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ABSTRACT

Based on a mean-field theory of a non-rotating turbulent convection [T. Elperin et al., Phys. Rev. E 66, 066305, (2002)], we perform mean-
field simulations (MFS) of sheared convection that takes into account an effect of modification of the turbulent heat flux by the non-uniform
large-scale motions. This effect is caused by the production of additional essentially anisotropic velocity fluctuations generated by tangling of
the mean-velocity gradients by small-scale turbulent motions due to the influence of the inertial forces during the lifetime of turbulent eddies.
These anisotropic velocity fluctuations contribute to the turbulent heat flux. As the result of this effect, there is an excitation of large-scale con-
vective-shear instability, which causes the formation of large-scale semi-organized structures in the form of rolls. The lifetimes and spatial
scales of these structures are much larger compared to the turbulent scales. By means of MFS performed for stress-free and no-slip vertical
boundary conditions, we determine the spatial and temporal characteristics of these structures. Our study demonstrates that the modification
of the turbulent heat flux by non-uniform flows leads to a strong reduction of the critical effective Rayleigh number (based on the eddy viscos-
ity and turbulent temperature diffusivity) required for the formation of the large-scale rolls. During the nonlinear stage of the convective-shear
instability, there is a transition from a two-layer vertical structure with two rolls in the vertical direction before the system reaches steady-state
to a one-layer vertical structure with one roll after the system reaches steady state. This effect is observed for all effective Rayleigh numbers.
We find that inside the convective rolls, the spatial distribution of the mean potential temperature includes regions with a positive vertical gra-
dient of the potential temperature caused by the mean heat flux of the convective rolls. This study might be useful for understanding the origin
of large-scale rolls observed in atmospheric convective boundary layers, as well as in numerical simulations and laboratory experiments.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0214459

I. INTRODUCTION

Temperature stratified turbulence and turbulent convection exist
in many geophysical and astrophysical flows as well as in industrial
flows.1–7 Turbulence and associated turbulent transport were studied
for more than 100 years. However, some key questions remain unclear
due to extreme values of the governing parameters in geophysical and
astrophysical flows.8–12

Large-scale coherent structures in a developed convective turbu-
lence have been seen in various laboratory experiments in the Rayleigh–
B�enard setup,13–26 in the atmospheric convective turbulence,27–38 in
direct numerical simulations,39–44 and in large-eddy simulations.45–49

Characteristic timescales and spatial scales of the coherent structures in
a small-scale turbulent convection are much larger than the characteris-
tic turbulent scales.

A mean-field theory of the coherent structures formed in convec-
tive turbulence has suggested that a redistribution of the turbulent heat
flux by nonuniform large-scale motions is crucial in the formation of
the large-scale coherent structures in a convective turbulence.50–52 This
effect causes an excitation of a convective-wind instability in the shear-
free turbulent convection resulting in the formation of large-scale
motions in the form of cells. This phenomenon has been recently
investigated by the mean-field numerical simulations,53 which demon-
strates that:

• The redistribution of the turbulent heat flux by the nonuniform
large-scale motions results in a strong reduction of the critical
effective Rayleigh number (based on the eddy viscosity and tur-
bulent temperature diffusivity) required for the formation of the
large-scale convective cells.

Phys. Fluids 36, 075131 (2024); doi: 10.1063/5.0214459 36, 075131-1

VC Author(s) 2024

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 10 July 2024 14:13:34

https://doi.org/10.1063/5.0214459
https://doi.org/10.1063/5.0214459
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0214459
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0214459&domain=pdf&date_stamp=2024-07-10
https://orcid.org/0000-0002-5744-1160
https://orcid.org/0000-0002-1665-0265
https://orcid.org/0000-0001-7308-4768
mailto:gary@bgu.ac.il
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0214459
pubs.aip.org/aip/phf


• The convective-wind instability is excited when the scale separa-
tion ratio between the height of the convective layer and the inte-
gral turbulence scale is large.

• The level of the mean kinetic energy at saturation increases with
the increase of the scale separation ratio, and it is very weakly
dependent on the effective Rayleigh number.

• Inside the large-scale convective cells, there are local regions with
the positive vertical gradient of the potential temperature which
implies that these regions are stably stratified.

In the sheared convective turbulence, the large-scale convective-
shear instability results in an excitation of convective-shear waves, and
the dominant coherent structures in the sheared convection are
rolls.50–52 The goal of the present study is to perform mean-field
numerical simulations in a sheared convection taking into account the
effect of modification of the turbulent heat flux by non-uniform large-
scale motions.

This paper is organized as follows. In Sec. II, we discuss physics
related to a modification of the turbulent heat flux due to anisotropic
velocity fluctuations in turbulence with non-uniform large-scale flows
in a sheared convective turbulence. In Sec. III, we formulate the non-
dimensional equations, the governing non-dimensional parameters
and study the large-scale convective-shear instability. In Sec. IV, we
describe the set-up for the mean-field simulations and discuss the
numerical results. Finally, conclusions are drawn in Sec. V.

