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Modification of the magnetic force by a developed small-scale magnetohydrodynamic (MHD) 
turbulence can result in the sign reversal of the efictiue magnetic pressure. It is due to negative 
contribution of the MHD turbulence, to the large-scale magnetic force. It can significantly lower 
the elasticity of the large-scale magnetic field [ Sov. Phys. JETP 70, 878 ( 1990)]. This effect 
excites instabilities of the large-scale magnetic field due to the energy transfer from the turbulent 
pulsations to the latter. The nonturbulent stability criteria are modified due to the effectiue 
negative magnetic pressure. These instabilities may provide a mechanism of the large-scale 
magnetic ropes formation in the solar convective zone and spiral galaxies. In addition, the 
instabilities can excite the short-period solar oscillations. 

I. INTRODUCTION 

One of the problems of magnetohydrodynamics is a 
construction of inhomogeneities of magnetic field from an 
originally uniform field. The magnetic buoyancy instability 
is used for the explanation of formation of magnetic inho- 
mogeneities. I** However, for such instability to arise the 
original magnetic field must be strongly inhomogeneous 
along the direction of gravity so that the scale of field 
variation is smaller than the density height variations. This 
situation, however, is not typical for space plasmas.3-5 

In this paper a new source of excitation of magneto- 
hydrodynamic (MHD) instabilities in plasma is consid- 
ered. It is a small-scale developed MHD turbulence, which 
results in modification of the mean magnetic force.6*7 The 
phenomenon is due to the generation of magnetic fluctua- 
tions at the expense of hydrodynamic pulsations. It leads to 
a decrease of the elasticity of the large-scale magnetic field, 
so that under certain conditions, the eflctive magnetic 
pressure can change sign. 

It results in an excitation of large-scale MHD instabil- 
ities. The instabilities cause a formation of inhomogeneities 
of the regular magnetic field on account of the energy 
transferred from the small-scale turbulent pulsations. This 
effect is developed even in an initially uniform magnetic 
field. 

The onset of instabilities that are due to sign reversal of 
force of various types has been studied many times.8*9 No 
studies, however, were made of the instabilities of a large- 
scale regular magnetic field in plasma with developed 
small-scale MHD turbulence for ,f?$ 1 (p is the ratio of the 
plasma pressure to that of the large-scale magnetic field). 

Before turning to the investigation of the instabilities a 
qualitative discussion of the sign reversal of the effective 
magnetic pressure is presented.6+‘0 For isotropic turbulence 
the equation of state is given by f1112 

wm 2wk 
pT=T+- 3 * (1) 

Here j?T is the total (hydrodynamic plus magnetic) turbu- 
lent pressure, W,= (h2)/8?r is the energy density of the 
magnetic fluctuations, wk= (per2)/2 iS the energy density 
of the turbulent hydrodynamic motion, u and h are ran- 
dom pulsations of the hydrodynamic and magnetic fields, 
and p is the density of plasma. The angle brackets denote 
averaging over the ensemble of turbulent pulsations. As- 
sume that the turbulence is maintained by an “inexhaust- 
ible” energy reservoir. The total energy of the turbulence is 
then conserved (the dissipation is compensated for by a 
supply of energy), i.e., 

wk + wm = conk (2) 

If, for example, a certain amount of the energy of the hy- 
drodynamic pulsation, A W,, is transferred into generated 
magnetic fluctuations, this process results in the following 
change in the total turbulent pressure [see Eqs. ( 1) and 
@ )I 

A Wtn 
Apr= -3, 

It follows hence that the turbulent pressure is lowered 
when magnetic fluctuations are generated (when 
AW,>O holds). 

