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Abstract
In this study, we discuss two key issues relating to a small-scale dynamo instability at low
magnetic Prandtl numbers and large magnetic Reynolds numbers, namely: (i) the scaling for
the growth rate of a small-scale dynamo instability in the vicinity of the dynamo threshold;
(ii) the existence of the Golitsyn spectrum of magnetic fluctuations in small-scale dynamos.
There are two different asymptotics for the small-scale dynamo’s growth rate: in the vicinity of
the threshold of the excitation of the small-scale dynamo instability, λ ∝ ln (Rm/Rmcr), and
when the magnetic Reynolds number is much larger than the threshold of the excitation of the
small-scale dynamo instability, λ ∝ Rm1/2, where Rmcr is the small-scale dynamo instability
threshold in the magnetic Reynolds number Rm. We demonstrate that the existence of the
Golitsyn spectrum of magnetic fluctuations requires a finite correlation time of the random
velocity field. On the other hand, the influence of the Golitsyn spectrum on the small-scale
dynamo instability is minor. This is the reason why it is so difficult to observe this spectrum in
direct numerical simulations for the small-scale dynamo with low magnetic Prandtl numbers.

1. Introduction

Generation of a magnetic field by turbulent motions of
conducting fluid is a fundamental mechanism of the
magnetic fields observed in stars, galaxies and planets. There
are different kinds of turbulent dynamos: large-scale and
small-scale. The large-scale mean-field dynamo implies that
the amplification of the magnetic field occurs at scales which
are much larger than the maximum scale of the turbulent
motion. This kind of dynamo includes: (i) the α� and α2�

dynamos caused by the combined action of the α effect
and differential rotation (see, e.g. [1–5]); (ii) α2 dynamo in
helical turbulence; and (iii) the shear dynamos in non-helical
turbulence [6–8].

On the other hand, generation of magnetic fluctuations
occurs at scales which are smaller than the maximum
scale of the turbulent motions (see, e.g. reviews [9–14]).
Self-excitation of magnetic fluctuations with a zero mean
magnetic field is called a small-scale dynamo. The
mechanisms of the small-scale dynamo action are different
depending on magnetic Prandtl numbers Pm = ν/η, where
ν is the kinematic viscosity of the fluid and η is
the magnetic diffusion, due to the electrical conductivity

of the fluid. For large magnetic Prandtl numbers, the
self-excitation of magnetic fluctuations is caused by the
random stretching of the magnetic field by the smooth
velocity fluctuations (see, e.g. [9, 10, 15–21]). This type of
dynamo has been comprehensively studied in direct numerical
simulations (DNS) of forced turbulence [22–25] and turbulent
convection [26, 27]. The nature of the small-scale dynamo for
low magnetic Prandtl numbers is different, e.g. it is driven by
the inertial-range velocity fluctuations at the resistive scale.
The small-scale dynamo at low magnetic Prandtl numbers has
been studied analytically (see, e.g. [28–34]) for a Gaussian
white-noise velocity field (so called the Kazantsev–Kraichnan
model) and numerically (see, e.g. [14, 35, 36]) in a number
of publications. Since the magnetic energy is not conserved,
the second moment of the magnetic field has anomalous
scalings [29, 37].

The small-scale dynamo instability is excited when the
magnetic Reynolds number, Rm, is larger than the critical
magnetic Reynolds number, Rmcr. Analytical models based
on the Kazantsev–Kraichnan model of a homogeneous,
isotropic, non-helical and incompressible velocity field, yield
Rmcr

≈ 410 at very low magnetic Prandtl numbers [29]. The
compressibility of fluid flow causes a strong increase of the
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critical magnetic Reynolds number at Pm � 1 (see [29]).
A similar tendency has also recently been demonstrated in
an analytical study [21] at large Prandtl numbers. DNSs of
a small-scale dynamo in [14, 35, 36] of the Navier–Stokes
turbulence show that Rmcr is around 200 for small magnetic
Prandtl numbers, and it is at three times larger than for the
small-scale dynamo at large and moderate Prandtl numbers
(see [22–24]). These DNS results at large and moderate
Prandtl numbers are in agreement with different analytical
models [10, 18, 21, 32].

