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Generation of a large-scale vorticity in a fast-rotating density-stratified
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We find an instability resulting in generation of large-scale vorticity in a fast-rotating small-scale turbulence or
turbulent convection with inhomogeneous fluid density along the rotational axis in anelastic approximation. The
large-scale instability causes excitation of two modes: (i) the mode with dominant vertical vorticity and with the
mean velocity being independent of the vertical coordinate; (ii) the mode with dominant horizontal vorticity and
with the mean momentum being independent of the vertical coordinate. The mode with the dominant vertical
vorticity can be excited in a fast-rotating density-stratified hydrodynamic turbulence or turbulent convection.
For this mode, the mean entropy is depleted inside the cyclonic vortices, while it is enhanced inside the
anticyclonic vortices. The mode with the dominant horizontal vorticity can be excited only in a fast-rotating
density-stratified turbulent convection. The developed theory may be relevant for explanation of an origin of
large spots observed as immense storms in great planets, e.g., the Great Red Spot in Jupiter and large spots
in Saturn. It may be also useful for explanation of an origin of high-latitude spots in rapidly rotating late-type
stars.
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I. INTRODUCTION

Generations of large-scale vorticity in turbulent flows
have been investigated theoretically, experimentally, and nu-
merically in a number of studies due to various applica-
tions in geophysical, astrophysical and industrial flows (see,
e.g., Refs. [1–3]). Using an analogy between the induction
equation for magnetic field and the vorticity equation (see
Refs. [4,5]), it has been proposed in Refs. [6–8] that the large-
scale vorticity can be generated due to a large-scale instability
by the kinetic α effect in a helical turbulence with a net kinetic
helicity. The kinetic helicity and the kinetic α effect can
be produced in rotating density stratified or inhomogeneous
turbulence.

Another possibility for a generation of large-scale vorticity
is related to anisotropic kinetic α effect referred as the AKA
effect [9–11], which is caused by a non-Galilean invariant
forcing. For example, boundaries can break the Galilean
invariance which results in an anisotropic kinetic α effect
[12], resulting in a large-scale instability. In astrophysics, a
turbulence driven by non-Galilean invariant forcing can exist
in galaxies (e.g., supernova-driven turbulence [13,14] and the
turbulent wakes driven by galaxies moving through the galaxy
cluster [15]).

In a nonconducting fluid, a nonhelical turbulence with an
imposed large-scale velocity shear can cause a large-scale
instability resulting in generation of the large-scale vorticity
due to a combined effect of the large-scale shear motions
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and Reynolds stress-induced production of perturbations of
mean vorticity [16,17]. This effect referred as “vorticity dy-
namo” has been also confirmed in direct numerical simula-
tions (DNS) [18,19]. This mechanism of the generation of the
large-scale vorticity is also associated with the Prandtl’s first
and second kinds of secondary flows [20,21]. In particular,
the skew-induced streamwise mean vorticity generation arises
at the lateral boundaries of three-dimensional thin shear lay-
ers and corresponds to the Prandtl’s first kind of secondary
flows. In turbulent flows, the streamwise mean vorticity can
be generated by the Reynolds stress, and this mechanism is
associated with formation of the Prandtl’s second kind of
turbulent flows [21].

A large-scale vorticity also can be produced by a combined
effect of a rotating incompressible turbulence and inhomoge-
neous kinetic helicity [22–25] or due to a combined action
of a density-stratified rotating homogeneous turbulence and
uniform kinetic helicity [25]. These effects result in the forma-
tion of a large-scale shear, and in turn its interaction with the
small-scale turbulence causes an excitation of the large-scale
instability (the vorticity dynamo) due to a combined effect of
the large-scale shear and Reynolds stress-induced generation
of the mean vorticity [25].

Recent DNS have shown that large-scale vortices in rapidly
rotating turbulent convection can be formed in compressible
[26–28] or Boussinesq fluids [29–33]. The produced large-
scale motions include cyclonic vortices and anti-cyclonic vor-
tices. It was found that in the cyclonic vortices the temperature
is depleted [27,28].

In the present study we develop a theory of the gener-
ation of the large-scale vorticity in a fast-rotating turbulent
convection with inhomogeneous fluid density in anelastic
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approximation. A particular case when gravity is along ro-
tational axis has been considered. We have found a large-
scale instability which results in an excitation of two modes.
For the mode with dominant vertical vorticity, the mean
velocity is independent of the vertical coordinate. This mode
can be excited in both, a fast-rotating density-stratified
hydrodynamic turbulence and fast-rotating density-stratified
turbulent convection. We have demonstrated that for this
mode, the mean entropy is depleted inside the cyclonic vor-
tices in agreement with [27,28]. For the second mode, the
horizontal component of the mean vorticity is dominant,
and the mean momentum is independent of the vertical
coordinate.

This study may be relevant to formation mechanisms
of large spots observed in the form of immense storms in
great planets (e.g., the Great Red Spot in Jupiter and large
spots in Saturn, see, e.g., Refs. [34–36]), and it may be
useful for explanation of an origin of high-latitude spots
seen in Doppler imaging in rapidly rotating late-type stars
[27,28].

This paper is organized as follows. In Sec. II we consider
the effect of fast rotation on the Reynolds stress and the
effective force. Here we outline the method of derivations
and approximations made for study of this effect. Using
mean-field equations and the derived rotational contributions
to the Reynolds stress, we study in Sec. III the large-scale
instability causing the generation of the large-scale vorticity
in a fast-rotating turbulent convection with inhomogeneous
fluid density along the rotational axis. Finally, conclusions
are drawn in Sec. V. In Appendix A we present details of
the derivation of equation for the rotational contributions
to the Reynolds stress. In Appendix B we give an explicit
form for the mean-field equations describing the large-scale
instability which results in generation of the mean vorticity
for different modes. In Appendix C we discuss the role of
the centrifugal force in the production of large-scale vortic-
ity. The centrifugal force causes the inhomogeneous density
distribution in the plane perpendicular to the angular velocity
�. We have shown in Appendix C that a combined effect of a
fast rotation and horizontal inhomogeneity of the fluid density
(caused by the centrifugal force) results in the production of
the large-scale vertical vorticity in an anisotropic isothermal
turbulence.