II. SHEARED TURBULENT CONVECTION AND
TURBULENT HEAT FLUX

We consider sheared turbulent convection with very high
Rayleigh numbers, and large Reynolds and Peclet numbers. To study
formation and evolution of the semi-organized structures in a small-
scale convective turbulence, we use a mean field approach. In the
framework of this approach, the velocity U , pressure P, and potential
temperature H are decomposed into the mean fields and fluctuations,
where U ¼ U þ u; P ¼ P þ p and H ¼ H þ h. Since we use
Reynolds averaging, fluctuations have zero mean values, where
U ¼ hUi is the mean velocity, P ¼ hPi is the mean pressure andH ¼
hHi is the mean potential temperature, and u, p, and h are fluctuations
of velocity, pressure, and potential temperature, respectively.
Averaging the Navier–Stokes equation and equation for the potential
temperature over an ensemble, we arrive at the mean-field equations
written in the Boussinesq approximation with divU ¼ 0,

@

@t
þ U þ U S

� �
� $

� �
U þ ðU � $ÞU S

¼ �$P
q0

� $ � R̂ þ bH ez ; (1)

@

@t
þ U þ U S

� �
� $

� �
H ¼ �ðU � $ÞT 0 � $ � huhi; (2)

where R̂ � Rij ¼ hui uji is the Reynolds stress, U S ¼ ðS z; 0; 0Þ is the
shear velocity directed along the x axis, H is the mean potential tem-
perature defined asH ¼ T ðP0=PÞ1�1=c. Here b ¼ jgj=T0 is the buoy-
ancy parameter, g ¼ �g ez is the acceleration caused by the gravity, ez
is the unit vector in the vertical direction (along the z axis), c ¼ cp=cv
is the specific heats ratio, T is the mean physical temperature with the
reference value T 0 as the temperature in the equilibrium (i.e., the basic
reference state), P is the mean pressure with the reference value P0

and q0 is the mean fluid density in the equilibrium. For large Reynolds
and Peclet numbers, we neglect in Eqs. (1) and (2) small terms due to
the kinematic viscosity and molecular diffusivity of the potential tem-
perature in comparison with those due to the turbulent viscosity
and turbulent diffusivity. In Eqs. (1) and (2), the mean fields corre-
spond to deviations from the equilibrium: U 0 ¼ U S; $P0 ¼ q0g ,
and q0 ¼ const.

The effects of small-scale convective turbulence on the mean fields
are described by the Reynolds stress hui uji and turbulent flux of poten-
tial temperature F ¼ huhi. In the classical concept of down-gradient
turbulent transport, the basic second-order moments (e.g., the Reynolds
stress and the turbulent flux of potential temperature) are assumed to
be proportional to the local mean gradients, whereas the proportionality
coefficients, namely turbulent viscosity �T and turbulent temperature
diffusivity jT , are determined by local turbulent parameters. For
instance, the Reynolds stress is hui uji ¼ �2�TðriU j þrjU iÞ, while
the turbulent heat flux is given by F ¼ �jT$H.8

In turbulent convection with semi-organized structures (e.g.,
large-scale circulations and large-scale convective rolls), the mean
velocity and temperature fields inside the semi-organized structures
are strongly nonuniform. These nonuniform large-scale motions pro-
duce strongly anisotropic velocity fluctuations which contribute to the
turbulent heat flux. As has been shown in Refs. 50 and 51, the turbu-
lent heat flux F, which takes into account anisotropic velocity fluctua-
tions, reads

F ¼ F� � s0 F�z divU? � 1
2

W � F�z
� �� 1

2
W z � FCWx
� �� �

; (3)

where FCWx ¼ �s0 ðF�z � $ÞU SðzÞ is the counter-wind turbulent heat
flux and F� ¼ �jT$H is the classical turbulent heat flux, s0 is the cor-
relation time of turbulent velocity at the integral scale of turbulent
motions, W ¼ $� U is the mean vorticity, U ¼ U? þ U z is the
mean velocity with the horizontal U? and vertical U z components.
Equation (3) is derived for large Reynolds and Peclet numbers, which
implies that turbulent viscosity and turbulent diffusivity are much
larger than the molecular viscosity and molecular diffusivity, respec-
tively. The additional terms in the turbulent heat flux result in the exci-
tation of large-scale instability and formation of the large-scale
convective rolls.50–52

The physics related to the additional terms in the turbulent heat
flux is discussed below. The term�s0 F�

z divU? in Eq. (3) for the tur-
bulent heat flux causes the redistribution of the vertical background
turbulent heat flux F�

z by the perturbations of the convergent (or diver-
gent) horizontal mean velocity U? (see Fig. 1) during the lifetime of
turbulent eddies. This enhances the vertical turbulent flux of potential
temperature due to the converging horizontal motions, which
increases the buoyancy, thus creating the upward flow. The latter
increases the horizontal convergent flow.

On the other hand, the term ðs0=2Þ ðW � F�
zÞ in Eq. (3) produ-

ces the horizontal turbulent heat flux by the “rotation” of the vertical
background turbulent heat flux F�

z caused by the perturbations of the
horizontal mean vorticityW?. This decreases local potential tempera-
tures in rising motions, which decreases the buoyancy accelerations,
and weakens vertical velocity and vorticity.

