Magnetohydrodynamic instabilities in developed small-scale turbulence
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Modification of the magnetic force by a developed small-scale magnetohydrodynamic (MHD)
turbulence can result in the sign reversal of the effective magnetic pressure. It is due to negative
contribution of the MHD turbulence, to the large-scale magnetic force. It can significantly lower
the elasticity of the large-scale magnetic field [ Sov. Phys. JETP 70, 878 (1990))]. This effect
excites instabilities of the large-scale magnetic field due to the energy transfer from the turbulent
pulsations to the latter. The nonturbulent stability criteria are modified due to the effective
negative magnetic pressure. These instabilities may provide a mechanism of the large-scale
magnetic ropes formation in the solar convective zone and spiral galaxies. In addition, the
instabilities can excite the short-period solar oscillations.

t. INTRODUCTION

One of the problems of magnetohydrodynamics is a
construction of inhomogeneities of magnetic field from an
originally uniform field. The magnetic buoyancy instability
is used for the explanation of formation of magnetic inho-
mogeneities."> However, for such instability to arise the
original magnetic field must be strongly inhomogeneous
along the direction of gravity so that the scale of field
variation is smaller than the density height variations. This
situation, however, is not typical for space plasmas.>

In this paper a new source of excitation of magneto-
hydrodynamic (MHD) instabilities in plasma is consid-
ered. It is a small-scale developed MHD turbulence, which
results in modification of the mean magnetic force.%” The
phenomenon is due to the generation of magnetic fluctua-
tions at the expense of hydrodynamic pulsations. It leads to
a decrease of the elasticity of the large-scale magnetic field,
so that under certain conditions, the effective magnetic
pressure can change sign.

It results in an excitation of large-scale MHD instabil-
ities. The instabilities cause a formation of inhomogeneities
of the regular magnetic field on account of the energy
transferred from the small-scale turbulent pulsations. This
effect is developed even in an initially uniform magnetic
field.

The onset of instabilities that are due to sign reversal of
force of various types has been studied many times.®? No
studies, however, were made of the instabilities of a large-
scale regular magnetic field in plasma with developed
small-scale MHD turbulence for 8> 1 (B is the ratio of the
plasma pressure to that of the large-scale magnetic field).

Before turning to the investigation of the instabilities a
qualitative discussion of the sign reversal of the effective
magnetic pressure is presented.®!® For isotropic turbulence
the equation of state is given by '»12

W, 2W,

Pr="3 T3 M
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Here pr is the total (hydrodynamic plus magnetic) turbu-
lent pressure, W,,=(k*)/8w is the energy density of the
magnetic fluctuations, W= (pu®)/2 is the energy density
of the turbulent hydrodynamic motion, u and h are ran-
dom pulsations of the hydrodynamic and magnetic fields,
and p is the density of plasma. The angle brackets denote
averaging over the ensemble of turbulent pulsations. As-
sume that the turbulence is maintained by an “inexhaust-
ible” energy reservoir. The total energy of the turbulence is
then conserved (the dissipation is compensated for by a
supply of energy), i.e.,

Wi+ W,,=const. (2)

If, for example, a certain amount of the energy of the hy-
drodynamic pulsation, AW, is transferred into generated
magnetic fluctuations, this process results in the following
change in the total turbulent pressure [see Egs. (1) and

(2)]

AW,
B (3)

Apr=—

It follows hence that the turbulent pressure is lowered
when magnetic fluctuations are generated (when
AW, >0 holds).