The existence of the small-scale dynamo for a large
number of turbulent spectra at large Prandtl numbers has been
demonstrated [21]. When Pm ∼ 1, the small-scale dynamo
exists even in the regime of very large Mach numbers (see
the DNS results in [25]). This study has also shown that, for
low Mach numbers (∼0.1), the ratio of the growth rate of
turbulence driven by solenoidal and compressive forcing is
about 30. However, for higher Mach numbers (∼10), this ratio
is about 2.

The small-scale dynamo action is different from the
turbulent induction effect that causes the production of
anisotropic magnetic fluctuations by a tangling of the
mean magnetic field by these velocity fluctuations (see,
e.g. [38–43]). This effect cannot be described in terms of the
small-scale dynamo instability.

In spite of a number of studies of small-scale dynamos at
low magnetic Prandtl numbers, there are some key questions
that are the subject of discussions in the literature. One of
them is related to scaling the growth rate λ of the small-scale
dynamo instability at low magnetic Prandtl numbers in the
vicinity of the dynamo threshold. Our analysis performed in
this study, and even the numerical solution of the dynamo
equations for a Gaussian white-noise velocity field obtained
in [44], imply that there are two different asymptotics for
the dynamo instability growth rate: (i) in the vicinity of
the threshold of the excitation of the small-scale dynamo
instability and (ii) far from the threshold of the small-scale
dynamo instability.

Another issue studied here is related to the existence
of the Golitsyn spectrum, k−11/3, of magnetic fluctuations
[38, 39] in the small-scale dynamo with low magnetic Prandtl
numbers. This spectrum of magnetic fluctuations has been
observed in the laboratory experiments [45, 46], in the
large-eddy-simulations [47] and in the DNS [14, 36] of
the small magnetic Prandtl numbers magnetohydrodynamic
turbulence. In this study, we discuss the conditions for the
existence of the Golitsyn spectrum.

The small-scale dynamo mechanism appears to be
responsible for the random magnetic fields generated in the
interstellar medium and in galaxy clusters [13, 14, 48–50].
A number of recent studies also pointed out the relevance
of the small-scale dynamo in amplifying small seed fields in
galaxies and the intergalactic medium (see, e.g. [51–55]). In
particular, a DNS study [54] demonstrated that in the presence
of turbulence, weak seed magnetic fields were amplified by
the small-scale dynamo during the formation of the first stars.
Strong magnetic fields were generated during the birth of
the first stars in the universe, potentially modifying the mass
distribution of these stars and influencing the subsequent
cosmic evolution (see [54]). It was also noted [53] that the

small-scale dynamo was very efficient during the formation
of the first stars and galaxies. During gravitational collapse,
turbulence is created from accretion shocks, which may act to
amplify weak magnetic fields in the protostellar cloud. Such
turbulence is sub-sonic in the first star-forming minihalos, and
highly supersonic in the first galaxies. It was concluded [53]
that magnetic fields are significantly enhanced before the
formation of a protostellar disk, where they may change the
fragmentation properties of the gas and the accretion rate.

2. Governing equations

Let us study magnetic fluctuations with a zero mean
magnetic field at low magnetic Prandtl numbers. In sections 2
and 3, we use the Kazantsev–Kraichnan model [28] of the
δ-correlated-in-time random velocity field. Using this model
allows us to get the analytical results for the growth rate of
the small-scale dynamo instability. The results also remain
valid for the velocity field with a finite correlation time if the
second-order correlation functions of the magnetic field vary
slowly, in comparison to the correlation time of the turbulent
velocity field (see, e.g. [10, 56]). The two-point instantaneous
correlation function of the magnetic field can be presented in
the form