The last term ðs0=2Þ ðW z � FCWx Þ in Eq. (3) for the turbulent
heat flux produces the horizontal heat flux through the “rotation” of
the horizontal background counter-wind turbulent heat flux FCWx by
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the vertical component of the mean vorticity. The counter-wind turbu-
lent flux of potential temperature FCWx arises due to the following rea-
sons. In a horizontally homogeneous and sheared convective

turbulence, the mean shear velocity U
S
xðzÞ increases with the height,

while the mean potential temperature HðzÞ decreases with the height.
Uprising fluid particles produce both, positive fluctuations of
potential temperature, h > 0 because @h=@t � �ðu � $ÞHðzÞ, and
negative fluctuations of horizontal velocity, ux < 0 because

@ux=@t � �ðu � $ÞU S
xðzÞ. This creates a negative horizontal turbulent

flux of potential temperature, ux h < 0. On the other hand, sinking
fluid particles create both, negative fluctuations of potential tempera-
ture, h < 0, and positive fluctuations of horizontal velocity, ux > 0,
resulting in negative horizontal turbulent flux of potential temperature,
ux h < 0. Therefore, the net horizontal turbulent flux of potential tem-
perature is negative, FCWx � hux hi < 0, in spite of a zero horizontal
mean temperature gradient. Therefore, the counter-wind turbulent
flux of potential temperature modifies the turbulent potential tempera-
ture flux caused by the non-uniform mean velocity field. The counter-
wind turbulent flux is associated with non-gradient turbulence trans-
port of heat.

The last term ðs0=2ÞW z � FCWx in Eq. (3), causes generation of
the cross-wind horizontal turbulent heat flux by turning the counter-
wind horizontal turbulent flux FCWx by perturbations of vertical com-
ponent of the mean vorticityW z (see Fig. 2). This produces alternating
pairs of convergence or divergence cross-wind turbulent heat fluxes,
Fnewy ¼ ðs0=2ÞW z � FCWx , resulting alternative warmer or cooler
patches which, in turn, cause alternative upward warm and downward
cool motions. This is precisely the mechanism of large-scale instability
responsible for the formation of the large-scale convective rolls
stretched along the mean velocity shear (see Fig. 3) and generation of
convective-shear waves propagating perpendicular to the convective
rolls in the sheared convection.50–52

III. GOVERNING EQUATIONS AND CONVECTIVE-SHEAR
INSTABILITY

Using the expression (3) for the turbulent heat flux F with the
additional terms caused by the non-uniform mean flows, calculating

div F, and assuming that the non-dimensional total vertical heat flux
Uc ¼ ~F

�
z þ ~Uz

~H is constant, we rewrite Eqs. (1) and (2) in a non-
dimensional form as

@ ~U
@t

þ ~U þ ~U S

� �
� $

� �
~U þ ð ~U � $Þ ~U S

¼ �$~P
q0

þ RaT ~H ez þ D ~U ; (4)

PrT
@ ~H
@t

þ ~U þ ~U S

� �
� $

� �
~H

� 	

¼ ~Uz þ D ~H þ �

2

n
Uc � ~Uz

~H
� �

� D� 2r2
z

� �
~Uz þ Sh ðr2

y
~Ux �rxry ~UyÞ

h i
þ 2 rz ~Uz

� �
rz ~Uz

~H
� �

þ ðrz ~Ux �rx ~UzÞrx ~Uz
~H

� �
þ rz ~Uy �ry ~Uz þ Sh rx ~Uy �ry ~Ux


 �h i
ry ~Uz

~H
� �o

;

(5)

where the non-dimensional mean velocity ~U with div ~U ¼ 0, the
mean potential temperature ~H and the mean pressure ~P are shown
with tilde, the flux ~F

�
z is the nondimensional vertical turbulent back-

ground heat flux, the unit vector ez is directed along vertical z axis, the
non-dimensional shear velocity is ~U S ¼ ðSh~z ; 0; 0Þ, and ~z is the non-
dimensional vertical coordinate.

Equations (4) and (5) are written in non-dimensional form,
where length is measured in the units of the vertical size of the convec-
tive layer Lz, time is measured in the units of the turbulent viscosity
time, L2z=�T , velocity is measured in the units of �T=Lz , potential tem-
perature is measured in the units of Lz N2 PrT=b and pressure is mea-
sured in the units of q0 ð�T=LzÞ2. Here �T ¼ u0 ‘0=3 is the turbulent
(eddy) viscosity, u0 is the r.m.s. turbulent velocity, ‘0 is the turbulent
integral scale andN2 ¼ b jrzT eqj.

FIG. 1. The illustration of the physics caused by the new turbulent heat flux
Fnew ¼ �s0 F�

z divU? produced by the perturbations of the convergent (or diver-
gent) horizontal mean flows U? (shown by the green arrows in panels a and c).
The new turbulent flux Fnew increases the upward turbulent heat flux, enhances
buoyancy and increases the local mean potential temperature, thus creating the
upward flow. Likewise, the new turbulent flux Fnew decreases the vertical turbulent
flux of potential temperature by the divergent horizontal motions, which reduces the
buoyancy and decreases the local mean potential temperature, thus creating the
downward flow. These effects create the large-scale circulation.