II. EFFECT OF FAST ROTATION ON THE REYNOLDS
STRESS AND THE EFFECTIVE FORCE

To derive mean-field equations which describe generation
of the large-scale vorticity, we consider a small-scale low-
Mach-number fast-rotating density-stratified turbulent con-
vection in anelastic approximation with equation of state
for the ideal gas. To investigate effect of fast rotation on
the Reynolds stress in a turbulent convection with inho-
mogeneous fluid density, we use a mean-field approach,
whereby the velocity, pressure, and entropy are decomposed
in the mean and fluctuating parts. An ensemble averaging
of the momentum and entropy equations yields the equa-
tions for mean velocity, U (t, x), and mean entropy, S(t, x),
in the reference frame rotating with the constant angular

velocity �:

∂U i

∂t
+ (U · ∇)U i = −∇i

(
P

ρ0

)
− giS + 2(U × �)i

− 1

ρ0
∇ j

(
ρ0〈u′

i u′
j〉
)
, (1)

∂S

∂t
+ (U · ∇)S = −(U · ∇)S0 − 1

ρ0
∇ · (ρ0〈u′ s′〉), (2)

where S = T /T0 − (1 − γ −1)P/P0, T and P are the mean
entropy, the mean temperature and the mean pressure, re-
spectively, γ is the ratio of specific heats, u′ and s′ are
fluctuations of the fluid velocity and entropy, 〈u′

i u′
j〉 is the

Reynolds stress describing turbulent viscosity and rotational
effects to turbulent convection, 〈u′ s′〉 is the turbulent flux of
entropy, T0, P0, S0, and ρ0 are the fluid temperature, pressure,
entropy, and density, respectively, in the basic reference state
and ∇S0 = (γ P0)−1∇P0 − ρ−1

0 ∇ρ0. The variables with the
subscript “0′′ correspond to the hydrostatic nearly isentropic
basic reference state defined by ∇P0 = ρ0g and g · ∇S0 ≈ 0,
where g is the acceleration due to the gravity. In Eqs. (1) and
(2) we neglect small molecular viscosity and heat conductivity
terms.

To derive equations for the rotational contributions to
the Reynolds stress, we follow the method that is devel-
oped in Refs. [25,37] and outlined below (see, for details,
Appendix A). We use equations for fluctuations of velocity
u′ and entropy s′ = θ/T0 − (1 − γ −1)p′/P0:

∂u′

∂t
= −(U · ∇)u′ − (u′ · ∇)U − ∇

(
p′

ρ0

)
− g s′

+ 2u′ × � + UN , (3)

∂s′

∂t
= −(u′ · ∇)S − (U · ∇)s′ + SN , (4)

where p′ and θ are fluctuations of fluid pressure and temper-
ature, respectively, UN = 〈(u′ · ∇)u′〉 − (u′ · ∇)u′ and SN =
〈(u′ · ∇)s〉 − (u′ · ∇)s are the nonlinear terms, and the angular
brackets imply ensemble averaging. In Eqs. (3) and (4) we
neglect small molecular viscosity and heat conductivity terms.
Equation (3) is written in the reference frame rotating with
the constant angular velocity �. The turbulent convection is
considered as a small deviation from a well-mixed adiabatic
reference state. The equations for fluctuations of velocity and
entropy are obtained by subtracting Eqs. (1) and (2) for the
mean fields from the corresponding equations for the total
velocity U + u′ and entropy S + s′ fields. The fluid velocity
for a low Mach number flows with strong inhomogeneity of
the fluid density ρ0 along the gravity field is assumed to be
satisfied to the continuity equation written in the anelastic
approximation, div (ρ0 U ) = 0 and div (ρ0 u′) = 0.

To study the effects of fast rotation on the Reynolds
stress in density-stratified turbulent convection, we perform
the derivations which include the following steps:

(i) using new variables for fluctuations of velocity v =√
ρ0 u′ and entropy s = √

ρ0 s′;
(ii) derivation of the equations for the second-order mo-

ments of the velocity fluctuations 〈vi v j〉, the entropy fluctua-
tions 〈s2〉 and the turbulent flux of entropy 〈vi s〉 in the k space;
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(iii) application of the multiscale approach [38] that allows
us to separate turbulent scales from large scales;

(iv) adopting the spectral τ approximation [39–41] (see
below);

(v) solution of the derived second-order moment equations
in the k space;

(vi) returning to the physical space to obtain expression for
the Reynolds stress as the function of the rotation rate �.

The derived equations for the second-order moments of the
velocity fluctuations 〈vi v j〉, the entropy fluctuations 〈s2〉 and
the turbulent flux of entropy 〈vi s〉 [see Eqs. (A1)–(A3) in Ap-
pendix A], include the first-order spatial differential operators
N̂ applied to the third-order moments M (III ). A problem arises
how to close the system of the second-moment equations, i.e.,
how to express the set of the third-moment terms N̂M (III )(k)
through the lower moments (see, e.g., Refs. [40,42,43]).
Various approximate methods have been proposed to solve
this problem. In the present study we use the spectral τ

approximation (see, e.g., Refs. [39–41]), which postulates that
the deviations of the third-moment terms, N̂M (III )(k), from
the contributions to these terms afforded by the background
fast-rotating turbulent convection, N̂M (III,0)(k), are expressed
through the similar deviations of the second-order moments,
M (II )(k) − M (II,0)(k) in the relaxation form:

N̂M (III )(k) − N̂M (III,0)(k) = −M (II )(k) − M (II,0)(k)

τr (k)
, (5)

see for details, Eqs. (A17)–(A19) in Appendix A. Here the
correlation functions with the superscript (0) correspond to
the background fast-rotating turbulent convection with zero
spatial derivatives of the mean velocity, ∇iU j = 0. The time
τr (k) is the characteristic relaxation time of the statistical mo-
ments, which can be identified with the correlation time τ (k)
of the turbulent velocity field for large Reynolds numbers.
Validations of the τ approximation for different situations
have been performed in various direct numerical simulations
[44–52] (see also discussion in Sec. IV).

The τ approximation is a sort of the high-order closure
and in general is similar to eddy-damped quasinormal Marko-
vian (EDQNM) approximation. However, some principle dif-
ference exists between these two approaches [40,41]. The
EDQNM closures do not relax to equilibrium (the background
turbulence), and the EDQNM approach does not describe
properly the motions in the equilibrium state in contrast to
the τ approximation. Within the EDQNM theory, there is no
dynamically determined relaxation time, and no slightly per-
turbed steady state can be approached. In the τ approximation,
the relaxation time for small departures from equilibrium is
determined by the random motions in the equilibrium state,
but not by the departure from the equilibrium. As follows from
the analysis in [40], the τ approximation describes the re-
laxation to the equilibrium state (the background turbulence)
much more accurately than the EDQNM approach.

We apply the τ approximation only to study the devia-
tions from the background turbulent convection which are
caused by the spatial derivatives of the mean velocity. The
background fast-rotating turbulent convection is assumed to
be known (see below). The τ approximation is only valid for
large Reynolds numbers, where the relaxation time can be
clearly identified with the turbulence correlation time.

