f(k)+ 708 (0PRI)T+ X0} (461,

and s1(k,2) =exp(A2) (k) (KK )%/ (1+45),
=(A/2k3)s,(k,z). Here we used that

s»(k,z)

E=K [iex (exk)+(ex x¥9)(K2+iAk,/2)— (kX x(©))
X (k,+i1A12)], (A62)
eifij(k) =k *{[K2%e;P;;(K) +i(A12)kiPij(e)1f (k)

+i(exk);[xr(k)—ixi(K)]}, (A63)

where Pij(e): 5” _eij . Note that eifij(k):ﬁa J|(k) be-
cause rotation causes a nonzero helicity in the turbulent con-
vection. Here we also took into account that the teregpr
must be real i space.

We will show that the tensom? (k) anda({’ (k) contrib-
ute to thea tensor, the tensoa(d)(k) contributes to the

the a effect and turbulent magnetic diffusion, respectively, effective drift velocityV®), the tensoa‘e)(k) contributes to

V(@ s the effective diamagneti@r paramagnetjcvelocity,

the effective drift velocityV(®, and the tensoa{) (k) con-

kijx and é describe a nontrivial behavior of the mean mag-tributes to the effective drift velocity ),

026321-12
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6. The e tensor 1;;(2) and1;;mn(2) are determined by Eq$B1) and (B2) of
Now we determine the tensar;; :ai(ja)""ai(jb)- The inte- Appendix B. Now we use the following identities:
ration ink space yields
g P y Pl]t;nn mn— (ele+ejwl)|-l

<a)1|2 BN 1gi b M . C T e T
ajj _65 [¢5{||1}+3(0' 1)¢2{M Hsingy, P”mnM (eiwj+ejwi)(L3+Lgsm2¢|)+4eijL3sm¢,,

(AB4) whereL, are determined by Eq$C3) of Appendix C. Thus,
the @ tensor,a;;=a{+a’, is given by Eq.(22). For a

2 ij 1
a(b)_ ! (lOQ>P|(]bmn[¢6{l d+3(0—1)pa{MEN, slow rotation w<1) the tensok;; is given by
60, \ L
(A65) 4 |§Q>( o 5\ -
aji~ad;—=| —||1-=— —=[1+(2¢) 1]
! o5l L, 6 9

where Egs.(A57) and (A58) are used fora{?(k) and
a)(k), respectivelyP() = wm(e;dnj+€;8,), and hereaf- X (e wj+€)), (A66)

ter we use the following functions: L
g and forw>1 it is given by

IO 0
a5 16< )

> —(ei&)j-f—ejzui)(l-i-Z CO§¢|)}.

$1{X}=2X(20) ~ X(w),

3
N+ + =(o—1)

wijsin ¢| 6 2

3
$21X) =4X(20) = ~X(w?),
X Sin2¢| -

¢3{X}— X(w?)—2X(2w) = X(w), (A67)

7. The effective drift velocity

3_
$a{X}=7XV(0) ~ 4XD(20) - —X(0?) Now we determine the effective drift velocity!d=V(}
+V2  where

9w? (a) d d)Z(d
t— " R V= —(12em;a=PNal, (A69)
V@=—(1/2 (€), A69
Bs{X}=(3— 0) $p{XP} — (\2)[4XD(200) — XD ()], (W2 (69
and
X}=(3— XN+ (/2
4)6{ } ( U)¢3{ }+( ) a(d ep(zsljpémn+8|pn5]m Sjpn5|m 28IJm np)amn,
X[2XP(2w)+ e XP(w)], (A70)
—(3— (2) - 1 [lqu
$o{X}= (3= o) g1 {X D} aﬁd’=m(%)[¢7{ln}+3<o—1)¢1{M§f>}],
N[ XD(2w) o (A71)

_(1+871)X(l)((’))]1 |2Q
@__L [ 50 _ @
ajj 66 L Pl]mn[¢8{|mn}+3(0' 1) ¢ {M 2],
* p

$e{X}= (3= ) b1 { X} = (N[ $2{XP} =& "X w)], (A72)

Pfr%)n_zenﬁml €mOni— € Omn.» Pl(Jer%n_(eiﬁjn_ej 5in)(:)m-
For the integration ik space, we used Eq@\60) and(A61)

for a{)(k) and a{?(k), respectively. Using the following
For example, identities:

S, —
Do X}=2AXB)(20) — (N +26,)X®(w) + 67*X(w2).