FIG. 2. The mechanism of formation of large-scale convective rolls stretched along the
shear velocity U SðzÞ. Horizontal counter-wind turbulent heat flux FCWx is turned by per-
turbations of vertical vorticityW z, i.e., this effect creates alternating pairs of convergence
or divergence cross-wind turbulent heat fluxes, Fnewy ¼ ðs0=2ÞW z � FCWx , which are
clockwise or opposite rotations of air columns. This effect causes converging turbulent
heat fluxes with warm patch between the pair (a) and (b) of columns in the FIG, and
diverging turbulent heat fluxes with cool patch between the pair (b) and (c) in the FIG.
The warm patch causes an updraft and cool patch produces a downdraft, whereas the
mean shear velocity U SðzÞ stretches the flow pattern and completes creation of the
large-scale convective rolls.
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We use the following dimensionless parameters appeared in Eqs.
(4) and (5):

• the effective Rayleigh number:

RaT ¼ L4z N
2

�T jT
; (6)

• the turbulent Prandtl number:

PrT ¼ �T
jT

; (7)

• the scale separation parameter:

� ¼ ‘20
3L2z

; (8)

• the non-dimensional total vertical heat flux:

Uc ¼ 3
�2 RaT

uc
u0

� 	3

; (9)

• the non-dimensional shear number:

Sh ¼ S s0
�

; (10)

where S ¼ rzU
S
x is the linear velocity shear, i.e., S is constant,

uc ¼ ðgFz‘0Þ1=3 is the convective velocity, Fz is the vertical turbulent
flux of potential temperature, jT is the turbulent (eddy) diffusivity and
s0 ¼ ‘0=u0. In Eqs. (4) and (5), we have neglected small terms�Oð�2Þ.

For analytical study of the large-scale instability, we consider for
simplicity the two-dimensional problem when the mean fields are inde-
pendent of the coordinate x. The non-dimensional shear velocity,
~U S ¼ ðSh~z ; 0; 0Þ, is directed along the x axis, so that the vorticity
~W S � $� ~U S is ~W S ¼ ð0; Sh; 0Þ. We will start our analysis with the
linear problem for small perturbations applying the linearized equations
(4) and (5), to find the growth rate of the large-scale convective-shear
instability. To this end, we calculate ½$� ð$� ~U Þ�z using the linear-
ized equation (4) to exclude the pressure term and we seek for solution
of the obtained equations in the following form: ~U ðt; xÞ ¼ ~U 0 exp½ct
� iðKyyþ KzzÞ� and ~Hðt; xÞ ¼ H0 exp½ct � iðKyyþ KzzÞ�. This yields
the following system of algebraic equations:

cþ K2
� �

~Uz þ RaT
K2
z

K2
� 1

� 	
~H ¼ 0; (11)

1þ r
2�RaT

2K2
z � K2 þ Sh2K2

y

cþ K2

 !" #
~Uz

� cþ K2ð Þ ~H ¼ 0;

(12)

where r ¼ 3 ðuc=u0Þ3; K ¼ ðK2
y þ K2

z Þ1=2, and we consider, for sim-
plicity, the case when the turbulent Prandtl number PrT ¼ 1.
Equations (11) and (12) yield the equation for c ¼ ðcþ K2Þ=c0 as

c3 � c � p2 r Sh2 a4

2�c30 ð1þ a2Þ ¼ 0; (13)

where

c0 ¼
a

ð1þ a2Þ1=2
RaT þ p2 r

2�
1� a2ð Þ

� �1=2
; (14)

a ¼ Ky=Kz and Kz ¼ p. This implies that Ky ¼ ap and
K ¼ ðK2

y þ K2
z Þ1=2 ¼ p ð1þ a2Þ1=2. When

RaT <
p2 r
2�

a2 � 1ð Þ; (15)

c0 is a complex function.
Generally, the solution of the cubic equation (13) describes two

complex conjugate roots and one real negative root, which determine a
damping mode. In the case of the complex conjugate roots, the insta-
bility can result in an excitation of convective-shear waves with the fre-
quency x ¼ Imfc0 cg and the growth rate of the instability
cinst ¼ Refc0 cg � p2ð1þ a2Þ, where RefZg is the real part of the
complex number and ImfZg is the imagine part of the complex
number.

Numerical solution of Eq. (13) yields the growth rate cinst of the
instability and the frequency x of the excited convective-shear waves
vs the parameter a for the effective Rayleigh numbers RaT ¼ 0:5 (see
Fig. 4) and RaT ¼ 103 (see Fig. 5), and for different values of the non-
dimensional shear number Sh. Figures 4 and 5 show that the
convective-shear waves are excited for a > 1 at small effective
Rayleigh numbers and for a > 1:3 at large effective Rayleigh numbers.
The growth rate of the instability and the frequency of the excited
convective-shear waves are very weakly dependent on the effective
Rayleigh numbers. Increase of shear, results in increase in the growth
rate cinst of the instability and the frequency of the excited convective-
shear waves x. The asymptotic solution of Eq. (13) in the case of
cinst 	 c0 reads

cinst ¼
p2 r Sh2 a4

2�3 ð1þ a2Þ

 !1=3

� p2 ð1þ a2Þ; (16)

which corresponds to a non-oscillatory growing solution withx¼ 0.
This instability causes formation of large-scale fluid motions in

the form of rolls stretched along the imposed mean wind. This mecha-
nism can also cause the generation of the convective-shear waves with
the frequency shown in bottom panels of Figs. 4 and 5. The
convective-shear waves propagate perpendicular to convective rolls.
The predicted motions in convective rolls are characterized by nonzero
helicity, in agreement with numerical simulations.28 Note that similar

FIG. 3. Large-scale convective rolls stretched along the mean velocity shear and gen-
eration of convective-shear waves propagating perpendicular to the convective rolls.
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waves propagating in the direction normal to cloud streets (convective
rolls) have been detected in atmospheric convective boundary layers.31

This large-scale instability is fed by the energy of the convective
turbulence.