We use the model of the background homogeneous tur-
bulent convection with inhomogeneous fluid density distri-
bution along the gravity field which takes into account an
anisotropy of turbulent convection caused by the fast rotation
[see Eqs. (A25) and (A26) in Appendix A]. We assume that
the background turbulent convection is of Kolmogorov type
with constant flux of energy over the spectrum, i.e., the kinetic
energy spectrum function for the range of wave numbers k0 <

k < kν is E (k) = −d τ̄ (k)/dk, the function τ̄ (k) = (k/k0)1−q

with 1 < q < 3 being the exponent of the kinetic energy
spectrum (q = 5/3 for a Kolmogorov spectrum). Here kν =
1/
ν is the wave number based on the viscous scale 
ν , and
k0 = 1/
0 � kν , where 
0 is the integral (energy containing)
scale of turbulent motions. The turbulent correlation time in k
space is τ (k) = 2τ

�
τ̄ (k), where the effect of rotation on the

turbulent correlation time, τ
�
, is described just by an heuristic

argument. In particular, we assume that

τ
�

= τ0[
1 + Cτ �2 τ 2

0

]1/2 . (6)

Here the dimensionless constant Cτ ∼ 1 and τ0 = 
0/u0 with
the characteristic turbulent velocity u0 in the integral scale
of turbulence 
0. In particular, the squared inverse timescale
τ−2

�
is considered as a linear combination of the two simple

squared inverse timescales: τ−2
0 and �2:

τ−2
�

= τ−2
0 + Cτ�

2. (7)

For fast rotation, �τ0 
 1, the parameter �τ
�

tends to be
limiting value C−1/2

τ .
The above described procedure yields the rotational con-

tribution to the Reynolds stress, and the effective force, F�
i =

ρ0 〈vi v j〉�e j/Hρ for a fast-rotating density-stratified turbulent
convection or for a fast-rotating density-stratified anisotropic
homogeneous turbulence, where Hρ = (|∇ρ0|/ρ0)−1 is the
density stratification hight, 〈vi v j〉� are the rotational contri-
butions to the Reynolds stress given by Eqs. (A33)–(A34)
in Appendix A and e is the vertical unit vector along the z
axis (in the direction opposite to the gravity acceleration). The
components of the effective force are given by

F�
x = −2(AF − Au) ρ0 νT �τ0


2
0

H3
ρ

∇zU y, (8)

F�
y = −2 ρ0 νT �τ0


2
0

H3
ρ

[(AF + Au)∇xU z − (AF − Au)W y],

(9)

F�
z = −(5AF + 4Au) ρ0 νT �τ0


2
0

H3
ρ

∇xU y, (10)

where W = ∇×U is the mean vorticity, νT = τ0u2
0/6 is the

turbulent viscosity,

AF = 9(q − 1)

2(2q − 1)

εF τ0 F∗g

ρ0u2
0

, (11)

Au = 3(q − 1)

3q − 1

εu

1 + εu
, (12)

F∗ = ρ0 〈u′
z s′〉, the parameter εu is the degree of anisotropy

of turbulent velocity field in the background turbulence, and
the parameter εF is the degree of thermal anisotropy of the
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background turbulence [see Eqs. (A25) and (A26) in Ap-
pendix A]. The details of the derivation of Eqs. (8)–(10)
are given in Appendix A. These equations are derived using
the following conditions: �τ0 
 1 and the turbulent integral
scale 
0 is much smaller than the density stratification scale
Hρ and the characteristic horizontal scale Lx of variations of
the mean velocity U (i.e., 
0 � Hρ ; Lx). We also assumed
that the density stratification scale Hρ is much smaller than
the characteristic vertical scale Lz of variations of the mean
velocity U .

To introduce anisotropy of turbulent velocity field in the
background turbulence caused by a fast rotation, we con-
sider an anisotropic turbulence as a combination of a three-
dimensional isotropic turbulence and two-dimensional turbu-
lence in the plane perpendicular to the rotational axis. The
degree of anisotropy εu is defined as the ratio of turbulent
kinetic energies of two-dimensional to three-dimensional mo-
tions. The degree of thermal anisotropy εF determines the con-
tribution of the two-dimensional turbulence to the heat flux.

The anisotropy parameters εu and εF appeared in the model
of the background turbulent rotating convection depend on
the Coriolis number Co = 2�τ0. For a slow rotation (small
Coriolis numbers or large Rossby numbers), the parameters
εu → 0 and εF → 0. For a fast rotation (very large Coriolis
numbers or very small Rossby numbers), the parameters εu 

1 and εF ∼ 1. In this case the background turbulent convection
is a highly anisotropic nearly two-dimensional turbulence, and
the main rotational contributions to the Reynolds stress are
from the two-dimensional part of turbulence. Formally, in the
present study where we investigate a fast-rotating turbulent
convection, these parameters are not specified, but they should
satisfy the following conditions εu 
 1 and εF ∼ 1.

In the derivation of the expressions for the Reynolds stress
and the effective force, we take into account the terms which
are linear in the angular velocity and drop the terms that
are quadratic in the angular velocity. The reason is that the
terms that are proportional to the angular velocity causes
generation of large-scale vorticity, while the terms that are
quadratic in the angular velocity yield small contributions to
the anisotropic part of the turbulent viscosity. The latter effect
is neglected in the present study. However, we have taken
into account the dominant contributions to the Reynolds stress
and the effective force which are caused by the effect of fast
rotation on turbulent convection.

III. MEAN-FIELD DYNAMICS AND LARGE-SCALE
INSTABILITY

In this section we study large-scale instability resulting
in generation of the large-scale vorticity. Using the derived
Eqs. (8)–(10) for the effective force, the Navier-Stokes Eq. (1)
for the mean velocity U , and the equation for the mean vor-
ticity W = ∇×U , we investigate the large-scale instability.
For simplicity, we consider the case with the angular velocity
along z axis (opposite to the gravity field). The linearized
equations for U y and W y are given by

∂U y

∂t
= −2U x� + F�

y

ρ0
+ νT

ρ0
∇ · (ρ0∇U y), (13)

∂W y

∂t
= 2�∇zU y +

(
∇× F�

ρ0

)
y

+ νT

ρ0
∇ · (ρ0∇W y) − g∇zS.

(14)

We introduce new variables V (t, x, z) and �(t, x, z):

ρ0U = [V (t, x, z)ρ1/2
0 ]ey + ∇× [�(t, x, z)ρ1/2

0 ]ey, (15)

which corresponds to axi-symmetric problem. In the new
variables Eqs. (13) and (14) are given by Eqs. (B2) and (B3)
(see Appendix B).

First, we consider a mode with the mean velocity that is
independent of z, i.e., we seek for a solution of Eqs. (B2) and
(B3) in the following form: V ,� ∝ exp(−λz/2) exp(γinstt +
iKxX ). Substituting this solution into Eqs. (B2) and (B3), we
obtain the growth rate of the large-scale instability resulting
in the generation of this mode:

γinst = �

2

0

H2
ρ

[
3(q − 1)

2(2q − 1)

(
5εF τ0 F∗ g

ρ0u2
0

+4(2q − 1)

3(3q − 1)

εu

1 + εu

)]1/2

− νT K2
x . (16)

This mode is with a dominant vertical mean vorticity,
W z/W y ∼ (HρLx )/
2

0 
 1, where Lx = 2π/Kx. It follows
from Eq. (16) that the large-scale instability for this mode can
be excited even for a hydrodynamic anisotropic turbulence
(i.e., when there is no turbulent convection, F∗ = 0). The
mechanism of the large-scale instability resulting in the gener-
ation of the dominant vertical mean vorticity, W z = ∇xU y, is
as follows. The Coriolis force for a fast rotation strongly mod-
ifies turbulence and the Reynolds stress, so that the second
term in Eq. (14) does not vanish, [∇× (F�/ρ0)]y �= 0. This
term depends on U y [see Eqs. (10) and (14)]. The horizontal
component of the mean vorticity W y is produced by this
key term, [∇× (F�/ρ0)]y, which is caused by the effective
force, i.e., ∂W y/∂t ∼ [∇× (F�/ρ0)]y; see Eq. (14). How-
ever, the velocity component U y is produced by the Coriolis
force, ∂U y/∂t ∼ −2U x� [see Eq. (13)], which closes the
generation loop. Here we took into account that the Coriolis
force is much larger than the effective force, i.e., the ratio
|2U x�|/|F�

y /ρ0| ∼ LxH3
ρ /
4

0 
 1.
Usually for a fast rotation, inertial waves characterised by

the dispersion relation, ω = 2(� · K )/K , are dominant and
they decrease the growth rate of instabilities for different
modes. However, since for the considered mode the vertical
derivative ∇zU y = 0, the contribution of this effect (caused
by the inertial waves) to the growth rate of the large-scale
instability for this mode vanishes.