The total turbulent pressure is decreased also by the 
“tangling” of the large-scale regular magnetic field by hy- 
drodynamic pulsations.3-5 The regular magnetic field, “en- 
tangled” with the hydrodynamic pulsations, generates sup- 
plementary small-scale magnetic fluctuations. In this case 
density of the magnetic energy Wm depends on W, and 
WB, where Wp &/81r is the energy density of the large- 
scale magnetic field B. For weak magnetic fields 
( W& Wk), expanding the function W,,, in a series in 
Wg, one obtains 

w m = @“$-a 
B2 

m P ( w&--+ 
87~ “” 
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where @z’ is the energy density of the magnetic fluctua- 
tions in the absence of a large-scale magnetic field. This 
expression gives the change of the magnetic energy. Then 
the turbulent pressure reduces to 

(5) 

The total pressure is P=pk+pT+pB, where Rk is the usual 
gas-dynamic pressure of the plasma and pB= B2/8r is the 
magnetic pressure of the large-scale field. With allowance 
for the expression for PT, the total pressure is 

(6) 

where Q, = 1 -a/3. The sign of up, as seen from analysis, 
is determined by the direction of energy transfer. It is pos- 
itive when magnetic fluctuations are generated and nega- 
tive when they are damped. It follows that in the presence 
of developed MHD turbulence it is possible to reverse the 
sign of the efictive magnetic pressure 

for QP < 0. We consider the case when p& B2/8r. Hence 
the total pressure P is always positive. 

The high order closure procedure6 and modified renor- 
malization group method’ were employed for the investi- 
gation of the MHD turbulence at the large magnetic Rey- 
nolds number R,= uelo/~c~ 1. Here v. is the molecular 
magnetic diffusion, 1, is the main scale of the turbulence, 
u. is the characteristic turbulent velocity. It was found that 
the effective large-scale regular magnetic force is given by 

Fe;=-v gF32 +$*v)B, ( 1 (8) 

where 

Q,-l-(4/15)ln(Rm), Q-11-(8/45)ln(Rm)j. (9) 
These asymptotic expressions for the magnetic coefficients 
Q, and Q, are for the case 

WE< w,. (10) 

II. BASIC EQUATIONS AND ENERGY 
CONSERVATION LAW 

In this section large-scale effects in the presence of a 
developed small-scale MHD turbulence are investigated. A 
general diagram of the energetic processes considered here 
is shown in Fig. 1. In the very small scales I < Zd the mo- 
lecular and atomic effects are important. The input of en- 
ergy into the region is from an external thermal source I. 
The region 1, < l< lo corresponds to the MHD turbulence 
maintained by an external source IF The large-scale effects 
are significant for I > Lo. The energy of the large-scale hy- 
drodynamic flow and magnetic field is dissipated into both 
the MHD turbulence and the molecular motions. The 
former dissipation process is described by the turbulent 
viscosity tpT and the turbulent magnetic diffusion qT, while 

‘d ‘0 r, -1 

FIG. 1. A general diagram of the energetic processes. 

the latter is governed by the molecular viscosity v. and the 
molecular magnetic diffusion qo. Generation of the mag- 
netic fluctuations in the MHD turbulence results in a de- 
crease of the elasticity of the large-scale magnetic field. The 
influence of the MHD turbulence on the large-scale mag- 
netic force can be described by the turbulent magnetic co- 
efficients QP and Q,. The equations for the large-scale fields 
have the following form: 

p%=-V(p+zB2)+g (B*V)B+F,+F,,,, (11) 

aB 
~=VX(vXB) +rjAB, (12) 

+ z+V* (pv) =a 

pT fwT =I+ D,+7 -V-a, 

where v and B are the velocity and magnetic field, respec- 
tively, p=pk+pr, S=In(ppeY)/y is the entropy, y is the 
ratio of the specific heats, F,,, is the external force (for 
example, the gravitational force F,,t=pg, g is the free-fall 
acceleration), Fd is the dissipation force due to the molec- 
ular and turbulent viscosities, q is the magnetic diffusion 
(molecular plus turbulent), I is the external source of the 
thermal energy, WT is the density of the total energy of the 
MHD turbulence, r is the characteristic time of the dissi- 
pation of the turbulent energy into the thermal one, D, is 
the density of the power released due to the molecular 
dissipation, and Q, is the total thermal flow. The turbulent 
diamagnetism and the a-effect are not included in Eq. 
( 12)3-5 since both a and the diamagnetic velocity are 
much smaller than the AlfvCn velocity for the range inves- 
tigated here and hence do not affect the perturbations dis- 
cussed hereafter. For instance, a typical AlfvCn velocity 
near the interface of the solar convective zone is of the 
order of magnitude of few hundreds m/set while a is few 
tens cm/set. 