3— ONN 1 4o SiN b A
BoMER = Mo @2) ~2ME)20) - M), Pl =~ €Lt o;sindihz

PFr?l)nM mn— ei[361_K1+ (363—K2)Sin2d)|]

bellmny =(3— 0) b3{1 G+ (N /2)

+w; sing[3C3+C, sirtey],
X[2132w)+&e 1 E(w)], ! e |

] ) 3 ) Skijﬁ’i(jergqnl_mn: —2?1((:»( €k
the functlonslﬁng(w) and Mﬁn%(w) are determined by Egs. o o A
(A40) and (A41), M;;(y)=emal;jmn(y), and the functions ek P M mn= — 2 (La+ L, sirf ) (@X e),
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in Egs.(A68)—(A72), we obtain the effective drift velocities
v andV{?, which are given by Eqq25) and(26). Here
Mi; (Y) =emnlijmn(y), 1ij(2) andlijmn(z_) are determined by
Egs.(B1) and(B2) of Appendix B, and., are determined by
Egs.(C3) of Appendix C.

The electromotive force has a terf’B;, which for an

axisymmetric case contributes only to an additional effective

drift velocity V() of the mean magnetic field, i.ea{”B;
=[V®)x(B,—By)];, whereB=B+B, is the mean mag-
netic field with toroidal By) and poloidal B,) components
and the tensoa(k) is determined by Eq(A59). Integra-
tion in k spaceafjc)zfai(jc)(k)dk, yields

1 [lgug 5 A A
M(L—p){Zw (wXe) o,

X[ dollijmnt +2(3— ) Pailijmn}
+6(c—1) ¢4{Jijmn}]
— P [3(0—1) p{ M@+ b{l mat 1},

where P{%) = (&ipnGim+ €jondim)€p . In oOrder to determine
the effective drift velocityv{>), we use the following iden-
tities:

ai(J,C) - _

(cig;+¢;0i)B;=[(gxc)X(B,—By)];,

PO T

ijmnl mn= —A2(Cjw; + Cjw;),

Kijmn SINO
1+acosd

I—ijmn(a):J

+ 5jnwim+ 5mnwij).

kijmnpqSin (%

dode=
1+acog6 ¢

— 1 .
D1+ §D3(0)'e)2

J_ijmn(a):equ

PHYSICAL REVIEW E67, 026321 (2003

P M == (C3+ C, sir b)) (Ciw; + Cjw;)

—2Cgsingy(ciej+cje),
Cm‘:’nl_ijmn:fs(cia)j +Cjw)),
Cm"'\)n\]_ijmn:(fS"'fG Sinzd’l)(ci‘:’j +ij:)i)

+Dysingi(ciej+cje),

whereci=(&)>< e, q=&) org=e, I\Wij =J—iimm’

a1 = (61707 [ YTna(yDly,  (A73

Ji(j%n(w)Z(B/Wpr) fo ypjijmn(yz)dyv (A74)

and we used Eq¥B1)—(B9) of Appendix B and Eqs(C2)
and (C3) of Appendix C. Thus, the effective drift velocity
V® is given by Eq.(35).