〈bi (t, x)b j (t, y)〉 = W̃ (t, r)δi j +
r W̃ ′

2
(δi j − ri j ), (1)

where W̃ (t, r) = 〈br (t, x) br (t, y)〉 is the longitudinal
correlation function, br is the component of magnetic field b
in the direction r = x − y, ri j = rir j/r2 and W̃ ′

= ∂W̃/∂r .
This form of the second moment (1) corresponds to the
condition ∇ · b = 0 and an assumption of the homogeneous
and isotropic magnetic fluctuations. The equation for
the function W̃ (r, t) derived in the framework of the
Kazantsev–Kraichnan model of a homogeneous, isotropic,
non-helical, incompressible and Gaussian white-noise
velocity field, reads

∂W̃ (t, r)

∂t
=

1

m(r)
W̃ ′′ + µ(r)W̃ ′

−
κ(r)

m(r)
W̃ , (2)

(see [28, 29]), where

1

m(r)
=

2

Rm
+

2

3
[1 − F(r)], µ(r) =

4

mr
+

(
1

m

)′

,

κ(r) =
2 m

r
f ′(r), f (r) = F(r) + r F ′/3,

and Rm = u0 `0/η � 1 is the magnetic Reynolds number, u0

is the characteristic turbulent velocity in the integral scale
`0 and F ′

= dF(r)/dr . Hereafter equations are written in
dimensionless variables: length and velocity are measured
in units of `0 and u0. For a homogeneous, isotropic
and non-helical (with zero mean helicity), incompressible
turbulent fluid velocity field, the correlation function
〈τui (x)u j (x + r)〉 is given by

〈τui (x)u j (y)〉 =
1

3

[
F(r) δi j +

r F ′

2
(δi j − ri j )

]
. (3)

2
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The form of the continuous function F(r) with different
scalings in different ranges of scales is constructed using the
following reasoning. The function F(r) = 1 −

√
Re r2 is in

the viscous range of scales: 06 r 6 `ν/`0, while the function
F(r) = 1 − r4/3 is in the inertial range of scales: `ν/`0 < r
< 1. At the boundary of these ranges, r = `ν/`0, these
functions coincide, where `ν = `0/Re3/4 is the viscous scale
and `0 is the integral scale of turbulence.

The solution of equation (2) can be obtained using an
asymptotic analysis (see, e.g. [10, 29, 30]). This analysis is
based on the separation of scales. In particular, the solutions of
equation (2) with a variable mass have different regions with
different functions m(r), µ(r) and κ(r). Solutions in these
different regions and their derivatives can be matched at their
boundaries. The results obtained by this asymptotic analysis
are presented below.

3. Asymptotic behaviour of the growth rate of
magnetic fluctuations

Let us now discuss the asymptotic behaviour of the
growth rate of magnetic fluctuations with a zero mean for
small magnetic Prandtl numbers. We sought a solution of
equation (2) for the longitudinal correlation function of the
magnetic field in the form: W̃ (t, r) = exp(λ t) W (r). In the
viscous range of scales, 06 r 6 `ν/`0, the function F(r) =

1 −
√

Re r2 and the equation for the function W (r) is given by

r W ′′ + 4 W ′ + 10
3 Prm Re3/2 r W = 0, (4)

where W ′
= dW (r)/dr . The solution of equation (4) is

given by

W (r) = r−3/2 J3/2

(√
10 Prm

3
Re3/4 r

)
≈ 1 −

Prm Re3/2

3
r2,

(5)

(see [29]), where Jα(y) is the Bessel function of the first kind;
we have taken into account that W (r = 0) = 1.