Consider now the energy conservation law. We multi- 
ply Eq. (11) by the velocity v, Eq. (2) by (QJ4p)B, Eq. 
( 13) by v2/2, and add them. The result is given by: 
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$($+Qz;) 

+ W,,,*v) - Dm-DT+ 

(15) 
where DT is the density of the power released due to the 
turbulent viscosity and the turbulent magnetic diffusion. A 
use was made of the following identities: 

V2 2 

pv(v*v)v+~v.(pv)=v* v$ , 
( 1 

V*(BX(vXB))=B.VX(vXB)+v*(VXBXB). 

Equation ( 15) is the conservation law of the total energy 
of the large-scale flow and magnetic field pv2/2 
+ QsB2/8~. 

The conservation law of the total energy after taking 
into account the MHD turbulence has the following form: 

=--v*q+(F,,,‘V)+~+iT, 

(16) 
where E= U+ W, is the total internal energy. The total 
energy flux q is given by 

q=pv(;+e+$)+gBX(vXB)+vvB2+@. 

(17) 
An expression for the internal energy can be obtained from 
the first principle of thermodynamics 

dU= TdS+$ dp. (18) 

Using Eqs. ( 13), ( 14) and ( 18) we get the following en- 
ergy equation: 

+ D,--pkv l V. 

Subtracting Eqs. (15) and (19) from Eq. (16) yields the 
following conservation law of the turbulent energy WT 

PwT &(pw,) = --v* (pW,v) + D+-ly--~ 

(20) 

If Q&Q, the MHD turbulence produces additional work. 
It is converted into the energy of the large-scale flow and 
magnetic field even in the absence of dissipation [see last 
term in Eq. ( 15>3. The terms DT, IT and p W~/T describe 
the sources and dissipation of the turbulence. Decrease of 
the elasticity of the large-scale magnetic fleld due to the 
generation of the magnetic fluctuations in the MHD tur- 
bulence is essential for systems with the large R,. In this 
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case the developed MHD turbulence can give rise to neg- 
ative QP Such values of Q, (i.e., negative) result in exci- 
tations of the large-scale MHD instabilities which draw 
free energy from the turbulent motions and fields.‘*i3 These 
MHD instabilities are described in the next section. 

The large-scale processes in view of the conservation 
laws can be considered as an “open” system. Beside two 
dissipation channels DT and D, there is an additional en- 
ergetic channel described by the magnetic turbulent coef- 
ficients Q, and Q$. This channel exists without dissipation. 

Ill. THE LARGE-SCALE MHD INSTABlLlTY 

For simplicity, the instabilities are investigated in this 
section in the absence of dissipation processes and for the 
case: I+ D, + p W,/r= V l @. 

Consider an equilibrium state without flow given by 

B:, =F$r+$VXBV)XB,. ) (21) 

We now linearize Eqs. (1 l)-( 14) about the equilib- 
rium state, and denote the perturbed quantities by sub- 
script 1 while equilibrium quantities are denoted by sub- 
script 0 , It is convenient to express all perturbed quantities 
in terms of the Lagrangian displacement vector g(r,t), 
where vl=a&&. Then the solution of Eqs. (12)-( 14) for 
perturbed fields Bt, p1 , Si and pl are given by’4P’5 

(22) 

Pl =-po~*&-((g-v)po, 

f-q= - (g*wso, 

Pf= -~i:‘v)Po+ypov*g. 
where 

(23) 

(24) 

(25) 

b=(B,*V)K--p&*V) 2 , 
( ) 

(26) 

We introduce the perturbed total pressure (kinetic 
magnetic ) : 

and 

(271 

After eliminating V* 6 from Eq. (25) the perturbed quan- 
tities are written in the following way: 

h=,:,:Qp)p*+&* 

where 

PC= 
?‘Po(S-NJ -QP(Bc*b)/4rr 

C$(Qp) ’ 
(30) 

(31) 
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VP0 vpo Nb’rpo -pop K(Qp,=l,%, p&g, 
0 

c=yp,,/po is the sound speed. Equations (27)-( 29) are 
inserted into the linearized momentum equation that yields 

$5 
pojp= -G(p) --F(S), 

where 

(32) 

G(p) =Vp*-;(Bo$$$&P* 

‘lg 

(33) 
FIG. 2. The directions of the magnetic and gravitational fields. 