APPENDIX B: THE IDENTITIES USED
FOR THE INTEGRATION IN k SPACE

To integrate over the angles knspace we used the fol-
lowing identities:
I—ij(a):f

kij sin¢

—  _d6de=A.5+Aw;, (Bl
1+acogd p=Audyt Az, (BY)

do d‘stl( 5ij OmnT 5im5jn+ 5in5jm) +62wijmn+63( 5ij WmnT 5imwjn+ 5inwjm+ 5jm‘1)in

(B2)

(5ij 5mn+ 5im5jn + 5in5jm) + [52+ 57((:’ e)z]wijmn+ 55((:’ e)

ST 0 a2
X(0ijm€nT jjnem+ ©jmn€ + Wimn€j) +[D3+De(®-€)°](5jjwmnt Sim@jn+ Sin@jmT Sjm@in + Sjn@im+ Smnwij)

_ 3
+ D y( 5ijemn+ 5imejn + 5inejm+ 5jmein + 5jneim+ 5mneij )— ZDS(eij Ompt €im@jn T €ihWim

+ejmwin+ejnwim+emnwij)a (B3)
ﬁ ( ) f kijmnSine 0d (9f kijmnSin0 0d |_ ( )+ (?l— ( ) (84)
nmn (1+acoh)? ¢ b) b+acogs ¢ - ymn ga im"
— _ Kijmn SIN 6 = a d—
Gijmn(a)_f m 0d¢—Hijmn(a)+§ %Hijmn(a)y (B5)
I\Wij(a)Z(El-l—EgSinz@)&ij+(63+625i|’12¢|)wij+2616i]-+263Sin¢|(eiwj+ejwi), (BG)
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whereM;;(2) =€l ijmn(2),
&jM;;(a)=3C,+6Cgsirf¢ +Cysirtey,  (B7)
Mop(@)=e;l;j(a)=As+A, sid, , (B8)

and wij:(:)i(:)j, wiij(;)i(:)j(:)j, K1:561+63, KZZEZ
+7C3, and

Ay(2)=F(1;-1;0;0), Ax(a)=F(—1;3;0;0),
Ca(a)=(1/4F(1;-2;1;0),
C,(a)=(1/4)F(3;-30;35;0,
Ca(a)=(LU4F(~1;6;-5;0),

Cy(a)=F(0;0;1;-1), Cs(a)=F(0;0;-1;3),

Dy(a)=—(1/8)(Cy+5C3—5C,)=(1/8F(1;—7;11;—5),
D,(a)=—(1/8)(51C; +111C4— 119C,)

=(1/8)F(15;—141;245-119),

D3(a)=(3/8)(3C,+7C3—7C,) = (318 F(—1;9;—15;7),

D4(a)=(1/2)(C,+C3—C,)=(1/2)F(0;1;—2;1),
Dg(a)=3C;+9C3—7C,=(1/2)F(—3;24;—35;14),
Dg(a)=(1/8)(5C,+3C3+20C,—5Cxs)
= (1/8)F(3;—33;65;—35),

D(a)=—(1/8)(48C,+ 27C,+ 165C;+ 28C,— 35Cx)

= (1/8)F(9:—21:—105;133. (B9)

F(@;B;7m) = ado(@)+ BIa(a) + ydu(@)+ pds(a)],
— 1
J2k(a)52J x2K/(1+ax?)dx

0

=a Y2/(2k—1)—Jp-y(@)],  (B1O)

andJo(a) = 2arctan(/a)/\/a. In the case o<1 these func-
tions are given by

2

_ 2k+1  2k+1
Jad@)~ 517

1A 3 T a5/

and fora>1 they are given R@k(a)~2/a(2k—1) for all

integerk except fork=0 andJy(a)~ 7/ /a—2/a. Now we
introduce the following functions:

PHYSICAL REVIEW E 67, 026321 (2003

F‘p>(?v:73;~v:ﬁ)=(6/mo"”)fwypf(?v:ﬁ;?:ﬁ)la:yzdy
0

=a)P(0)+BIP(0) + 7P ()
+ 1IP(0),

where

1P ()= (6/0P*Y) fowy@k(y%dy. (B11)