In the inertial range of scales, `ν/`0 < r < 1, the function
F(r) = 1 − r4/3 and the equation for the function W (r) is
given by(

1 +
1

3
Rm r4/3

)
W ′′ +

4

r

(
1 +

4

9
Rm r4/3

)
W ′

+ Rm

(
52

27
r−2/3

−
λ

2

)
W = 0, (6)

where λ is the growth rate of small-scale dynamo instability.
In the range of scales, `ν/`0 < r � `η/`0 the equation for the
function W (r) reads

r2 W ′′ + 4 r W ′ + 52
27 Rm r4/3 W = 0, (7)

where `η = `0/Rm3/4 is the resistive scale. The solution of
equation (7) is given by

W (r) = r−3/2 J9/4

(√
13 Rm

3
r2/3

)
≈ 1 −

Rm

3
r4/3, (8)

(see [29]). On the other hand, in the range of scales, `η/`0 �

r < 1 the equation for the function W (r) is given by

9 r2 W ′′ + 48 r W ′ +

(
52 −

27 λ

2
r2/3

)
W = 0. (9)

The solution of equation (9) is

W (r) = C r−13/6 Kα

(√
27 λ

2
r1/3

)
, (10)

(see [34]), where Kα(y) is the real part of the modified Bessel
function (Macdonald function) with α = (i/2)

√
39. This

solution was chosen to be finite at large r , with a positively
defined spectrum, and it has the following asymptotics at
scales `η/`0 � r � λ−3/2 (see [29]):

W (r) = A1 r−13/6 cos

(√
13

12
ln r + ϕ0

)
, (11)

and at scales λ−3/2
� r � 1 (see [32]):

W (r) = A2 r−7/3 exp

(
−

√
27 λ

2
r1/3

)
. (12)

Here A1 and A2 are the constants which are proportional to
the constant C .

In the range of scales r � 1, the turbulence is absent
(F → 0), 1/m = 2/3, µ(r) = 4/mr and

W (r) = A3 r−2
(√

λ + r−1
)

exp(−λr), (13)

(see [29]), where A3 is a constant.
The scaling for the growth rate of small-scale dynamo

instability which is far from the threshold, is estimated as an
inverse resistive time scale:

λ ∼
uη

`η

∼
u0

`0
Rm1/2, (14)

(see [39]), where uη = (ε `η)
1/3 is the characteristic turbulent

velocity at the resistive scale, u0 = (ε `0)
1/3 and ε is the

dissipation rate of turbulent kinetic energy. For the scaling
λ ∝ Rm1/2, the condition λ1/2 r1/3

� 1 implies r � Rm−3/4.
Note that this matching of the solutions (8), (12) and their
derivatives at the boundary of their regions, yields the dynamo
growth rate (14).

However, the scaling, λ ∝ Rm1/2, is not valid in the
vicinity of the threshold of the dynamo instability. Indeed, in
the vicinity of the threshold when λ → 0, there is only one
range of the solution of equation (9), i.e. λ1/2 r1/3

� 1. In this
range of scales the solution of equation (9) is determined by
equation (11). The matching of the solutions (8), (11) and (13)
and their derivatives at the boundary their regions yields the
following growth rate of the small-scale dynamo instability in
the vicinity of the threshold:

λ = β ln

(
Rm

Rmcr

)
, (15)

(see appendix A), where β = 4/3 is the exponent of the
scaling of the correlation function F(r) (i.e. it is the exponent

3
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Figure 1. The growth rate of small-scale dynamo instability versus
ln (Rm/Rmcr) in the vicinity of the instability threshold: solid line
corresponds to the scaling λ = β ln (Rm/Rmcr) and squares are the
results of the numerical solution of the dynamo equation for W (r)
for the Kazantsev–Kraichnan model of velocity field with zero
kinetic helicity in the inertial range of scales taken from figure 1
in [44].

of the turbulent diffusivity scaling). In figure 1, we plot the
growth rate (15) of small-scale dynamo instability versus
ln (Rm/Rmcr) in the vicinity of the threshold of small-scale
dynamo instability. In the same figure we also show the
numerical solution (squares) of the dynamo equation (2)
performed in [44] (for the Kazantsev–Kraichnan model in an
inertial range of scales of fluid motions for Re ∼ 108, and for
Rm 6 107), which demonstrates a perfect agreement between
the scaling (15), shown by the solid line, and the numerical
solution of the dynamo equation.