The total turbulent pressure is decreased also by the
“tangling” of the large-scale regular magnetic field by hy-
drodynamic pulsations.> The regular magnetic field, “en-
tangled” with the hydrodynamic pulsations, generates sup-
plementary small-scale magnetic fluctuations. In this case
density of the magnetic energy W, depends on W and
W 5, where W= B?/87 is the energy density of the large-
scale magnetic field B. For weak magnetic fields
(W< W), expanding the function W, in a series in
W g, one obtains

2
Wo=W +a, Wk)§7—7+..., (4)
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where WO is the energy density of the magnetic fluctua-
tions in the absence of a large-scale magnetic field. This
expression gives the change of the magnetic energy. Then
the turbulent pressure reduces to

2

pr= 0)_, i (5)
r=PT P24y’

The total pressure is P=p;+pr-+pp where p; is the usual

gac.dvnamis nracenre af the nlacma and n.— pz /R ic the
HAOTUY HAQLIUL PIVISUIL Ul L plasiiia aulu g g— &7 7/ 0% 15 uiv

magnetic pressure of the large-scale field. With allowance
for the expression for pz, the total pressure is
BZ
P=pi+p7 + 05, (6)
! P8

where Q,=1—a,/3. The sign of a, as seen from analysis,
is determined by the direction of energy transfer. It is pos-
itive when magnetic fluctuations are generated and nega-
tive when they are damped. It follows that in the presence
of developed MHD turbulence it is possible to reverse the
sign of the effective magnetic pressure

i B

for 0,<0. We consider the case when p;> B/8. Hence
the total pressure P is always positive.

The high order closure procedure® and modified renor-
malization group method’ were employed for the investi-
gation of the MHD turbulence at the large magnetic Rey-
nolds number R,,=ugly/71o> 1. Here 7 is the molecular
magnetic diffusion, /y is the main scale of the turbulence,
uq is the characteristic turbulent velocity. It was found that
the effective large-scale regular magnetic force is given by

F°=—V(Qp ) QS(B -V)B, (8)

where
Qp=1—(4/15)In(Rm), Q.~|1—(8/45)In(Rm)|. (9)

These asymptotic expressions for the magnetic coefficients
Qp and Q; are for the case

We€W,. (10)

1. BASIC EQUATIONS AND ENERGY
CONSERVATION LAW

In this section large-scale effects in the presence of a
developed small-scale MHD turbulence are investigated. A
general diagram of the energetic processes considered here
is shown in Fig. 1. In the very small scales /</; the mo-
lecular and atomic effects are important. The input of en-
ergy into the region is from an external thermal source I.
The region /;< </ corresponds to the MHD turbulence
maintained by an external source /7. The large-scale effects
are significant for /> L,. The energy of the large-scale hy-
drodynamic flow and magnetic field is dissipated into both
the MHD turbulence and the molecular motions. The
former dissipation process is described by the turbulent
viscosity vr and the turbulent magnetic diffusion 7, while
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FIG. 1. A general diagram of the energetic processes.

the latter is governed by the molecular viscosity v, and the
molecular magnetic diffusion 7y. Generation of the mag-
netic fluctuations in the MHD turbulence results in a de-
crease of the elasticity of the large-scale magnetic field. The
influence of the MHD turbulence on the large-scale mag-
netic force can be described by the turbulent magnetic co-
efficients @, and Q.. The equations for the large-scale fields
have the following form:

dv Q o

o= v(p+ 2B ) 2 (B-VBFAF,, (1D
IB

E=VX(VXB)+7]AB, (12)
p V. 13
5TV (p) =0, (13)

pWr

as
pT(E+(v'V)S)=I+D (14)

where v and B are the velocity and magnetic field, respec-
tively, p=pi-+pr, S=In(pp~7)/y is the entropy, ¥ is the
ratio of the specific heats, F,,, is the external force (for
example, the gravitational force F.,,= pg, g is the free-fall
acceleration), F, is the dissipation force due to the molec-
ular and turbulent viscosities, 7 is the magnetic diffusion
{molecular plus turbulent), 7 is the external source of the
thermal energy, W is the density of the total energy of the
MHD turbulence, 7 is the characteristic time of the dissi-
pation of the turbulent energy into the thermal one, D,, is
the density of the power released due to the molecular
dissipation, and @ is the total thermal flow. The turbulent
diamagnetism and the a-effect are not included in Egq.
(12)3‘5 since both a and the diamagnetic velocity are
much smaller than the Alfvén velocity for the range inves-
tigated here and hence do not affect the perturbations dis-
cussed hereafter. For instance, a typical Alfvén velocity
near the interface of the solar convective zone is of the
order of magnitude of few hundreds m/sec while a is few
tens cm/sec.