IV. RESULTS OF MEAN-FIELD NUMERICAL
SIMULATIONS

In this section, we discuss results of mean-field numerical simula-
tions for three-dimensional problem. We solve numerically Eqs. (4)
and (5) for the periodic boundary conditions in the horizontal xy
plane. The boundary conditions for the potential temperature in the
vertical direction are ~Hðt; z ¼ 0Þ ¼ ~Hðt; z ¼ 1Þ ¼ 0. We adopt
the stress-free and no-slip boundary conditions for the velocity field in
the vertical direction (along the z axis). The stress-free boundary
conditions imply

~Uzðt; z ¼ 0Þ ¼ ~Uzðt; z ¼ 1Þ ¼ 0; (17)

rz ~Uxðt; z ¼ 0Þ ¼ rz ~Uxðt; z ¼ 1Þ ¼ 0; (18)

rz ~Uyðt; z ¼ 0Þ ¼ rz ~Uyðt; z ¼ 1Þ ¼ 0; (19)

while the no-slip boundary conditions are given by

~U ðt; z ¼ 0Þ ¼ ~U ðt; z ¼ 1Þ ¼ 0: (20)

To solve Eqs. (4) and (5), we use the ANSYS FLUENT code (ver-
sion 19.2) in the 3D box Lx ¼ 5Lz and Ly¼ Lz, which is based on the

finite volume method. The discretization method in the code is the sec-
ond order. The simulations are performed with the spatial resolution
500� 100� 100 in x, y, and z directions, respectively. A sensitivity
check has been also made for the spatial resolution 500� 200� 200.
For both cases, similar results for velocity and potential temperature
have been obtained. In all simulations, we use a time step of 10�3. A
sensitivity check has been made for time steps as well. Time steps of
10�3 and 2� 10�3 have been tested and a maximum error of 0.05% at
velocity and potential temperature between the time steps has been
obtained. In addition, a convergence error was set to be less than 10�6.

In the mean-field numerical simulations, we use the following
values of the basic dimensionless parameters: the turbulent Prandtl
number PrT ¼ 1, the ratio uc=u0 ¼ 1, the effective Rayleigh number
changes from RaT ¼ 0:5 to RaT ¼ 1800 and the scale separation
parameter � varies from � ¼ 10�3 to 10�2. The non-dimensional shear
number Sh varies from Sh ¼ 0:01 to Sh ¼ 1. Note that the measure-
ments of the two-point correlation function of the turbulent velocity
field in the laboratory experiments with turbulent convection25,26,54

and DNS55,56 show that the integral turbulent scale ‘0 varies from
Lz=10 to Lz=5, which corresponds to � used in our mean-field
simulations.

For illustration, in Figs. 6 and 7 we plot the time evolution of the
maximum value ~UmaxðtÞ of the velocity magnitude j ~U j for different
values of the effective Rayleigh numbers RaT changing from 0.5 to 103

at a fixed value of the scale separation parameter � between the
vertical size Lz of the computational domain and the integral

FIG. 4. The growth rate cinst of the instability (upper panel) and the frequency of the
excited convective-shear waves x (bottom panel) vs the parameter a for the effec-
tive Rayleigh number RaT ¼ 0:5 and different values of the non-dimensional shear
number Sh ¼ 0.03 (dashed); 0.1 (dashed-dotted); 0.3 (solid).

FIG. 5. The growth rate cinst of the instability (upper panel) and the frequency of the
excited convective-shear waves x (bottom panel) vs the parameter a for the effec-
tive Rayleigh number RaT ¼ 103 and different values of the non-dimensional shear
number Sh ¼ 0.03 (dashed); 0.1 (dashed-dotted); 0.3 (solid).
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turbulence scale ‘0 in the sheared large-scale convection (for Sh ¼ 1),
while in Figs. 8–11 we show the time evolution of the maximum veloc-
ity ~UmaxðtÞ for different values of the scale separation parameter �
(from 10�3 to 10�2) (see Figs. 8 and 9 for RaT ¼ 0:5 and Figs. 10 and
11 for RaT ¼ 103). As can be seen in Figs. 6–11, at the initial stage of
the evolution, the maximum velocity ~UmaxðtÞ increases in time expo-
nentially due to the excitation of the large-scale convective-shear insta-
bility. The growth rate of the instability predicted from the theory [as
the solution of the cubic dispersion equation (13)] is in agreement
with that obtained in the mean-field numerical simulations.

During the nonlinear stage of the instability, we observe that
~UmaxðtÞ reaches the maximum value which is weakly dependent on
the effective Rayleigh number RaT for the stress-free and no-slip
boundary conditions (see Figs. 6 and 7). On the other hand, the maxi-
mum value of the function ~Umax at the stationary stage strongly
depends on the scale separation parameter � and on the boundary con-
ditions (see Figs. 8 and 9). In particular, increasing the scale separation
between the vertical size Lz of the computational domain and the inte-
gral turbulence scale ‘0 (i.e., decreasing the parameter �), the maxi-
mum value of the function ~Umax increases. For the no-slip vertical
boundary conditions, the large-scale instability is excited and
convective structures are formed when � < 3� 10�3 at RaT ¼ 0:5,
� < 4� 10�3 at RaT ¼ 500, and � < 7� 10�3 at RaT ¼ 103. In addi-
tion, the time evolution in the nonlinear stage of the instability for the
stress-free and no-slip boundary conditions are different.