Note that the solution of equation (9) determined by
equation (11), is generally a fast oscillating function at
r � 1. However, for the first mode with the maximum growth
rate, the spectrum of the eigenfunction is positively defined
(see [10]). Since this solution is only valid in the vicinity
of the dynamo threshold, the second and higher modes
are not excited. Therefore, the resulting spectrum of the
eigenfunctions are always positively defined.

In this study, we only discuss the regime of small
magnetic Prandtl numbers. In the case of large magnetic
Prandtl numbers and large fluid Reynolds numbers, the
dynamo growth rate far from the threshold is λ ∼ Re1/2, i.e.
it is determined by the Kolmogorov time scale (see, e.g.
[20, 21, 39]). On the other hand, for small magnetic Prandtl
numbers the dynamo growth rate far from the threshold is
determined by the resistive time scale.

4. Magnetic fluctuations with the Golitsyn spectrum

In this section, we study the effect of magnetic fluctuations
with the Golitsyn spectrum, k−11/3, [38, 39] on the small-scale
dynamo with low magnetic Prandtl numbers. This spectrum
can exist at the scales `ν 6 r 6 `η. Our goal is to determine
the longitudinal correlation function W (r) that corresponds
to the Golitsyn spectrum. To this end we use the induction
equation for the instantaneous magnetic field H(t, x) in an

incompressible velocity field v(t, x):

∂H
∂t

+ (v · ∇)H = (H · ∇)v + η1H. (16)

We seek the solution of equation (16) in the following form:

H(t, x) = [B(t) + b(t, x)] exp(λ t/2), (17)

where B(t) is the magnetic field in scales which are much
larger than the resistive scale `η, while b(t, x) is the magnetic
field in the scales which are smaller than `η. We consider the
magnetic dynamo regime, so that the total magnetic field H
grows in time exponentially with the growth rate λ/2. Next,
we average equation (16) over the ensemble of fluctuations
generated in the scales `η � ` � `0, and subtract the obtained
averaged equation from equation (16). This yields an equation
for the magnetic field b(t, x):

∂b
∂t

= (B · ∇)u + (η1 − λ/2) b + bN , (18)

where v(t, x) = V(t) + u(t, x), V(t) is the velocity field in the
scales which are much larger than the resistive scale `η, while
u(t, x) is the velocity field in the scales which are smaller
than the resistive scale `η, and bN

= ∇ × (u × b − 〈u × b〉)

are the nonlinear terms. Equation (18) is written in the frame
moving with the velocity V(t). Using equation (18) and
the momentum equation for the velocity u(t, x) we derive
equations for the second moments of the magnetic field
hi j (k) = 〈bi (k) b j (−k)〉 and the cross helicity tensor gi j (k) =

〈bi (k) u j (−k)〉:

∂hi j (k)

∂t
= − i(B·k) [gi j (k) − g j i (−k)]

− (ηk2 + λ/2) hi j + hN
i j , (19)

∂gi j (k)

∂t
= i(B·k) f̃ i j (k) − (ηk2 + λ/2) gi j + gN

i j , (20)

where f̃ i j (k) = 〈ui (k) u j (−k)〉, hN
i j = 〈bN

i (k)b j (−k)〉 +
〈bi (k)bN

j (−k)〉 and gN
i j =−i(k · B)hi j (k) + 〈bN

i (k)u j (−k)〉 +
〈bi (k)uN

j (−k)〉. Here uN
i are the nonlinear terms in the

momentum equation. Since we have already taken into
account the exponential growth of the total magnetic field H,
we can drop the time derivatives in equations (19) and (20),
because the characteristic times of the variations of the
correlation functions hi j and gi j are much larger than the time
λ−1. Since we describe magnetic fluctuations in spatial scales
which are smaller than the resistive scale `η, we may drop the
nonlinear terms hN

i j and gN
i j in equations (19) and (20) in the

case of large magnetic Reynolds numbers and low Prandtl
numbers, because they are small in these scales. Therefore,
equations (19) and (20) yield:

(η k2 + λ/2)2
〈bi (k) b j (−k)〉 = 2(B · k)2

〈ui (k) u j (−k)〉.