Let us study the evolution of the mean entropy S in this
mode. The linearized Eq. (2) for S reads:

∂S

∂t
= −U z∇zS0 + ρ−1

0 ∇ · (ρ0κT ∇S), (17)

where κT is the coefficient of turbulent diffusion. This implies
that

S = U z|∇zS0|
γinst + κT K2

x

= −W zHρ

2�

(
γinst + νT K2

x

γinst + κT K2
x

)
|∇zS0|, (18)
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where we use the solutions for the vertical mean velocity
U z = Kx�∗ cos(KxX + ϕ) exp(γinstt ), and the vertical mean
vorticity W z = KxV∗ cos(KxX + ϕ) exp(γinstt ). Here the ratio
of amplitudes V∗/�∗ for this mode is

V∗
�∗

= − 2�

Hρ (γinst + κT K2
x )

. (19)

In Eq. (19) we neglect the small terms ∼ O(
2
0/H2

ρ ). Thus,
the solution for the mean entropy is S = −S∗ cos(KxX + ϕ)
exp(γinstt ). Equation (18) implies that inside the cyclonic
vortices where the perturbations of the vertical mean vorticity
are positive (W z > 0), the perturbations of the mean entropy
are negative (S < 0). Therefore, inside the cyclonic vortices
the mean entropy is reduced. However, inside the anticyclonic
vortices where the perturbations of the vertical mean vorticity
are negative (W z < 0), the perturbations of the mean entropy
are positive (S > 0). Therefore, inside the anticyclonic vor-
tices the mean entropy is increased.

There is also another mode for which the negative con-
tribution caused by the inertial waves to the growth rate of
the instability for this mode vanishes. Indeed, for this mode a
solution of Eqs. (B2) and (B3) has the following form: V ,� ∝
exp(λz/2) exp(γinstt + iKxX ). This is a mode with the mean
momentum, ρ0U , that is independent of z. Substituting this
solution into Eqs. (B2) and (B3), we obtain the growth rate
of the large-scale instability resulting in the generation of this
mode:

γinst = �

2

0

H2
ρ

[
6(q − 1) εF τ0 F∗ g

(2q − 1) ρ0u2
0

]1/2

− νT K2
x . (20)

This mode is with a dominant horizontal mean vorticity,
i.e., W z/W y ∼ 
2

0/(HρLx ) � 1. It follows from Eq. (20) that
the large-scale instability for this mode can be excited only
in turbulent convection (when F∗ �= 0). For this mode the
component of the mean velocity U x = 0, and the component
U y is produced by the effective force F�

y /ρ0 [see Eq. (13)].
However, the dominant horizontal mean vorticity W y is pro-
duced by the term 2�∇zU y caused by the Coriolis force [see
Eq. (14)], which closes the generation loop.

Let us check if the obtained results are consistent with the
Taylor-Proudman theorem. For a fast-rotating laminar flow,
the Taylor-Proudman theorem implies that the leading-order
balance in the equation for the vorticity for large Coriolis
number (small Rossby numbers) is (� · ∇)U = 0. This im-
plies that the velocity is independent of the vertical coordinate
z, where � = �ez. For the mode with the dominant vertical
mean vorticity, the mean velocity is independent of z. This
implies that this mode is consistent with the Taylor-Proudman
theorem. However, for the mode with the dominant horizontal
mean vorticity, the mean momentum is independent of z,
while the mean velocity depends on z, so that this mode is
not consistent with the Taylor-Proudman theorem.

IV. DISCUSSION AND CONCLUSIONS

In the present study we have considered a fast-rotating
turbulence or turbulent convection with inhomogeneous fluid
density along the rotational axis in anelastic approximation.
A large-scale instability exciting at large Coriolis number has

been found, which causes generation of large-scale vortic-
ity for two key modes with dominant vertical or horizontal
components. The effective force caused by the rotational
contribution to the Reynolds stress in small-scale turbulent
convection in combination with the Coriolis force in the mean-
field momentum equation are the main effects resulting in the
generation of the large-scale vorticity due to the excitation of
the large-scale instability. The mode with the vertical vorticity
can be generated in both, a fast-rotating density-stratified
hydrodynamic turbulence and turbulent convection, while the
mode with the dominant horizontal vorticity can be excited
only in a fast-rotating density-stratified turbulent convection.
When the density stratification hight Hρ → ∞ (i.e., when the
fluid density is uniform), the large-scale instability found in
the present study cannot be excited [see Eqs. (16) and (20)
for the growth rates of the instability]. This implies that this
theory cannot describe formation of large-scale vortices ob-
served in the Boussinesq turbulent convection with div u = 0
(see Refs. [29–33]).

Our theory is developed for a low-Mach number fast-
rotating turbulent convection with inhomogeneous fluid den-
sity, which corresponds to the set-ups of DNS described in
Refs. [27,28]. However, in DNS on the large-scale vorticity
growth, it is very difficult to observe the kinematic stage of
the evolution of the large-scale vorticity with an exponential
growth. Usually in DNS it is only seen the nonlinear evolution
of the large-scale vorticity. This implies that it is very diffi-
cult to make quantitative comparisons between the kinematic
mean-field theory for the large-scale vorticity growth and
DNS. We have only performed a qualitative comparison with
the DNS described in Refs. [27,28]. In particular, we confirm
the existence of the threshold in the Coriolis number for the
generation of the large-scale vorticity. The critical Coriolis
number should be much larger than 1. The derived mean-field
equations describe formations of both, cyclonic and anticy-
clonic large-scale vortices in the kinematic (linear) stage of
the instability. As in the DNS, we also find the similar behav-
ior of the mean entropy or temperature inside cyclonic and
anticyclonic vortices. For example, we have shown that for
the mode with the dominant vertical mean vorticity, the mean
entropy is decreased inside the cyclonic vortices and increased
inside the anticyclonic vortices in agreement with [27,28].

To derive equations for the rotational contribution to the
Reynolds stress and the effective force in fast-rotating density-
stratified turbulent convection, we apply the spectral τ ap-
proximation (see Sec. II). The τ approximation is an universal
tool in turbulent transport that allows to obtain closed results
and compare them with the results of laboratory experiments,
observations and numerical simulations. The τ approximation
reproduces many well-known phenomena found by other
methods in turbulent transport of particles, temperature and
magnetic fields, in turbulent convection and stably stratified
turbulent flows (see below).