The integration in Eq(B11) yields

12

2k—D)p-1) (@) | (B12)

ng(w):w—z(

for p#1 and all integer& except fork=0. Whenp=1 and
k#0 we get

2
_ 6 [|n(1+w)+(_1)k+li
2k—1 2 2k

. (B13

" arctanio) ‘— (—1)Mw2m
w m=o0 (2m+1)

Whenk=0 we obtain

6
(2n) —
Jo (o) n

2n

arctariw) (
w

w

_ n+1
oy

n-1 (—1)ntm-1

m=1 (2m—1)w”_m+11’ (B14

1
J(Z”“)(w) _ 6 arctafiw) (—1)"*
0 ® w2(+1)

= + 2
2n+1 In(1+w%)

n-1

2\n—m__
—n!mzzl(—l)m (1+ w?) 1

(n—m)ym!(n—m)!

(B15)

Equation (B14) is for all integersn>1, and J{(w)
=(12/w) [yl arctany)/y]dy. For n=0 andn=1, the third
term with the sum in Eq(B15) should be dropped. In order
to use Eq.(B12) for p=2 we need to know the function
J®)(w), which is given by

3 |arctariw) (—1)k*t

(0) _

‘]2k(“’)_2k—2 P (1+ w2k
S & (B16)
m=1 (2m+1)w2km |

In the case ofv<<1, these functions are given by
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12 2k+1\[p+1
IP(0)~ ] 1-0? 5| ——=
K (2k+1)(p+1) 2k+3/\p+3
2k+1 +1
+ w? p— .
2k+5/\p+5

In the case ofw>1, these functions are given by

12

(p) ~
) B DD

for p#1 andk+0;

67 12
Wwor
Pe  (p—1)w?
for p#0 andp#1;
12Ihw
IDp)~ ———
K (w) (2k—1)a?

for k#0; and
30 37 - 1 (4k—1
2() k=2, Tw\2k—=1) |

67 Inw

Now we introduce the following functions:
Hfﬁ%n(w)=(6lmp“)fo YPH jmn(y2)dy= (3/7) 1 jjmn( @)
—(P=DIifan(w)/2, (B17)
Gifin(@) = (6/mwP ") fo Y*Gijmn(y?)dy
p—1)2 3(3-p)|—
:( 2 ) Ii(jpr%n((v)‘i‘(T Iijmn(‘“z)

3w?( dlimn(a
+i( |jmn( )) , (B19)
T Ja amw?

which will be used for the calculation of the effective drift

velocity of the mean magnetic field. The functioAf” ()

can be obtained from Eq&B9) after the change of the left-

hand side(LHS) of Egs. (B9) A(a)—AP(w), and of the
right-hand side (RHS) of Egs. (B9), F(a:B;v;x)
—F®(a;B;y;n), and similarly for the function€{" (w)
andD{P(w), e.g.,

AP (w)=FP)(1;-1;0;0),

CiP(w)=(1/14HFP(1;-2;1;0),..., (B19

PHYSICAL REVIEW E67, 026321 (2003

and similarly for the other function€{”(w) and D{"(w).
For the calculation of the functions,{X} we need to use the
following identities:

AEY — 9J_2(k—1)(a)
2 - T2 IR
@ Ja . Jaa) + 9a s
a=w a=ow
where
ddg(a) 1 [[a —
ga  2a 4 a+1_‘]°(a) '

APPENDIX C: THE FUNCTIONS W z(@w) AND E g(w)

The functions¥(w) are given by
V(@) =100 ¢ {AP}+ (0+3) po{ AP}~ (N12)
X[5AM(2w)+ A (20)]1-9(0—1) ¢, {CP)},

Vy(0)=(70-9)p{AP} = 18(0— 1) $,{C{)}
+ (M2 AV (2w),

Vy(w)=—3(c—1)¢:{CP},

W 4(0) = ¢s{Ar}+3(o—1) ¢o{CE},
V() =3(0—1)p{CE},
Wo(0) = ds{Az}+3(a—1) ¢o{CH},
V() =3(0—1)${CS},
Wg(w)=6(0—1)[ $o{CI}+205{LEN],
Wo(w) = defLi}+3(0—1) $5{LE},