Consider now the energy conservation law. We multi-
ply Eq. (11) by the velocity v, Eq. (2) by (Q/47)B, Eq.
(13) by v*/2, and add them. The result is given by:
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3 (pv* B’
Az +5)
2
=—v-((p +p)+g—sB><( ><B)+Q" g )
+ (Fp*v)—D,, DT+(p+Q8 i B2>V v,
(15)

where Dy is the density of the power released due to the
turbulent viscosity and the turbulent magnetic diffusion. A
use was made of the following identities:

P P
pV(V'V)V—i—?V' (pv)=V- (V T)’

V-(BX(vXB))=B-VX(vXB)+v-:- (VXBXB).

Equation (15) is the conservation law of the total energy
of the large-scale flow and magnetic field pv?/2
+ QsB2/81.

The conservation law of the total energy after taking
into account the MHD turbulence has the following form:

3 [ pv* B?
8t( +Qs§r+P5)——V Q-+ (Fex " V) +14+1p,

(16)
where e=U+ W is the total internal energy. The total
energy flux q is given by

2

v Qp Qs B4 ®.

(17)

An expression for the internal energy can be obtained from
the first principle of thermodynamics

q=pv( +e+— )—l—gBX( XB)+v———

dU= Tds+%’§ dp. (18)

Using Eqgs. (13), (14) and (18) we get the following en-

ergy equation:

pWr

a
a_x(PU)=I+T+ D, —p V- v (19)

Subtracting Eqgs. (15) and (19) from Eq. (16) yields the
following conservation law of the turbulent energy W,

Wr

]
S (PW ) ==V (pWrv)+ Dyt Ir—E

—9s

——(pT—{- BZ)V v. (20)
If 9,0, the MHD turbulence produces additional work.
It is converted into the energy of the large-scale flow and
magnetic field even in the absence of dissipation [see last
term in Eq. (15)]. The terms Dy, I and pW /7 describe
the sources and dissipation of the turbulence. Decrease of
the elasticity of the large-scale magnetic field due to the
generation of the magnetic fluctuations in the MHD tur-
bulence is essential for systems with the large R,,. In this
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case the developed MHD turbulence can give rise to neg-
ative Q,. Such values of Q, (i.e., negative) result in exci-
tations of the large-scale MHD instabilities which draw
free energy from the turbulent motions and fields.%!*> These
MHD instabilities are described in the next section.

The large-scale processes in view of the conservation
laws can be considered as an “open” system. Beside two
dissipation channels Dy and D,, there is an additional en-
ergetic channel described by the magnetic turbulent coef-
ficients @, and Q. This channel exists without dissipation.

Ill. THE LARGE-SCALE MHD INSTABILITY

For simplicity, the instabilities are investigated in this
section in the absence of dissipation processes and for the
case: I+ D+ pWr/T=V @,

Consider an equilibrium state without flow given by

. (21)
We now linearize Eqs. (11)-(14) about the equilib-
rium state, and denote the perturbed quantities by sub-
script 1 while equilibrium quantities are denoted by sub-
script 0. It is convenient to express all perturbed quantities
in terms of the Lagrangian displacement vector &(r,t),
where vy=395/3dt . Then the solution of Egs. (12)~(14) for
perturbed fields By, p, , S| and p, are given by'#!