In turbulent transport, the τ approximation yields correct
formulas for turbulent diffusion, turbulent thermal diffusion
and turbulent barodiffusion [53,54]. The phenomenon of tur-
bulent thermal diffusion (a nondiffusive streaming of particles
in the direction of the mean heat flux), has been predicted
using the stochastic calculus (the path integral approach),
the quasilinear approach and the τ approximation. This
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phenomenon has been already detected in laboratory exper-
iments in oscillating grids turbulence [55] and in a multifan
produced turbulence [56] in both, stably and unstably strat-
ified fluid flows. The phenomenon of turbulent thermal dif-
fusion has been also detected in direct numerical simulations
[48,49,52]. The numerical and experimental results are in a
good agreement with the theoretical studies performed by
means of different approaches (see Refs. [53,57]).

The τ approximation reproduces the well-known k−7/3-
spectrum of anisotropic velocity fluctuations in a sheared
turbulence (see Ref. [58]). This spectrum was previously
found in analytical, numerical, laboratory studies and was
observed in the atmospheric turbulence (see, e.g., Ref. [59]).
In the turbulent boundary layer problems, the τ approximation
yields correct expressions for turbulent viscosity, turbulent
thermal conductivity and the classical heat flux. This approach
also describes the counter wind heat flux and the Deardorff’s
heat flux in convective boundary layers (see Ref. [58]). These
phenomena have been previously studied using different ap-
proaches (see, e.g., Refs. [42,43,60]).

The theory of turbulent convection [58] based on the τ ap-
proximation explains the recently discovered hysteresis phe-
nomenon in laboratory turbulent convection [61]. The results
obtained using the τ approximation allow also to explain the
most pronounced features of typical semiorganized coherent
structures observed in the atmospheric convective boundary
layers (“cloud cells” and “cloud streets”) [62]. The theory
[58] based on the τ approximation predicts realistic values
of the following parameters: the aspect ratios of structures,
the ratios of the minimum size of the semiorganized struc-
tures to the maximum scale of turbulent motions and the
characteristic lifetime of the semiorganized structures. The
theory [58] also predicts excitation of convective-shear waves
propagating perpendicular to the convective rolls (“cloud
streets”). These waves have been observed in the atmospheric
convective boundary layers with cloud streets [62]. A the-
ory [63–67] for stably stratified atmospheric turbulent flows
based on both, the budget equations for the key second
moments, turbulent kinetic and potential energies and verti-
cal turbulent fluxes of momentum and buoyancy, and the τ

approximation is in a good agrement with data from atmo-
spheric and laboratory experiments, direct numerical simula-
tions and large-eddy simulations (see detailed comparison in
Refs. [63,66]).

The detailed verification of the τ approximation in the
direct numerical simulations of turbulent transport of pas-
sive scalar has been performed in Ref. [44]. In particular,
the results on turbulent transport of passive scalar obtained
using direct numerical simulations of homogeneous isotropic
turbulence have been compared with that obtained using a
closure model based on the τ approximation. The numerical
and analytical results are in a good agreement.

In magnetohydrodynamics, the τ approximation repro-
duces many well-known phenomena found by different meth-
ods, e.g., the τ approximation yields correct formulas for
the α-effect [68–71], the turbulent diamagnetic and param-
agnetic velocities [71–73], the turbulent magnetic diffusion
[68,71,73,74], the �×J effect and the κ-effect [68,71].

The developed theory in the present study may be impor-
tant for interpretation of origin of large spots in the great

planets (e.g., the Great Red Spot in Jupiter [34] and large
spots in Saturn [35]). The giant planets Jupiter and Saturn
have outer convection zones of rapidly rotating convection
[36]. The spots on giant planets are not of magnetic origin
and may be related to the large-scale instability excited in
the convective turbulence. The developed theory may be also
useful for explanation of an origin of high-latitude spots in
rapidly rotating late-type stars [27,28].

We have also discuss a role of the centrifugal force in
production of large-scale vorticity by a fast-rotating homo-
geneous anisotropic turbulence in a special case when the
gravity force is small (see Appendix C). In this case the
centrifugal force should be taken into account, which causes
an inhomogeneous fluid density distribution in the plane
perpendicular to the angular velocity. As a result, the large-
scale vertical vorticity is produced by a combined effect
of a fast rotation and horizontal inhomogeneity of the fluid
density.
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APPENDIX A: DERIVATION OF EQUATION FOR THE
ROTATIONAL CONTRIBUTIONS TO

THE REYNOLDS STRESS

In this Appendix we derive equation for the rotational
contributions to the Reynolds stress. We follow the ap-
proach developed in Refs. [25,37]. Fluctuations of veloc-
ity u′ and entropy s′ are given by Eqs. (3) and (4). We
rewrite these equations in the k space using new variables for
fluctuations of velocity v = √

ρ0 u′ and entropy s = √
ρ0 s′,

and derive equations for the following correlation functions:
fi j (k, K ) = 〈vi(t, k1)v j (t, k2)〉, Fi(k, K ) = 〈s(t, k1)vi(t, k2)〉
and �i(k, K ) = 〈s(t, k1)s(t, k2)〉. Here we apply multiscale
approach [38], where k1 = k + K/2, k2 = −k + K/2, the
wave vector K and the vector R = (x + y)/2 correspond to the
large scales, while k and r = y − x correspond to the small
ones. Hereafter, we omitted argument t in the correlation
functions. The equations for these correlation functions are
given by

∂ fi j (k, K )

∂t
= (IU

i jmn + L�
i jmn) fmn + MF

i j + N̂ f̃i j, (A1)

∂Fi(k, K )

∂t
= (JU

im + D�
im)Fm + gemPim(k1)� + N̂ F̃i, (A2)

∂�(k, K )

∂t
= −div [U �] + N̂�, (A3)

where D�
i j (k) = 2εi jm�nkmn, L�

i jmn = D�
im(k1) δ jn +

D�
jn(k2) δim, δi j is the Kronecker unit tensor, ki j = kik j/k2,

εi jk is the Levi-Civita fully antisymmetric tensor, e is the
unit vector directed opposite to the acceleration due to the
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gravity,

IU
i jmn = JU

im(k1) δ jn + JU
jn(k2) δim =

[
2kiqδmpδ jn + 2k jqδimδpn − δimδ jqδnp − δiqδ jnδmp + δimδ jnkq

∂

∂kp

]
∇pU q

− δimδ jn [divU + U ·∇], (A4)

and

MF
i j = gem[Pim(k1)Fj (k, K ) + Pjm(k2)Fi(−k, K )], (A5)

JU
i j (k) = 2kin∇ jUn − ∇ jUi − δi j[(1/2) div U + i(U·k)], (A6)

Pi j (k) = δi j − ki j and Fi(−k, K ) = 〈s(k2)vi(k1)〉. Note that
the correlation functions fi j , Fi and � are proportional to the
fluid density ρ0(R). Here the third-order moments appearing
due to the nonlinear terms, N̂ f̃i j , N̂ F̃i, and N̂�, are given by

N̂ f̃i j = 〈
Pim(k1)vN

m (k1)v j (k2)
〉 + 〈

vi(k1)Pjm(k2)vN
m (k2)