Some features in the time evolution of the maximum velocity
~UmaxðtÞ have been also observed in the recent mean-field simulations
of the shear-free convection,53 where ~UmaxðtÞ is independent of RaT
for the same boundary conditions, but it strongly depends on the scale
separation parameter �. However, in a sheared large-scale convection,
we do not observe clear nonlinear oscillations of ~Umax which have

FIG. 6. Time evolution of the maximum velocity ~UmaxðtÞ for � ¼ 10�3; a ¼ 0:5
and shear number Sh ¼ 1, and at different values of the effective Rayleigh number
RaT ¼ 0.5, 100, 500, and 1000 for the stress-free boundary conditions.

FIG. 7. Time evolution of the maximum velocity ~UmaxðtÞ for � ¼ 10�3; a ¼ 0:5
and shear number Sh ¼ 1, and at different values of the effective Rayleigh number
RaT ¼ 0.5, 100, 500, and 1000 for the no-slip boundary conditions.

FIG. 8. Time evolution of the maximum velocity ~UmaxðtÞ for the effective Rayleigh
number RaT ¼ 0:5; a ¼ 0:5 and shear number Sh ¼ 1, and at different values of
the scale separation parameter � ¼ 10�3; 5� 10�3; 10�2, for the stress-free
boundary conditions.
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been seen after the steady-state stage (when the function ~Umax is nearly
constant in time) in the large-scale shear-free convection.53

To observe spatial structure of the basic characteristics of the
sheared large-scale convection, in Figs. 12–16 we plot the patterns of
velocity vectors ~U ¼ ~Uy ey þ ~Uz ez with ~Ux ! 0 (panel a); the pat-
terns of the potential temperature deviations ~H RaT from the equilib-
rium potential temperature in the basic reference state (panel b) and
the patterns of the vertical gradient of the mean potential temperature
ðrz

~H � 1ÞRaT (panel c) at several time instants: before the system
reaches steady state (see Figs. 12 and 13) and after the system reaches
steady state (see Fig. 14–16). Here, ex; ey , and ez are the unit vectors
directed along the x, y, and z axes.

We remind that the potential temperature is measured in the
units of Lz N2 PrT=b ¼ RaT�2T=ðbL3zÞ. This is the reason why we
show in Figs. 12–16 (see panels b) the pattern of the normalized devia-
tions of the potential temperature ~H RaT from the equilibrium poten-
tial temperature in the basic reference state. Note also that the total
gradient of the potential temperature is the sum of the equilibrium
constant gradient of the potential temperature rzT eq (negative for a
convection) and the gradient of the potential temperature rzH.
Therefore, we show in Figs. 12–16 (see panels c) the pattern of the nor-
malized total vertical gradient of the mean potential temperature,
ðrz

~H � 1ÞRaT , which characterizes the large-scale convection.
At the linear stage of the system evolution, the patterns for the

stress-free and no-slip boundary conditions are the same (see Fig. 17
shown in the yz plane, where in the panel (a) we plot the patterns of
velocity vectors ~U ¼ ~Uy ey þ ~Uz ez with ~Ux ! 0). During the evolu-
tion, there is a transition from the large-scale circulations at the yz
plane seen in the linear stage of the instability (see Fig. 17) to the large-
scale circulations at the xz plane observed during the nonlinear stage

FIG. 9. Time evolution of the maximum velocity ~UmaxðtÞ for the effective Rayleigh
number RaT ¼ 0:5; a ¼ 0:5 and shear number Sh ¼ 1, and at different values of
the scale separation parameter � ¼ 10�3; 5� 10�3; 10�2, for the no-slip bound-
ary conditions.

FIG. 10. Time evolution of the maximum velocity ~UmaxðtÞ for the effective Rayleigh
number RaT ¼ 1000; a ¼ 0:5 and shear number Sh ¼ 1, and at different values
of the scale separation parameter � ¼ 10�3; 5� 10�3; 10�2, for the stress-free
boundary conditions.

FIG. 11. Time evolution of the maximum velocity ~UmaxðtÞ for the effective Rayleigh
number RaT ¼ 1000; a ¼ 0:5 and shear number Sh ¼ 1, and at different values
of the scale separation parameter � ¼ 10�3; 5� 10�3; 10�2, for the no-slip
boundary conditions.
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FIG. 12. The patterns of velocity vectors ~U ¼ ~Ux ex þ ~Uz ez with ~Uy ! 0
[Fig. 12(a)]; the patterns of the potential temperature deviations ~H RaT from the
equilibrium potential temperature in the basic reference state [Fig. 12(b)]; the pat-
terns of the vertical gradient of the mean potential temperature ðrz

~H � 1ÞRaT
[Fig. 12(c)] at time instant t¼ 0.34 of the turbulent viscosity time L2z=�T , effective
Rayleigh number RaT ¼ 0:5; � ¼ 10�3; a ¼ 0:5 and shear number Sh ¼ 1 for
the stress-free vertical boundary conditions. All quantities are normalized by their
maximum values.