V(P0+Q" Q‘Bo) FQ) + QS(VXBO)XBO

By
Bi=b+— p,, (22)

Po
pi=—po¥E—(&-V)po, (23)
Sy=—(£+V)Sy, (24)
pr=—(E-V)pg+ypoV-§. (25)

where
By

b=(Bo'V)§-—Po(§'V)(‘p—O)~ (26)

We introduce the perturbed total pressure (kinetic and
magnetic):

Q
pr=pi+7(By*By). 27)

After eliminating V+ £ from Eq. (25) the perturbed quan-
tities are written in the following way:

1

= P+ P (28)
PI=cR(gy PP
Bo/P
where
YPo(§° Np) —Qp(By+b) /4n
s P
P
Be=b+By ", 31
e=b+ O (31)
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Voo  Vpo Q,, 8mpo
B s ﬁ ——2_’

C:=yp0/ po is the sound speed. Equations (27)-(29) are
inserted into the linearized momentum equation that yields

&g
pogz=—G(p)~F(&),

(32)
where
G(p.)_Vp.~Q (By- V)—C—Jﬂp*
V(po-+ Q,BY/87)
pSI(N Do (33)
F(g)_—%(B0 -V)B;— Q’(B§ -V)By—pee. (34)

In the absence of MHD turbulence Q,=Q,=1, and with-
out rotation and equilibrium flow the system (32)—(34)
coincides with the one given by!*!°

We search now for a solution of Egs. (32)—(34) within
the framework of the Wentzel-Kramers—Brillouin (WKB)
approximation:

A= (4O 1 edD 124D 1), (35)

where ,2=(§,p.); x¥=x(r; ) and r, is a position vector
perpendicular to By. The parameter £<€1 is a measure of
the fast variation of the phase across magnetic field lines.
The functions y and A are considered to be of order 1. It
should be noted that the variations of the perturbation
occur on length scales that are on one hand much smaller
than that of the equilibrium state while on the other hand
much larger than those turbulent fluctuations that contrib-
ute to Q; and @, Substituting expansion (35) for p. in
(33) yields

I:p(O
G(ps)=— Vx+1p(1)V)(+0(£).

Consequently, to lowest order in £ Eq. (32) results in

9 =0. (36)
In addition, Eqgs. (25) and (27) yield

£9.vy=0, (37)
which results in the following representation of £©:

§0=Eney+Eses, (38)
where

é;=By/|By|, ey=FXeép, ¥=Vx/IVxl.
To zeroth order, Eq. (32) yields

325(0)

57 =—FE) —iptlvy, (39)

We consider now a horizontal magnetic field By which
is perpendicular to the free-fall acceleration g (see Fig. 2).
Note that the equilibrium variables p, and B, depend only

4131 Phys. Fiuids B, Vol. 5, No. 11, November 1993

(o8]
y
iLcu

/ e

FIG. 2. The directions of the magnetic and gravitational fields.

on r,, where r,= (r+ g)/g. Two equations for £y and £ 5 can
now be obtained by the scalar multiplication of equation
(29) by éy and &z Note that such multiplication elimi-
nates the unknown p{"Vy from Eq. (39). The resulting
equations are

82 2 Qs
Po"_fzg Po(’la ) Envty, (BoV) %6y
QAaBy
—W(Bo'v)g& (40)
3% 5 Qs 9 QAaB,
PU B = 1K (Q,) (Bo Vst oA TK(O)A,
X (Bo* V)&, (41)
where Cpy = By/ \/47Tp0 is the Alfvén speed, A =p'o/pois

the density height scale, a=gA p/CZ Here and below f' is
a derivative with respect to r,. The parameter
A=(E+g)/gEn=(1+A12) "% is connected to the polariza-
tion parameter of the wave,
(&*Vx) g
8T =2, & =¢,Xe

0=——'—(él oVX) N eg=g

The parameter o is

)

where Ag'= By/ B, and Qj=—g+N,A2/CY is the nondi-
mensional Brunt—Viisilda frequency. As the magnetic field
lined are considered here to be infinite, the following trav-
eling solution is used:

§=§pexp[ —i(wr—kp-1r)],

where kp is parallel to By. It should be noted that within
the framework of our model the perturbations propagate
along the average magnetic field. This is consequence of the
fact that the characteristic time scales of the chaotic mag-
netic fluctuations are much shorter than those of the in-
vestigated perturbations. Substituting (42) into (41) yields