〉
,

(A7)

N̂ F̃i = 〈
sN (k1)u j (k2)

〉 + 〈
s(k1)Pim(k2)vN

m (k2)
〉
, (A8)

N̂� = 〈sN (k1)s(k2)〉 + 〈s(k1)sN (k2)〉, (A9)

where vN (k) and sN (k) are the nonlinear terms related to UN

and SN and rewritten in new variables.
In tensors D�

i j and L�
i jmn we extract the parts which depend

on the density stratification effects, characterised by the vector
λ = −(∇ρ0)/ρ0, i.e.,

D�
i j = D̃i j + Dλ

i j + Dλ2

i j + O(λ3), (A10)

L�
i jmn = L̃i jmn + Lλ

i jmn + Lλ2

i jmn + O(λ3), (A11)

where D̃i j = 2εi j p�qkpq, Dλ
i j = 2εi j p�qkλ

pq, Dλ2

i j =
2εi j p�qkλ2

pq,

L̃i jmn = 2 �q (εimp δ jn + ε jnp δim) kpq, (A12)

Lλ
i jmn = −2 �q

[
(εimp δ jn − ε jnp δim) kλ

pq

+ i

k2
(εilq δ jn λm − ε jlq δim λn) kl

]
, (A13)

Lλ2

i jmn = 2 �q (εimp δ jn + ε jnp δim) kλ2

pq, (A14)

kλ
i j = i

2k2
[kiλ j + k jλi − 2ki j (k·λ)], (A15)

kλ2

i j = 1

4k2
[λiλ j − ki jλ

2 + 4ki j pqλpλq]. (A16)

Next, we apply the spectral τ approximation [see Eq. (5)],
i.e.,

N̂ fi j (k) − N̂ f (0)
i j (k) = − fi j (k) − f (0)

i j (k)

τ (k)
, (A17)

N̂Fi(k) − N̂F (0)
i (k) = −Fi(k) − F (0)

i (k)

τ (k)
, (A18)

N̂�(k) − N̂�(0)(k) = −�(k) − �(0)(k)

τ (k)
, (A19)

where N̂ fi j = N̂ f̃i j + MF
i j (F

�=0) and N̂Fi = N̂ F̃i +
genPin(k)��=0. The quantities F�=0 and ��=0 are for
a nonrotating turbulent convection with nonzero spatial
derivatives of the mean velocity. The superscript (0)
corresponds to the rotating background turbulent convection
with ∇iU j = 0.

Equations (A1)–(A3) in a steady state read

fi j (k) = L−1
i jmn

[
f (0)
mn + τ M̃F

mn + τ
(
IU
mnpq + Lλ

mnpq

+Lλ2

mnpq

)
fpq

]
, (A20)

Fi(k) = D−1
im

[
F (0)

m (k) + τ
(
JU

mn + Dλ
mn + Dλ2

mn

)
Fn

]
,

(A21)

where

M̃F
i j = gem

{[
Pim(k) + kλ

im + kλ2

im

]
F̃j (k) + [

Pjm(k)

− kλ
jm + kλ2

jm

]
F̃i(−k)

}
, (A22)

F̃i = Fi − F�=0
i and we neglected small terms ∼O(λ3), see

[37]. In Eqs. (A20) and (A21), the operator D−1
i j is the inverse

of δi j − τ D̃i j and the operator L−1
i jmn(�) is the inverse of

δimδ jn − τ L̃i jmn, where

D−1
i j = χ (ψ ) (δi j + ψ εi jm k̂m + ψ2 ki j ), (A23)

and

L−1
i jmn(�) = 1

2 [B1 δimδ jn + B2 ki jmn + B3 (εimpδ jn + ε jnpδim)k̂p + B4 (δimk jn + δ jnkim) + B5 εipmε jqnkpq

+ B6 (εimpk j pn + ε jnpkipm)], (A24)

k̂i = ki/k, χ (ψ ) = 1/(1 + ψ2), ψ = 2τ (k) (k · �)/k, B1 = 1 + χ (2ψ ), B2 = B1 + 2 − 4χ (ψ ), B3 = 2ψ χ (2ψ ), B4 =
2χ (ψ ) − B1, B5 = 2 − B1, and B6 = 2ψ [χ (ψ ) − χ (2ψ )]; see Ref. [75].

We use the following model of the background homogeneous stratified turbulence or turbulent convection which takes into
account an increase of the anisotropy of turbulence with increase of the rate of rotation:

f (0)
i j ≡ 〈vi(k1) v j (k2)〉 = E (k) [1 + 2k εu δ(k̂ · �̂)]

8π k2 (k2 + λ̃2) (1 + εu)
[δi j (k2 + λ̃2) − ki k j − λ̃i λ̃ j + i

(
λ̃i k j − λ̃ j ki

)
]〈v2〉, (A25)
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F (0)
i ≡ 〈vi(k1) s(k2)〉 = 3 E (k) [1 + k εF δ(k̂ · �̂)]

8π k2 (k2 + λ̃2)

[
k2 e j Pi j (k) + iλ̃ k j Pi j (e)

]
F∗ (A26)

(see Ref. [37]), and �(0) ≡ 〈s(k1) s(k2)〉 = �∗ E (k)/4πk2, where F∗ = ρ0 〈u′
z s′〉, �∗ = ρ0 〈(s′)2〉, δi j is the Kronecker tensor,

Pi j (e) = δi j − eie j , δ(x) is the Dirac delta function, k̂ = k/k, and �̂ = �/�. Here we have taken into account that in the anelastic
approximation the velocity fluctuations v = √

ρ0 u′ satisfy the equation ∇ · v = v · λ̃, where λ̃ ≡ λ/2 = −(∇ρ0)/2ρ0. To derive
Eqs. (A25) and (A26) we use the following conditions: (i) the anelastic approximation in the Fourier space implies that (ik(1)

i −
λ̃i ) f (0)

i j (k, K ) = 0, (ik(2)
j − λ̃ j ) f (0)

i j (k, K ) = 0 and (ik(1)
i − λ̃i )F

(0)
i (k, K ) = 0, where k1 ≡ k(1) = k + K/2 and k2 ≡ k(2) = −k +

K/2; (ii)
∫

f (0)
ii (k, K ) exp [iK · R] dk dK = ρ0 〈u2〉(0); (iii) f (0)

i j (k, K ) = f ∗(0)
ji (k, K ) = f (0)

ji (−k, K ).
Solution of Eq. (A21) for fast rotation by iterations in small parameter 
0λ reads

F̂ (1,U ) = τ 2
(
ĴU D̂λ + D̂λĴU

)
F̂ (0), (A27)

and

F̂ (2,U ) = τ 2(ĴU D̂λ + D̂λĴU )F̂ (0,λ) + τ 2
(
ĴU D̂λ2 + D̂λ2

ĴU
)
F̂ (0) + τ 3(ĴU D̂λD̂λ + D̂λĴU D̂λ + D̂λD̂λĴU )F̂ (0). (A28)