FIG. 13. The patterns of velocity vectors ~U ¼ ~Ux ex þ ~Uz ez with ~Uy ! 0
[Fig. 13(a)]; the patterns of the potential temperature deviations ~H RaT from the equilib-
rium potential temperature in the basic reference state [Fig. 13(b)]; the patterns of the ver-
tical gradient of the mean potential temperature ðrz

~H � 1ÞRaT [(Fig. 13(c)] at
time instant t¼ 0.7 of the turbulent viscosity time L2z=�T , effective Rayleigh number
RaT ¼ 0:5; � ¼ 10�3; a ¼ 0:5 and shear number Sh ¼ 1 for the no-slip vertical
boundary conditions. All quantities are normalized by their maximum values.

FIG. 14. The patterns of velocity vectors ~U ¼ ~Ux ex þ ~Uz ez with ~Uy ! 0
[Fig. 14(a)]; the patterns of the potential temperature deviations ~H RaT from the
equilibrium potential temperature in the basic reference state [Fig. 14(b)]; the pat-
terns of the vertical gradient of the mean potential temperature ðrz

~H � 1ÞRaT
[Fig. 14(c)] at time instant t¼ 1 of the turbulent viscosity time L2z=�T , effective
Rayleigh number RaT ¼ 0:5; � ¼ 10�3; a ¼ 0:5 and shear number Sh ¼ 1 for
the stress-free vertical boundary conditions. All quantities are normalized by their
maximum values.

FIG. 15. The patterns of velocity vectors ~U ¼ ~Ux ex þ ~Uz ez with ~Uy ! 0
[Fig. 15(a)]; the patterns of the potential temperature deviations ~H RaT from the equilib-
rium potential temperature in the basic reference state [Fig. 15(b)]; the patterns of the ver-
tical gradient of the mean potential temperature ðrz

~H � 1ÞRaT [Fig. 15(c)] at
time instant t¼ 4 of the turbulent viscosity time L2z=�T , effective Rayleigh number
RaT ¼ 0:5; � ¼ 10�3; a ¼ 0:5 and shear number Sh ¼ 1 for the no-slip vertical
boundary conditions. All quantities are normalized by their maximum values.
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of the instability (see Figs. 12 and 13). In addition, there is a transition
from the two-layer vertical structure of the mean velocity field with
two convective rolls in the z direction and six rolls in the x direction
(as can be seen in Fig. 12 for the stress-free boundary conditions) to
the one-layer vertical structure with one roll in the z direction and two
rolls in the x direction (see Fig. 14).

On the other hand, comparing Figs. 13 and 15 (which corre-
sponds to the no-slip boundary conditions), we observe that during
nonlinear stage of the instability there is a transition from the large-
scale circulations with the two-layer vertical structure with two convec-
tive rolls in the z direction and six rolls in the x direction (see Fig. 13)
to the one-layer structure with four inclined rolls (see Fig. 15). The for-
mation of the inclined rolls for the no-slip boundary conditions are
already observed starting with t¼ 0.9 of the turbulent viscosity time
L2z=�T at the effective Rayleigh number RaT ¼ 0:5. The inclined rolls
for the no-slip boundary conditions are also observed at the effective
Rayleigh number RaT ¼ 103 (see Fig. 16).

As has been observed in the shear-free convection,53 the large-
scale convective structures are also formed in a sheared convection
even at low values of the effective Rayleigh numbers RaT ¼ 0:5 due to
the additional terms proportional to � in Eq. (5) for the evolution of
the potential temperature (which are caused by the modification of the
turbulent heat flux by non-uniform fluid flows). Moreover, in Figs.

12–16 (panel c), one can see the regions with the positive gradient of
the potential temperature ðrz

~H � 1ÞRaT , which are typical for stably
stratified turbulence. Such effects have been previously observed in
experiments,16,57 direct numerical simulations44,46,47,58 of turbulent

FIG. 16. The patterns of velocity vectors ~U ¼ ~Ux ex þ ~Uz ez with ~Uy ! 0
[Fig. 16(a)]; the patterns of the potential temperature deviations ~H RaT from the
equilibrium potential temperature in the basic reference state [Fig. 16(b)]; the pat-
terns of the vertical gradient of the mean potential temperature ðrz

~H � 1ÞRaT
[Fig. 16(c)] at time instant t¼ 5.32 of the turbulent viscosity time L2z=�T , effective
Rayleigh number RaT ¼ 1000; � ¼ 10�3; a ¼ 0:5 and shear number Sh ¼ 1 for
the no-slip vertical boundary conditions. All quantities are normalized by their maxi-
mum values.

FIG. 17. The patterns of velocity vectors ~U ¼ ~Uy ey þ ~Uz ez with ~Ux ! 0
[Fig. 17(a)]; the patterns of the potential temperature deviations ~H RaT from the equilib-
rium potential temperature in the basic reference state [Fig. 17(b)]; the patterns of the ver-
tical gradient of the mean potential temperature ðrz

~H � 1ÞRaT [Fig. 17(c)] at
time instant t¼ 0.04 of the turbulent viscosity time L2z=�T , effective Rayleigh number
RaT ¼ 0:5; � ¼ 10�3; a ¼ 0:5 and shear number Sh ¼ 1 for the stress-free vertical
boundary conditions. All quantities are normalized by their maximum values.
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convection and shear-free mean-field numerical simulations.53 The
formation of the regions with the positive gradient of the potential
temperature inside the large-scale circulation can be understood as fol-
lows. The total vertical heat flux Ftot

z includes three contributions53:

• the mean vertical heat flux U z H of the large-scale circulation,
• the vertical turbulent heat flux F�

z ¼ �jTrzH, and
• the new turbulent heat flux Fnew

z ¼ �s0 F�
z divU?.