(42)
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(w2+/1202—Qs"723)§N=1kﬁ/1“k—(QQp_)§B» (43)

Ok’
K(Q ))§B:

where @ and kjp are the nondimensional frequency and
wave number, o is measured in the units of C,/A, and
kp is in units of A,

Consider first the case &k 3=0. This corresponds to the
interchange mode. In this case from Eqgs. (43) and (44)
one can see that £,=0 and

o?=—A%2. (45)

ik pla K(QQSP) Ey=— (mz (44)

As can be seen in (45) , the stability is determined by the
sign of o2. In the case of weak magnetic field X ( Q) is close
to unity and Qb is much blgger than the other term in the
definition of o?. Hence, if Qb<0 the classical convective
instability develops with growth rate given by!6!7

’ '\ 1/2
Po  Po
=7 1/2(____ ____) , 46)
& YPo  Po (
For the general case, the criterion for the interchange in-

stability to occur is

Q2 < —gaf 12} (Ca)’ (47)
b<—Qpm 1 AB A,
We first notice that for a uniform magnetic field, ie.,
A p— «, and in the nonturbulent case condition (47) co-
incides with the criterion given by.'® Further examination
of (47) reveals that in nonturbulent media (i.e., Op=1)
the magnetic field stabilizes the system if Az> A - If the
latter is not satisfied, instability may occur for which Park-
er’s instability,? i.e., the case Q,=0, is a particular case,
In turbulent media the criterion for instability is sig-
nificantly changed. Now, since Q, may become negative,
an instability may occur evenif Az> A - The source of free
energy of the new type of instability is provided by the
small-scale turbulent pulsations. In conirast, the free en-
ergy in Parker’s instability is drawn from the gravitational
field. In this sense, it is analogous to the Rayleigh-Taylor
instability. The growth rate of the MHD instability due to
the developed small-scale MHD turbulence is given by

L
r— 0a(z2-1)(1+32) (48)

The criterion of this instability for the case of the isother-
mal plasma and for B> 1 coincides with the one given by.'?
The geometric optics approximation was not used there.

We turn now to the case where k z5£40. The dispersion
equation for this case is given by

® =-——(/120'2——I_<i—QSk2):tl D1/2 (49)
where
(/1202——— stzg)2+ 92 (kpary>
4132 Phys. Fluids B, Vol. 5, No. 11, November 1993

Generally Eq. (49) describes Alfvénic and magneto-
gravitational modes. In order to separate the effects due to
the classical convective instability (i.e., Q§<O) from the
pure MHD instabilities we consider case very small Q3

{Q <87, (50)

where > 1 . For example, condition (50) is valid in the
case of developed turbulent convection.>'®
For B>1 ( K~1) Eq. (49) is given by

P=(1—x J1—2ar2)/2,

where

(51)

20, , 20,
K =12 Ko~ g7 K

_aZIQpI o’

2—__
——aj——za, O = W

In the interval 0<w<i,=(2a)"? (ie, D>0 ) Q? is
real hence the modes are either purely growing or purely
oscillatory.

For k> Ky 2 become complex and hence oscillatory
modes with growing amplitudes exist. As was discussed
before, the growth of the unstable modes is at the expanse
of the energy of the MHD turbulence. For a < 1. We now
examine the dependence of the spectrum given by (51)
on the single parameter o. For a<l the value
tr= y2(1—a) lies in the interval 0 <k<kgy The interval
0 <K<y provides a gap for the growth rate spectrum (the
imaginary part of & ) or for the frequency spectrum. This
can be seen in Figs. 3 and 4 for which the plus and minus
signs in (51) was used, respectively. For a > 1 no such gap
exists,

In the limit x> 1 the frequency tends to wo=k/+2
while the growth rate is close to [y~ \f— /2. For the case
o=0 the frequency is given by wgp=k gca \/[Qp[ while the
growth rate is given by y=(ca/2A,)ad {|Q,| <@g where
now wgz and y are dimensioned variables.