WI= -~(Bo.V)B5-~(B~-v)~,-~~~. (34) 

In the absence of MHD turbulence Q,=Q,= 1 , and with- 
out rotation and equilibrium flow the system (32)-(34) 
coincides with the one given by’4P’5 

We search now for a solution of Eqs. (32)-( 34) within 
the framework of the Wentzel-Kramers-Brillouin (WKB) 
approximation: 

~=elX/E(~(O’+EAI(I’+E2~(2)+...) f (35) 
where A= (&p*); x=x(rI ) and rl is a position vector 
perpendicular to BP The parameter E< 1 is a measure of 
the fast variation of the phase across magnetic field lines. 
The functions x and g(j) are considered to be of order 1. It 
should be noted that the variations of the perturbation 
occur on length scales that are on one hand much smaller 
than that of the equilibrium state while on the other hand 
much larger than those turbulent fluctuations that contrib- 
ute to Q, and QP Substituting expansion (35) for p* in 
(33) yields 

. (0) 
G(p) =F vx+I’p~)vX+~(&). 

Consequently, to lowest order in E Eq. (32) results in 

P* (O’ = 0. (36) 

In addition, Eqs. (25) and (27) yield 

g(O) l vx=o , (37) 
which results in the following representation of c(O): 

S’0’=mv+h&3, (38) 
where 

@B=BdIBo), &=t&, i=Vx/IVxI. 
To zeroth order, Eq. (32) yields 

a2g(O) 
ai2-= - F( g(O)) - ip?‘vX, 

We consider now a horizontal magnetic field BO which 
is perpendicular to the free-fall acceleration g (see Fig. 2). 
Note that the equilibrium variables p. and B. depend only 

on rP where rg= (r 9 g)/g. Two equations for i&,, and gB can 
now be obtained by the scalar multiplication of equation 
(29) by 2~ and GR Note that such multiplication elimi- 
nates the unknown p!“Vx from Eq. (39). The resulting 
equations are 

po~=po(~~~)~~~+~(Bo*V)~~~ 

-4T$$p7ApU30*V)b9 

a% Qs 
“%=47rK( Q,) (Bo*V)~~B+~$;~~ 

P P 

(40) 

x (Bo*V>&v, (41) 

where C,= Bd 6 is the AlfvCn speed, A\p ’ = p’o/po is 
the density height scale, a=gAJC$ Here and below f’ is 
a derivative with respect to rP The parameter 
il= (g*g)/gcN= (1 +Lg)-1’2 is connected to the polariza- 
tion parameter of the wave, 

A = (%-Vx) Et 
0 (& l Vx) 9 $=;, 81 =cgxc,. 

The parameter u is 

where A,‘= B2Bo and $= -g*N&y@A is the nondi- 
mensional Brunt-VBisZiltia frequency. As the magnetic field 
lined are considered here to be infinite, the following trav- 
eling solution is used: 

g=goexp[ --i(at--kg-r)], (42) 

where kB is parallel to B@ It should be noted that within 
the framework of our model the perturbations propagate 
along the average magnetic field. This is consequence of the 
fact that the characteristic time scales of the chaotic mag- 
netic fluctuations are much shorter than those of the in- 
vestigated perturbations. Substituting (42) into (41) yields 
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(@2+A2d-Q&&=zklpRa & (B, 
P 

h&&$~=-(~2-~)bB, 
P 

(4) 

where o and kB are the nondimensional frequency and 
wave number, w is measured in the units of CA/h, and 
kB is in units of Ap 