Here the contribution F̂ (1,U ) is linear in the ratio 
0/Hρ (i.e., it is linear in the parameter 
0λ), while the contributions F̂ (2,U ) is
quadratic in 
0/Hρ , where Hρ = λ−1, ĴU ≡ JU

i j (k), D̂λ ≡ Dλ
i j , D̂λ2 ≡ Dλ2

i j , the vector F̂ (0) is the part of F (0)
i that is a zero order

in λ [i.e., it is proportional to k2 e j Pi j (k)], while the operator F̂ (0,λ) is the part of F (0)
i that is linear in λ [i.e., it is proportional to

iλ̃ k j Pi j (e)]. Solution of Eq. (A20) for fast rotation by iterations in small parameter 
0λ up to the second-order in this parameter
is given by

f̂ (1,F ) = τg(êP̂F̂ (1,U ) + ÎU τ 2êP̂D̂λF̂ (0) ), (A29)

f̂ (1,u) = τ (ÎU τ L̂λ + L̂λτ ÎU ) f̂ (0), (A30)

and

f̂ (2,F ) = τgê(P̂F̂ (2,U ) + k̂λF̂ (1,U ) ) + τ L̂λ( f̂ (1,F ) + τ ÎU τ D̂λF̂ (0) ) + τgÎU τ 2êP̂
[(

D̂λ2 + k̂λD̂λ
)
F̂ (0) + D̂λF̂ (0,λ)

]
= τgÎU τ 2êP̂

[(
k̂λD̂λ + D̂λ2)

F̂ (0) + D̂λF̂ (0,λ)
] + τ 3g

[
L̂λê(k̂λĴU F̂ (0) + P̂ĴU F̂ (0,) ) + L̂λ2

êP̂ĴU F̂ (0)
]

+τ 3gê
{
P̂
[
(ĴU D̂λ + D̂λĴU )F̂ (0,λ) + (

ĴU D̂λ2 + D̂λ2
ĴU

)
F̂ (0)

] + k̂λ(ĴU D̂λ + D̂λĴU )F̂ (0)
}
, (A31)

f̂ (2,u) = τ (ÎU τ L̂λ + L̂λτ ÎU ) f̂ (0,λ) + τ
(
ÎU τ L̂λ2 + L̂λ2

τ ÎU
)

f̂ (0) + τ 2L̂λ(ÎU τ L̂λ + L̂λτ ÎU ) f̂ (0). (A32)

Here the contributions f̂ (1,F ) and f̂ (1,u) are linear in the ratio 
0/Hρ , while the contributions f̂ (2,F ) and f̂ (2,u) are quadratic in

0/Hρ , and ê ≡ ei, ÎU ≡ IU

i jmn, P̂ ≡ Pi j (k), k̂λ ≡ kλ
i j , L̂λ ≡ Lλ

i jmn, L̂λ2 ≡ Lλ2

i jmn, and the tensor f̂ (0) is the part of f (0)
i j that is a zero

order in λ [i.e., it is proportional to k2 Pi j (k)], while the tensor f̂ (0,λ) is the part of f (0)
i j that is linear in λ [i.e., it is proportional to

i (λ̃i k j − λ̃ j ki )].
After integration in k space in Eqs. (A29)–(A32) we obtain the rotational contributions to the Reynolds stresses, fi j = f (F,�)

i j +
f (u,�)
i j , for the fast-rotating stratified anisotropic homogeneous turbulence or density-stratified turbulent convection for the fast

rotation, where f (F,�)
i j and f (u,�)

i j :

f (F,�)
i j = −AF ρ0 νT �τ0


2
0

H2
ρ

{eie jW z + 2(W ie j + W jei ) + 6[(e×∇)ie j + (e×∇) jei]U z + (e×∇)iU
⊥
j

+ (e×∇) jU
⊥
i + 2[∇⊥

i (e×U ) j + ∇⊥
j (e×U )i] − 4∇z[(e×U )ie j + (e×U ) jei]}, (A33)

f (u,�)
i j = −Au

2
ρ0 νT �τ0


2
0

H2
ρ

{4(W ie j + W jei ) + 4[(e×∇)ie j + (e×∇) jei]U z

+ 3(q + 1)[(e×∇)iU
⊥
j + (e×∇) jU

⊥
i ] + (3q + 7)[∇⊥

i (e×U ) j + ∇⊥
j (e×U )i]}. (A34)

Note that the contributions f̂ (1,F ) and f̂ (1,u) (which are linear in 
0/Hρ) to f (F,�)
i j and f (u,�)

i j vanish. This implies that only the

quadratic contributions, f̂ (2,F ) and f̂ (2,u), in 
0/Hρ are the leading-order contributions to f (F,�)
i j and f (u,�)

i j .
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To integrate over the angles in k-space, we use the following integrals:∫
k⊥

i j dϕ = πδ
(2)
i j ,

∫
k⊥

i jmn dϕ = π

4
�

(2)
i jmn, (A35)∫

k⊥
i jmnpq dϕ = π

24
�

(2)
i jmnpq, (A36)

where δ
(2)
i j ≡ Pi j (�) = δi j − �i� j/�

2, �
(2)
i jmn = δ

(2)
i j δ(2)

mn + δ
(2)
im δ

(2)
jn + δ

(2)
in δ

(2)
jm , and

�
(2)
i jmnpq = �(2)

mnpqδ
(2)
i j + �

(2)
jmnpδ

(2)
iq + �

(2)
imnpδ

(2)
jq + �

(2)
jmnqδ

(2)
ip + �

(2)
imnqδ

(2)
j p + �

(2)
i jmnδ

(2)
pq − �

(2)
i j pqδ

(2)
mn . (A37)

Here k⊥ = k − k · �̂ is the wave vector in the plane perpendicular to the angular velocity � with the polar angle ϕ in this plane

and the corresponding unit vector k̂
⊥ = k⊥/k⊥. Thus, the following symmetric tensors are defined as k⊥

i j = k̂⊥
i k̂⊥

j , k⊥
i jmn = k⊥

i j k⊥
mn,

and k⊥
i jmnpq = k⊥

i j k⊥
mn k⊥

pq.

APPENDIX B: EQUATIONS DESCRIBING THE LARGE-SCALE INSTABILITY

To solve system of Eqs. (13) and (14), we introduce new variables V (t, x, z) and �(t, x, z):

ρ0U = [V (t, x, z)ρ1/2
0 ]ey + ∇× [�(t, x, z)ρ1/2

0 ]ey, (B1)

which corresponds to axisymmetric problem. In the new variables Eqs. (13) and (14) read[
∂

∂t
− νT

(
� − 1

4H2
ρ

)]
V = 2�

{
∇z − 1

2Hρ

− νT τ0

2

0

H3
ρ

[
2AF ∇2

x + (AF − Au)

(
∇2

z − 1

4H2
ρ

)]}
�, (B2)(

�− 1

4H2
ρ

)[
∂

∂t
− νT

(
�− 1

4H2
ρ

)]
� = − �

{
2

(
∇z + 1

2Hρ

)
+ νT τ0


2
0

H3
ρ

[
(5AF + 4Au)∇2

x − 2(AF − Au)

(
∇z + 1

2Hρ

)2]}
V .