(21)

In the next step we introduce the normalized two-point
correlation function w(r) of the magnetic field which is

4
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defined as follows:

w(r) =
1

〈B2〉
〈Hm(x) Hm(y)〉 = 1 +

1

〈B2〉
〈bm(x) bm(y)〉,

(22)

where w′
= dw(r)/dr and r = |x − y|. We rewrite

equation (21) in r space using the inverse Fourier
transformation (i.e. we use the following transformation
iki → ∇i ). This yields the following equation for the
normalized two-point correlation function of the magnetic
field: (

d2

dr2
+

2

r

d

dr
− a2

)2

w(r) =

−
2

3
Rm2

(
d2 f̃ (r)

dr2
+

2

r

d f̃ (r)

dr

)
+ 3 a4, (23)

where a = (λ Rm/2)1/2, f̃ (r) = f̃ mm(r) and f̃ i j (r) is the
two-point correlation function of the velocity fluctuations
written in r space. Equation (23) is written in dimensionless
variables: length and velocity are measured in units of `0

and u0, the growth rate of the magnetic fluctuations λ is
measured in units of u0/`0 and the magnetic field is measured
in units of B0. We also take into account that 〈(B · ∇)2

〉 f̃ =

(1/3) ( f̃ ′′ + 2 f̃ ′/r).
The solution of equation (23), which satisfies the

following boundary conditions: w(r = 0) = 3 and w′(r = 0)

= w′′(r = 0) = 0, reads

w(r) = 3 −
3 C1

4 a3 r
[(ar − 1) exp(ar) + (ar + 1) exp(−ar)]

+
55 Rm2

2 (36) a11/3 r

[
(3 ar − 5) exp(ar) γ (2/3, ar)

+ (3 ar + 5) exp(−ar) γ (2/3, −ar)

]
, (24)

where w′
= dw(r)/dr , C1 is a free constant and γ (β, x) =

β−1 xβ exp(−x) M(1, 1 + β, x) is the incomplete gamma
function which is related to the confluent hypergeometric
function M(a, b, x). When ar � 1, equation (24) for the
two-point correlation function w(r) is given by

w(r) = 3 − C1 r2 + 1
12 Rm2 r8/3

[
1 + 9

238 Rm λ r2
]
. (25)

The function w(r) is related to the longitudinal correlation
function W (r), i.e. w(r) = 3W (r) + r W ′(r). Equation (26),
rewritten for the longitudinal correlation function W (r), reads

W (r) = 1 −
Rm Re1/2

3
r2 +

1

68
Rm2 r8/3

[
1 +

9

322
Rm λ r2

]
,

(26)

where `ν/`0 6 r 6 `η/`0, the constant C1 ≈ (5/3) Rm Re1/2

is determined by the matching of functions W (r) determined
by equations (5) and (26) at the point r = `ν/`0. The scaling
W (r) ∝ Rm2 r8/3 corresponds to the Golitsyn spectrum
M(k) ∝ B2

0 η−2 ε2/3 k−11/3 [38], where ε is the rate of

dissipation of the turbulent kinetic energy and M(k) =

(2/π)
∫

∞

0 kr sin(kr) w(r) dr . It follows from the latter
equation that the exponent q in the spectrum function M(k) ∝

k−q and the exponent p in the scaling W (r) ∝ r p are related
as follows: q = p + 1.