Consider first the case kB=O. This corresponds to the 
interchange mode. In this case from Eqs. (43) and (44) 
one can see that gB=O and 

co2= -n2a2. (45) 

As can be seen in (45) , the stability is determined by the 
sign of 2. In the case of weak magnetic field K( Q,) is close 
to unity and $ is much bigger than the other term in the 
definition of 2. Hence, if at< 0 the classical convective 
instability develops with growth rate given by’6*‘7 

(46) 

For the general case, the criterion for the interchange in- 
stability to occur is 

%<-Qp( l-2)(4,‘. (47) 

We first notice that for a uniform magnetic field, i.e., 
ApCO, and in the nonturbulent case condition (47) co- 
incides with the criterion given by.” Further examination 
of (47) reveals that in nonturbulent media (i.e., Q,= 1) 
the magnetic field stabilizes the system if A,> Ap. If the 
latter is not satisfied, instability may occur for which Park- 
er’s instability, ls2 i.e., the case &=O, is a particular case. 

In turbulent media the criterion for instability is sig- 
nificantly changed. Now, since Q, may become negative, 
an instability may occur even if AB > A,. The source of free 
energy of the new type of instability is provided by the 
small-scale turbulent pulsations. In contrast, the free en- 
ergy in Parker’s instability is drawn from the gravitational 
field. In this sense, it is analogous to the Rayleigh-Taylor 
instability. The growth rate of the MHD instability due to 
the developed small-scale MHD turbulence is given by 

(48) 

The criterion of this instability for the case of the isother- 
mal plasma and for /3% 1 coincides with the one given by.13 
The geometric optics approximation was not used there. 

We turn now to the case where k&O. The dispersion 
equation for this case is given by 

where 

D= A22- ( 
y QpB)2 4QsQp +F (bW2. 

Generally Eq+ (49) describes Alfvenic and magneto- 
gravitational modes. In order to separate the effects due to 
the classical convective instability (i.e., @ < 0) from the 
pure MHD instabilities we consider case very small LX2 

1 f-g1 cP-‘9 (50) 

where /3% 1 . For example, condition (50) is valid in the 
case of developed turbulent convection.2T’9 

For fi% 1 ( K- 1 ) Eq. (49) is given by 

s22=(l-Kzi JiZZ)/2, (51) 

where 

2Qs k2 _ 2Qs k2 
“=m ‘-ah21Qpl ” 

In the interval 0 < K<KO= (~cz)-‘/~ (i.e., D>O ) fi2 is 
real hence the modes are either purely growing or purely 
oscillatory. 

For K > ~~ a2 become complex and hence oscillatory 
modes with growing amplitudes exist. As was discussed 
before, the growth of the unstable modes is at the expanse 
of the energy of the MHD turbulence. For o! < 1. We now 
examine the dependence of the spectrum given by (5 1) 
on the single parameter CL For a<1 the value 
K* = 2( 1 -a) lies in the interval 0 < K<K* The interval 
0 < K<K~ provides a gap for the growth rate spectrum (the 
imaginary part of &2 ) or for the frequency spectrum. This 
can be seen in Figs. 3 and 4 for which the plus and minus 
signs in (5 1) was used, respectively. For a > 1 no such gap 
exists, 

In the limit JC) 1 the frequency tends to oo-&& 
while the growth rate is close to FOE @2. For the case 
a=0 the frequency iS given by @R=k&A m while the 
growth rate is given by y- (c,/2A,)aA mgwR where 
now OR and y are dimensioned variables. 