Vi 0)=2Ws(w) +3(c—1)¢a{LE}.  (CD)
The functionsE,(w) are given by

Ei(0)=3(0—1)¢1{L¥}— ¢o{La},

Ea(0)=¢7{Az}+ (30— 1) o{LEP)},
Es(w)=3(c—1)$:{CS},

Ea(0)=¢7{Az}+9(o—1)¢:{CP},

Es(w) = ¢e{Li}+3(0—1)${LE),
Ee(0)=3(c—1)p{LY},

E7(0)=(12[ ¢p7{Ax}+3(0—1) 1 {CN ]+ 0 dofLs}
+2(3— 0) daflat+6(0— 1) dafLs}],

Eg(w)=—E7(w)—Eg(w),
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Eo(@)=—(3/2(0—1)$1{CP} —6w?(s—1) da{Le},

Eif®)=E1(0)+3(c—1)[¢o{CP}+2wh4{D,}],
(C2)

where
Li(a)=A;+A,=2F(0;1;0;0),
L,(a)=C,+3C3=F(0;-3;5;0),
L3(a)=Cy+C3=F(0;1;~1;0),
L4(a)=2A;+A,=F(1;1;0;0),
Ls(a)=D;+D;y=(1/4F(~1;10;-17;8),
Lg(a)=(1/3)D3+Dg=(1/4)F(1;—12;25;289,
L7(a)=3C;~A;=(14F(-1;-2;3;0),
Lg(a)=6C3—A,=(1/2)F(—1;12;—15;0), (C3
andL (" (@)= (6/mwP 1) [y Li(y?)dy.

APPENDIX D: THE MODEL OF THE BACKGROUND
TURBULENT CONVECTION

PHYSICAL REVIEW E 67, 026321 (2003

where we assumed that the turbulent velocity field in the
background turbulent convection is nonhelical. Now we use
an identity

(K/K, ) ?€mnPim(K) Pjn(k) = & + ki; —kij=P;; (k) = Pi; (k ),
(D3)
which can be derived from
k(K& + ek +ejki) =kijk?— kijk? .

Here we also used the identity k(Xxe);(k, X€);
=k?P§"(k,). Substituting Eq(D3) into Eq. (D2), we ob-
tain

F{(0) = (k1k )2 FOk) Py (k)
+[G(O)(k)/k2—f(o)(k)]Pﬁ(kL)}' (D4)

Thus two independent functions determine the correlation
function of the turbulent velocity field. In isotropic three-
dimensional turbulent flowG(®(k)/k?= f(©(k) and the cor-
relation function reads

f§j°>(k) =, W(k)P;;(k)/8k>. (D5)

In isotropic two-dimensional turbulent flowG(©(k)/k?
>f, f(O(k) and the correlation function is given by

£ (k) =GO(K) P (k, )/8mk2K? . (D6)

A simplest generalization of these correlation functions is an

A simple approximate model for the three-dimensionalassumptio”'tha‘G(o)(k_)/['f(z))f(o)(k_)]_.1:8:(30715t and thus
isotropic Navier-Stokes turbulence is described by a twothe correlation functionfi”(k) is given by Eg.(9). This

point correlation function of the velocity field;;(t,x,y)
=(u;(t,x)uj(t,y)) with the Kolmogorov spectrumn/(k)

correlation function can be considered as a combination of
Egs. (D5) and (D6) for three-dimensional and two-

«k~9 and q=5/3. The turbulent convection is determined dimensional turbulence. Whendepends on the wave vector

not only by the turbulent velocity field(t,x) but the fluc-
tuations of the entropg(t,x). This implies that for the de-
scription of the turbulent convection, one needs additional

k, the correlation functiorf("(k) is determined by two
spectrum functions.
Now we derive Eq(10) for the turbulent flux of entropy.

correlation functions, e.g., the turbulent flux of entropy Multiplying Eq. (D1) written for ui(k,) by s(k;) and aver-
®,(t,x,y)={(s(t,x)u;(t,y)) and the second moment of the aging over the turbulent velocity field, we obtain E40).

entropy fluctuations®(t,x,y) =(s(t,x)s(t,y)). Note also

that the turbulent convection is anisotropic.