Therefore, the vertical gradient rzH of the mean potential tem-
perature is given by

rzH ¼ Uz H � Ftot
z

jT ð1� s0 divU?Þ
: (21)

Inside the large-scale circulation where Uz H > Ftot
z , the vertical gradi-

entrzH is positive. On the other hand, when Uz H < Ftot
z , the verti-

cal gradient rzH is negative. Here, we take into account that
s0 jdivU?j < 1.

In the present study, we also observe the formation the large-
scale rolls even below the threshold of the laminar convection (see
Figs. 12–15 for effective Rayleigh number RaT ¼ 0:5, which can be
compared with Fig. 16 for RaT ¼ 1000). This is because turbulence
with non-uniform large-scale flows contributes to the turbulent heat
flux. The reasons for this effect are related to the production of addi-
tional essentially anisotropic velocity fluctuations generated by tangling
of the mean-velocity gradients by small-scale turbulent motions due to
the influence of the inertial forces during the lifetime of turbulent
eddies. These anisotropic velocity fluctuations contribute to the turbu-
lent heat flux. In particular, anisotropic velocity fluctuations uanisot are
produced by the large-scale shear rjU i in the presence of isotropic
velocity fluctuations uisot, i.e., @uanisot=@t / �ðuisot � $ÞU i. This
mechanism is called “tangling”. Similar mechanism exists in fluid
dynamics, when temperature fluctuations h are produced by “tangling”
of the gradient of the mean temperature rjT by velocity fluctuations
u, i.e., @h=@t / �ðu � $ÞT . Moreover, the tangling mechanism also
exists in magnetohydrodynamics, when magnetic fluctuations b are
produced by “tangling” of the mean magnetic field B by velocity fluc-
tuations, i.e., @b=@t / ðB � $Þu. So, the “tangling” is an universal
mechanism of production of anisotropic fluctuations.

The modification of the turbulent heat flux by anisotropic veloc-
ity fluctuations causes an excitation of large-scale convective-shear
instability, which results in the formation of large-scale semi-organized
structures in the form of rolls and generation of convective-shear
waves propagating perpendicular to the convective rolls. The lifetimes
and spatial scales of these structures are much larger compared to the
largest turbulent time scales. As the result, the evolutionary equation
(5) for the potential temperature ~H contains the new terms propor-
tional to the spatial derivatives of the mean velocity field ~U (see the
terms proportional to the parameter �).

The developed mean-field theory, which yields a convective-
shear instability, is capable of explaining the properties of semi-
organized structures observed in the atmospheric convective boundary
layer. In particular, in the presence of the mean wind, the semi-
organized structures are observed in the form of rolls (cloud streets).
The observed rolls usually align along the mean horizontal wind of the
convective layer, with lengths varying from 20 to 200 km, widths
changing from 2 to 10 km, and convective depths varying from 2 to
3 km.30 The typical value of the aspect ratio of the observed rolls is

Lcsz =L
cs
h 
 0:14–1, where Lcsz and Lcsh are the vertical and horizontal

scales of the cloud streets in the plane perpendicular to the mean wind.
The ratio of the minimal size Lcs of the observed structures to the inte-
gral scale of turbulent motions is Lcs=‘0 ¼ 10–100. The characteristic
lifetime of rolls varies from 1 to 10 h. The suggested theory predicts
the following parameters of the convective rolls: the aspect ratio
Lcsz =L

cs
h ranges from very small values to 1, and Lcs=‘0 varies from 10

to 100. The characteristic time of formation of the rolls � s0=cinst
varies from 1 to 3 h. It is of the order of several turbulent viscosity
time.

V. CONCLUSIONS

Mean-field simulations based on a developed mean-field the-
ory50,51 of a non-rotating sheared turbulent convection are performed.
This mean-field theory describes an effect of modification of the turbu-
lent heat flux by the non-uniform large-scale motions caused by pro-
duction of essentially anisotropic velocity fluctuations generated by
tangling of the mean-velocity gradients by small-scale turbulent
motions. The effect causes an excitation of large-scale convective-shear
instability and the formation of large-scale convective rolls. During the
nonlinear stage of the convective-shear instability, there is a transition
from a two-layer vertical structure with two rolls in the vertical direc-
tion before the system reaches steady state to a one-layer vertical struc-
ture with one roll after the system reaches steady state. This effect is
observed for all effective Rayleigh numbers.

The performed mean-field simulations show that the modifica-
tion of the turbulent heat flux by the non-uniform large-scale motions
results in a strong decrease in the critical effective Rayleigh number
required for the formation of the large-scale rolls. These mean-field
simulations have demonstrated that the spatial distribution of the
mean potential temperature has regions with a positive vertical gradi-
ent of the potential temperature inside the convective roll due to the
mean heat flux of the convective rolls. This study might be useful for
understanding the origin of large-scale rolls observed in atmospheric
convective boundary layers, as well as in numerical simulations and
laboratory experiments.
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