For small Prandtl numbers the constant C̃1 =

Rm Re1/2/3 is larger than C̃2 = Rm2/68, and since r � 1, the
first and second terms in the right hand side of equation (26)
dominate the behaviour of W (r). This estimate implies
that the third term in the right hand side of equation (26)
resembling the Golitsyn spectrum, is negligible. This is the
reason why the influence of the Golitsyn spectrum on the
small-scale dynamo instability is minor. That is why it is so
difficult to observe the Golitsyn spectrum in DNS for the
small-scale dynamo with low magnetic Prandtl numbers.

Note that the existence of the Golitsyn spectrum of
magnetic fluctuations requires a finite correlation time
of the random velocity field, i.e. the solution for the
small-scale dynamo with the Golitsyn spectrum does not
exist in the framework of the Krachnan–Kazantsev model
of the delta-correlated-in-time turbulent velocity field (see
appendix B). Indeed, for the derivation of equation (23) we
did not use the assumption about the delta-correlated-in-time
turbulent velocity field. One of the indications of the finite
correlation time of the random velocity field is already seen in
equation (23), where the high-order spatial derivatives arise.
The Kazantsev–Kraichnan model yields the dynamo equation
with spatial derivatives not higher than the second-order
spatial derivatives. On the other hand, it is well-known
that even a small yet finite correlation time of the random
velocity field causes the appearance of the higher-order spatial
derivatives in the dynamo equations (see, e.g. [10, 56]).

The requirement of the finite correlation time of the
random velocity field for the correct description of the
tangling magnetic fluctuations which have the Golitsyn
spectrum, also follows from the dimensional arguments.
Indeed, the main balance in the induction equation for
the magnetic fluctuations (B · ∇)u ∼ η1b which yields the
Golitsyn spectrum, can be rewritten in the following form:
〈b2

〉 ∼ τ 2(`) [〈u2
〉]2 B2/η2. The latter equation implies the

requirement of the finite correlation time of the random
velocity field for the correct description of the tangling
magnetic fluctuations. Similar arguments are also valid
for the k−1 spectrum of the magnetic fluctuations generated
by the tangling mechanism at low magnetic Prandtl numbers
in the scales `η � ` � `0 (see [40–43]).

We stress again that both magnetic fields, B(t) and
b(t, x), are small-scale fields (in scales which are much less
than the integral scale `0 of turbulence). In particular, B(t)
is the magnetic field in the scales `η � ` � `0, while b(t, x)

is the magnetic field in the scales `ν � ` � `η. These fields
belong to the same mode generated by the same small-scale
dynamo mechanism. In this section, we used two magnetic
fields, B(t) and b(t, x), to describe the interaction of the
magnetic fields of different scales by the tangling of the field
B(t) of the velocity fluctuations which produces additional
anisotropic magnetic fluctuations with the Golitsyn spectrum.
The latter mechanism is the turbulent magnetic induction that
is different from the small-scale dynamo.

5
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5. Conclusions

In this study, we investigated some key issues of small-scale
dynamos in a random velocity field with large fluid Reynolds
numbers, a zero mean magnetic field and low magnetic
Prandtl numbers. Contrary to the claim in [44], there are
two different asymptotics for the dynamo growth rate:
in the vicinity of the threshold of the excitation of the
dynamo instability (λ ∝ ln (Rm/Rmcr)) and far from the
dynamo threshold (λ ∝ Rm1/2). The influence of the Golitsyn
spectrum on the small-scale dynamo instability is minor,
and this spectrum of magnetic fluctuations requires a finite
correlation time of the random velocity field. However, the
Golitsyn spectrum of magnetic fluctuations does exist in a
small-scale turbulence at low magnetic Prandtl numbers with
an imposed constant large-scale magnetic field.
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Appendix A. Growth rate of small-scale dynamo
instability in the vicinity of the dynamo threshold