Now we derive Egs(9) and(10) for the correlation func-
tions f;; and®; . To this end, the velocity, is written as a
sum of the vortical and the potential components, ie.,

=VXx(Ce)+V, b, where w=(Vxu),=—A,C, A

=Au,—du,/dz, V, =V —¢(e- V). Thus, ink space the ve-

locity u is given by

Ui(K) =K, Tk%emPim(k)uz(k) —i(exk)w(k)], (D1)

where we neglected termsO(A). Multiplying Eq. (D1) for
ui(ky) by u;j(k;) and averaging over the turbulent velocity

field, we obtain

fI(JO)(k) = ki4[ k4f(0)(k)emnpim(k) Pjn(k) + (ex k)|
X (exk);GO(k)], (D2)

Multiplying Eq. (10) by i(k, xX€);, we get
FO(Kk)=i(k, xe)- ®(k). (D7)

Now we assume thab{?(k)oc®* f(O(k)/f, . The integra-
tion in k space in Eq(D7) yields the numerical factor in Eq.
(12). Note that for simplicity we assumed that the correlation
functions F(©(k) and f(®)(k) have the same spectrum. If
these functions have different spectra, it results only in a
different magnitude of a numerical coefficient in EG2).

Now let us discuss the physical meaning of the parameter
o. To this end we will derive the equation for the two-point
correlation functiond{®)(r)=(s(x)u(x+r)) of the turbulent
flux of entropy for the background turbulent convection
[which corresponds to Ed11) written in k spacé. To this
end we rewrite Eq(11) in the following form:

PO(k)=D2[K2+T (e k)2]D,,(k), (D8)
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D, (K)=—(3—0)W(k)/87k*, (D9)

where®; =®* -e, I'=3(c—1)/(3— o). The Fourier trans-
formation of Eq.(D8) yields

DO(r)=0F[A+T (e V)2]D,(r), (D10)

where ®,,(r) is the Fourier transformation of the function
®d,,(k). Now we use the identity

ViVi®@(r) =) S+’ (N, (D11)

where §(r)=r"'®/(r) and ¥'(r)=dy/dr. Equations
(D10) and (D11) yield the two-point correlation function
®O(r):

1+T co¥d

()= | Pr)+19 ()=

(D12
where@ is the angle betweemandr. The functiony(r) has
the following properties/(r =0)=1 and ¢¥'),_,=0, e.g.,
the functionyg(r)=1—(r/1,)9"* satisfies the above proper-
ties, where X q<3. Thus, the two-point correlation func-

PHYSICAL REVIEW E67, 026321 (2003

tion <I>§°’(r) of the flux of entropy for the background turbu-
lent convection is given by
[
i)
lo

.

where 1<q<3. The simple analysis shows that3/(q
—1)<o<3, where we took into account thatb{®(r)/ar
<0 for all anglesd. The parametes can be presented in the
form  o=[1+%(q+1)/(q—1)]/(1+%/3), where ¢
=(,/1,)9 %=1, and |, and |, are the horizontal
=/2) and vertical §=0) scales in which the correlation
function®{%)(r) tends to zero. The parametedescribes the
degree of thermal anisotropy. In particular, wHer=1, the
parameteré=0 and o=1. For |, <l, the parameteré
=—1 ando=—3/(q—1). The maximum valug,,,, of the
parameteré is given byZ.,=q—1 for ¢=3. Thus, foro
<1 the thermal structures have the form of column or ther-
mal jets (, <l,), and foro>1 there exist the 2D droplet
thermal structuresl ( >1,) in the background turbulent con-
vection.

(q—1)(1+T cogd)
3+T

oP(r) =}
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