We conclude this section by a comment about the gen- 
eral properties of the operator H( 6) =F( 6) + G(p.). In 
the absence of small-scale MHD turbulence the operator H 
is Hermitian, i.e., (Hgt ,t2) = (g, ,Hf,) for every admissi- 
ble test functions fi and &. 2o Here we use the inner prod- 
uct notation (5, ,g2) = s4, * @ dr. Equation (32) can be 
written as 

2 

pog+m =o. (52) 

We search for solution of Eq. (52) in the form 
g-exp(--i&)6(r). Then Eq. (52) is -p~~g+H(t) 
=O. Since the operator N is Hermitian, its eigenvalues 
are real, 

The modification of the large-scale Ampere force by 
the small-scale developed MHD turbulence results in the 
operator H not being Hermitian. For example, 
(G(p) l 6) is given by 
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Mode 1 

d TG; 
0.8 1.6 K 

KOl 
0.8 1.6 ‘K 

FIG. 3. The growth rate and the frequency for the mode 1 [the sign is 
“plus” in Eq. (51)]. 

(G(p.) l ,$) = s G(p) l iY* d3r 

= s IP*12 d3r 

YPO + ( Q//477) B: 

Qs-Q, -- 
47-r s 

P*Bo(Bo*W d3r 
YPO + Q&if477 * 

(53) 

It follows that for Q,,#Q, the operator G(p*(g)) is not a 
positive definite operator and may not be an Hermitian 
one. The occurrence of imaginary eigenvalues indeed in- 
dicates that F is not Hermitian and most probably that 
neither is H . 

IV. DISCUSSIONS 

For the parameters given above, the period of oscilla- 
tions ranges between several minutes ( H-200 km) and 
several hours (HE IO4 km). This is within the range of the 
observed oscillations in the Sun. The frequency and ampli- 
tude of the oscillations depend on the large-scale magnetic 
field. The field is changed with the 11-year cycle. It ex- 
plains the observed correlation of the frequency and am- 
plitude of the solar oscillations with a phase of the 1 l-year 
cycle of activity.* 

The obtained results may be of interest for some appli- It should be noted that considered oscillatory modes 
cations to the solar and stellar physics. As an example we with growing amplitudes can not be interpreted directly as 
consider the problem of a source of the solar short-time the observed short-periodic solar oscillations. Conversion 
oscillations and the sunspots formation. The oscillations of the described modes into magneto-acoustic-gravitation 
can be excited by the MHD instability in the upper layers modes inside of the solar resonance cavity* results in a 

Mode 2 

=j-pyJK 

=pa 

0.2 1 lc 

cr.= 1.6 
w 

_-_-UP--- 

ros;:;Fi 

0.8 1.6 K 

FIG. 4. The growth rate and the frequency for the mode 2 [the sign is 
“minus” in Eq. (51)]. 

of the turbulent convective zone located under the visible 
surface of the Sun. In this region convective cells (gran- 
ules) are created and annihilated, a large-scale regular 
magnetic field is generated, and fine-structure oscillations 
are excited. The growing oscillations in the interval K>K~ 

can be interpreted as a source of the observed short-time 
solar oscillations. In contrast to the previous models which 
relate the source to the convective noise,2 a source of the 
short-time solar oscillations proposed here is coherent. The 
plasma in the solar convective zone has the following pa- 
rameters:19 

(a) At depth H-2 * 10’ cm (from the Sun’s surface): 
R m- 105, uo-9.4 * lo4 cm/set, lo-2.6 - 10’ cm, 
~~-4.5. lo-’ g/cm3, Bo- lo* G, A,-3.6 * 10’ cm. Here 
11~ is the characteristic turbulent velocity. By Eq. (9), the 
coefficient Q,- - 1.1. 

(b) At depth H- IO9 cm: R,-3 * 107, uo- lo4 cm/ 
set, lo-2.8 - lo* cm, po-5 * low4 g/cm3, Bo-lo* G, 
A,-4.3.10’ cm. We then have QP- - 1.8. 
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formation of the observed short-periodic solar oscillations. 
One of the main results of the present paper is that we have 
revealed a mechanism of the energy transfer from the 
small-scale turbulence to the deterministic large-scale wave 
motions. 

The MHD instability due to eficfive negative mag- 
netic pressure in the interval K <K~ may also provide a 
mechanism of the large-scale magnetic ropes formation in 
the solar convective zone.6*10,*3 These magnetic ropes float 
up from under the Sun’s surface leading to the onset of the 
observed sunspots. 
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