Let us obtain the scaling for the growth rate of the small-scale
dynamo instability in the vicinity of the dynamo threshold. In
the range of scales, `ν/`0 < r � `η/`0, the function r W ′/W
is given by

r W ′

W
= −

4

9
Rm r4/3, (A.1)

(see equation (8)), while in the range of scales, `η/`0 � r < 1
the function r W ′/W is

r W ′

W
= −

13

6
−

√
13

12
tan

(√
13

12
ln r + ϕ0

)
, (A.2)

(see equation (11)). On the other hand, in the range of scales
r � 1 the function r W ′/W is

r W ′

W
= −2 −

√
λ r −

1

1 +
√

λ r
≈ −

(
3 + λr2

)
, (A.3)

(see equation (13)), where we have taken into account that in
the vicinity of the dynamo threshold λ → 0 and λ1/2 r � 1.

Matching of the functions r W ′/W determined by
equations (A.1) and (A.2) at the point r = `η/`0 yields the
following equation:

tan

(√
39

8
ln Rm − ϕ0

)
=

31

3
√

39
. (A.4)

This equation determines the function ϕ0(Rm). Now we
define the function ϕcr

0 = ϕ0(Rm = Rmcr ), where Rmcr is the
threshold for the excitation of the magnetic fluctuations. It
follows from this equation that

ϕ0 − ϕcr
0 =

√
39

8
ln

(
Rm

Rmcr

)
. (A.5)

Matching of the functions r W ′/W determined by
equations (A.2) and (A.3) at the point r = 1 yields

tan ϕ0 =

√
12

13

(
5

6
+ λ

)
. (A.6)

It follows from this equation that

λ =
32

3
√

39

(
ϕ0 − ϕcr

0

)
, (A.7)

where we have also taken into account that in the vicinity
of the dynamo threshold λ → 0. Combining equations (A.5)
and (A.7), we obtain the following scaling for the growth rate
of small-scale dynamo instability in the vicinity of the dynamo
threshold: λ = (4/3) ln (Rm/Rmcr).

Appendix B. Tangling magnetic fluctuations in the
delta-correlated-in-time velocity field

The technique of path integrals for the delta-correlated-
in-time velocity field allows us to derive the equation for the
second-order correlation function, hi j = 〈bi (t, x)b j (t, y)〉:

∂hi j

∂t
= [L̂ ik(x)δ js + L̂ js(y)δik + M̂i jks]hks + Ii j , (B.1)

(see for details [29]), where the turbulent component of
magnetic field is b(t, x) = H(t, x) − B(t),

L̂ i j =
1

3

(
1 +

3

Rm

)
δi j

∂

∂x p

∂

∂x p
, (B.2)

1

2
M̂i jks = δikδ js fmn

∂2

∂xm∂yn
− δik

∂ fmj

∂ys

∂

∂xm
− δ js

∂ fin

∂xk

∂

∂yn

+
∂2 fi j

∂xk∂ys
, (B.3)

Ii j = Bk Bs
∂2 fi j

∂xk∂ys
, (B.4)

and fmn = 〈τum(x)un(y)〉. Multiplying equation (B.1) by
rir j/r2 we arrive at the equation for the correlation function
W̃ (r, t):

∂W̃ (t, r)

∂t
=

1

m(r)
W̃ ′′ + µ(r)W̃ ′

−
κ(r)

m(r)
W̃ + I, (B.5)

where I = B2 (F ′′ + 4F ′/r)/3. In the inertial range the source
term is I = 52B2r−2/3/27. This source term yields the
following scaling of the correlation function W (r) ∝ r4/3 in

6
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the range of scales, `ν/`0 < r � `η/`0. This implies that the
scaling of magnetic fluctuations caused by the tangling of
the large-scale magnetic field by the delta-correlated-in-time
velocity field coincides with the scaling of turbulent magnetic
diffusion F(r) ∝ r4/3. In Fourier space this corresponds to
the k−7/3 spectrum of magnetic fluctuations. This implies that
the Golitsyn spectrum, k−11/3, of magnetic fluctuations cannot
be described in terms of the delta-correlated-in-time velocity
field.
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