(B3)

These equations allow us to study the large-scale instability which results in generation of the mean vorticity for different modes
(see Sec. III).

APPENDIX C: THE ROLE OF THE CENTRIFUGAL FORCE
IN PRODUCTION OF LARGE-SCALE VORTICITY FOR

VANISHING GRAVITY

In this section we study production of large-scale vortic-
ity by fast-rotating homogeneous anisotropic turbulence for
vanishing gravity. An ensemble averaging of the momentum
equation yields the equation for the mean velocity field,
U (t, x), in the reference frame rotating with the constant
angular velocity �:

∂U i

∂t
+ (U · ∇)U i = −∇iP

ρ
+ �2ri + 2(U × �)i

− 1

ρ
∇ jρ u′

i u′
j, (C1)

Here P is the mean fluid pressure, u′ are fluctuations of
fluid velocity, ρ is the mean fluid density that satisfies the
continuity equation written in the anelastic approximation,
div (ρ U ) = 0, and the vector r is perpendicular to �. The
basic equilibrium is determined by U0 = 0 and (∇P0)/ρ0 =
�2r for fast rotation, where the equilibrium fluid pressure
P0 and density ρ0 are related by the isothermal equation of
state P0 = c2

s ρ0 with a constant sound speed cs. We use the
cylindrical coordinates (r, ϕ, z), where the angular velocity �

is directed along the z axis. The equilibrium profile of the fluid

density is given by

ρ0(r) = ρ∗ exp

(
r2

L2
�

)
, (C2)

where L� = √
2cs/�. The second term, �2ri, in the right hand

side of Eq. (C1) for the mean fluid velocity is the centrifugal
force, which causes the inhomogeneous density distribution
(C2) in the plane perpendicular to the angular velocity �.
In the previous sections, we consider a fast-rotating turbulent
convection, where in the momentum equation we have taken
into the Coriolis force, but neglected the centrifugal force.
The centrifugal force should be taken into account only when
� � (g/R)1/2, where R is the radius (or a typical horizontal
scale of the motions).

To obtain the rotational contribution to the Reynolds stress,
we use the same approach which has been applied in previous
sections, but for isothermal turbulence (i.e., in the absence of
the heat flux F) and with the inhomogeneous fluid density
in radial direction (perpendicular to �). The equation for the
Reynolds stress in the k space coincides with Eq. (A20) in
Appendix A with the vanishing term τ M̃F

mn. Integrating in
k space in this equation, we obtain the contribution to the
Reynolds stress caused by a fast rotation:

f �
i j = [

(�×λ(�) )iλ
(�)
j + (�×λ(�) ) jλ

(�)
i

] ρ0 u0 
3
0 εu

5(1 + εu)
. (C3)

This equation has been derived in Ref. [37] (see the first two
terms in the right hand side of Eq. (B13) in Appendix B of
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Ref. [37], where now the unit vector e is perpendicular to
�). Here λ(�) = −(∇ρ0)/ρ0 = −r/L2

� [see Eq. (C2)] and the
radius-vector r is perpendicular to �.

In the cylindrical coordinates (r, ϕ, z), the ϕ-component of
the mean velocity is determined by the following equation:

ρ0
∂U ϕ

∂t
= − 1

r2

∂

∂r

[
r2

(
f �
rϕ + f ν

rϕ

)] + 2 ρ0 (U×�)ϕ, (C4)

where the contribution to the Reynolds stress caused by
uniform rotation is given by

f �
rϕ = ρ0νT

3�εu

5(1 + εu)

(

2

0

L4
�

)
r2, (C5)

while the contribution to the Reynolds stress caused by turbu-
lent viscosity is

f ν
rϕ = ρ0νT r

∂

∂r

(
U ϕ

r

)
. (C6)

For simplicity we have considered the case when the radial
dependence of the mean velocity is the strongest one, i.e.,
U ϕ = U ϕ (t, r). This implies that the last term in the right
hand side of Eq. (C4) vanishes. We also neglect here a
small kinematic viscosity in comparison with the turbulent
viscosity.

The steady-state solution of Eq. (C4) reads

U
(steady)
ϕ (r) = 3�εu

10(1 + εu)

(

2

0

L4
�

)
r3, (C7)

which yields the vertical mean vorticity as

W
(steady)
z (r) ≡ 1

r

∂

∂r

(
r U

(steady)
ϕ

)

= 6�εu

5(1 + εu)

(

2

0

L4
�

)
r2. (C8)

Therefore, the balance between the contributions f �
rϕ to the

Reynolds stress caused by a fast rotation and that caused by
the turbulent viscosity, f ν

rϕ , determines the produced time-

independent large-scale vorticity, W
(steady)
z (r); see Eq. (C8).

In the absence of the contribution f �
rϕ to the Reynolds stress

caused by a fast uniform rotation, Eq. (C4) for �ϕ (t, r) ≡
U ϕ/r reads

∂�ϕ

∂t
= νT

[
∂2�ϕ

∂r2
+ 3

r

(
1 + 2 r2

3L2
�

)
∂�ϕ

∂r

]
. (C9)

This equation has a decaying solution for �ϕ caused by the
turbulent viscosity:

�ϕ (t, r) = 2C∗ � exp(−γdect ) �

(
γdecL2

�

2νT

, 2,− r2

2L2
�

)
, (C10)

where �(a, b, z) is the degenerate hypergeometric function,
γdec is the damping rate due to the turbulent viscosity and C∗
is a free constant. For r � L�, this solution reads

�ϕ (t, r) = 2C∗ � exp(−γdect )

(
1 − γdecr2

4νT

)
. (C11)

In Eq. (C11) we have to exclude a uniform rotation, so that the
vertical mean vorticity corresponding to the decaying solution
is given by

W
(decay)
z (t, r) ≡ 1

r

∂

∂r

(
r2 �ϕ

)
= −C∗ �

γdecr2

4νT

exp(−γdect ). (C12)

The total mean vertical vorticity, W
(tot)
z , is determined by

the sum of homogeneous and inhomogeneous solutions of
Eq. (C4), i.e., W

(tot)
z is given by the sum of the stationary

and decaying solutions, W
(tot)
z ≡ W

(steady)
z + W

(decay)
z . The

free constant C∗ is determined by the initial condition:
W

(tot)
z (t = 0) = 0, so that

C∗ = 6εu

5(1 + εu)

(

2

0 νT

L4
�γ

)
. (C13)

Therefore, the total mean vertical vorticity for r � L� reads

W
(tot)
z = 6 �εu

5(1 + εu)

(

2

0 r2

L4
�

)
[1 − exp(−γdect )]. (C14)

At small times, γdect � 1, we obtain a linear in time growing
solution for the total mean vertical vorticity:

W
(tot)
z = 6 �εu

5(1 + εu)

(

2

0 r2

L�

)
γdect . (C15)

Therefore, a combined effect of a fast rotation and horizontal
inhomogeneity of the fluid density (caused by the centrifugal
force) results in the production of the large-scale vertical
vorticity in an anisotropic turbulence. A balance between
the effective force caused by the rotational contributions to
the Reynolds stress and that due to the turbulent viscosity
determines the vertical component of the large-scale vorticity
given by Eq. (C8).
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