We conclude this section by a comment about the gen-
eral properties of the operator H(§)=F(£)+G(p+). In
the absence of small-scale MHD turbulence the operator H
is Hermitian, i.e., (HE),&)=(&,,HE,) for every admissi-
ble test functions £, and &,. *° Here we use the inner prod-
uct notation (&;,£,)= [&, ¥ dr. Equation (32) can be
written as

2

&
pog+H(E) =0. (52)

We search for solution of Eq. (52) in the form
E~exp(—iwt)E(r). Then Eq. (52) is — pow*6+H(E)
=0. Since the operator H is Hermitian, its eigenvalues
are real,

The modification of the large-scale Ampére force by
the small-scale developed MHD turbulence results in the
operator H not being Hermitian. For example,
(G(ps)+&) is given by
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FIG. 3. The growth rate and the frequency for the mode 1 [the sign is
*plus” in Eq. (51)].

(G(pe) &)= fc(pn £ b
_ J |ps|?
TP0+ (Q,/4m)BY

_Qs—Qp PsBo(Bo*V)§
4r ) ypo+ QBY/Aw

It follows that for Q,#Q; the operator G(p«(§)) is not a
positive definite operator and may not be an Hermitian
one. The occurrence of imaginary eigenvalues indeed in-
dicates that F is not Hermitian and most probably that
neither is A .

3

d’r. (53)

V. DISCUSSIONS

The obtained resulis may be of interest for some appli-
cations to the solar and stellar physics. As an example we
consider the problem of a source of the solar short-time
oscillations and the sunspots formation. The oscillations
can be excited by the MHD instability in the upper layers
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FIG. 4. The growth rate and the frequency for the mode 2 [the sign is
“minus” in Eq. (51)].

of the turbulent convective zone located under the visible
surface of the Sun. In this region convective cells (gran-
ules) are created and annihilated, a large-scale regular
magnetic field is generated, and fine-structure oscillations
are excited. The growing oscillations in the interval x> kg
can be interpreted as a source of the observed short-time
solar oscillations. In contrast to the previous models which
relate the source to the convective noise,? a source of the
short-time solar oscillations proposed here is coherent. The
plasma in the solar convective zone has the following pa-
rameters:°

(a) At depth H~2- 107 cm (from the Sun’s surface):
R,~10°,  uy~9.4-10* cm/sec, [,~2.6-10" cm,
po~4.5-10"7 g/cm®, By~10? G, A,~3.6-10" cm. Here
ug is the characteristic turbulent velocity. By Eq. (9), the
coefficient @,~ —1.1.

(b) At depth H~10° cm: R,,~3 107, ug~10* cm/
sec, lp~2.8-10% c¢m, po~5-10~* g/ecm?, By~10*> G,
A,~4.3-10° cm. We then have Q,~ —1.8.

For the parameters given above, the period of oscilla-
tions ranges between several minutes ( H =200 km) and
several hours (H~ 10* km). This is within the range of the
observed oscillations in the Sun. The frequency and ampli-
tude of the oscillations depend on the large-scale magnetic
field. The field is changed with the 11-year cycle. It ex-
plains the observed correlation of the frequency and am-
plitude of the solar oscillations with a phase of the 11-year
cycle of activity.?

It should be noted that considered oscillatory modes
with growing amplitudes can not be interpreted directly as
the observed short-periodic solar oscillations. Conversion
of the described modes into magneto-acoustic-gravitation
modes inside of the solar resonance cavity’ results in a
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formation of the observed short-periodic solar oscillations.
One of the main results of the present paper is that we have
revealed a mechanism of the energy transfer from the
small-scale turbulence to the deterministic large-scale wave
motions.

The MHD instability due to effective negative mag-
netic pressure in the interval x <x, may also provide a
mechanism of the large-scale magnetic ropes formation in
the solar convective zone.5!%!* These magnetic ropes float
up from under the Sun’s surface leading to the onset of the
observed sunspots.
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