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Experimental study of temperature fluctuations in forced
stably stratified turbulent flows

A. Eidelman,a) T. Elperin,b) I. Gluzman,c) N. Kleeorin,d)

and I. Rogachevskiie)

The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical
Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

(Received 8 June 2012; accepted 18 December 2012; published online 18 January 2013)

We study experimentally temperature fluctuations in stably stratified forced turbu-
lence in air flow. In the experiments with an imposed vertical temperature gradient,
the turbulence is produced by two oscillating grids located nearby the side walls
of the chamber. Particle image velocimetry is used to determine the turbulent and
mean velocity fields, and a specially designed temperature probe with sensitive ther-
mocouples is employed to measure the temperature field. We found that the ratio[
(�x∇x T )2 + (�y∇y T )2 + (�z∇zT )2

]
/〈θ2〉 is nearly constant, is independent of the

frequency of the grid oscillations, and has the same magnitude for both, stably and
unstably stratified turbulent flows, where �i are the integral scales of turbulence along
x, y, z directions, T and θ are the mean and turbulent fluctuations components of the
fluid temperature. We demonstrated that for large frequencies of the grid oscillations,
the temperature field can be considered as a passive scalar, while for smaller fre-
quencies the temperature field behaves as an active field. The theoretical predictions
based on the budget equations for turbulent kinetic energy, turbulent potential energy
(∝ 〈θ2〉), and turbulent heat flux, are in a good agreement with the experimental
results. Detailed comparison with experimental results obtained previously in unsta-
bly stratified forced turbulence is performed. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4775380]

I. INTRODUCTION

In the last two decades, the theory of stably stratified flows undergoes essential revision. Since
the classical papers by Kolmogorov, Obukhov, and Heisenberg, practically used turbulence closures
for the neutrally and stably stratified flows describe the energetics of turbulence using the budget
equation for the turbulent kinetic energy (TKE) in combination with the Kolmogorov’s hypotheses
for the dissipation rate ∼ E3/2

K /� , the eddy viscosity (or the eddy conductivity and eddy diffusivity)
proportional to ∼ E1/2

K � (see Ref. 1), where EK is the turbulent kinetic energy and � is the turbulent
integral scale. The straightforward application of this approach for stably stratified shear flows led to
the turbulence cutoff at Richardson numbers, Ri = (N/S)2, exceeding some critical value, assumed
to be close to the conventional linear instability threshold from 1/4 to 1 (see, e.g., Refs. 2 and 3).
The latter assertion, however, contradicts to experimental evidence and experience from numerical
modelling (see, e.g., Refs. 4–8). Here, N is the Brunt-Väisälä frequency determined by the vertical
derivative of the mean temperature (or the mean potential temperature), i.e., N 2 = β∇z T , β = g/T∗
is the buoyancy parameter, g = 9.81 m/s is the acceleration due to gravity, T∗ is a reference value of
the absolute mean temperature T , and S is the mean shear.
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Over decades in meteorology, this difficulty was overcome heuristically importing empirical Ri-
dependent coefficients in the expressions for the eddy viscosity and eddy conductivity. Recently, an
insight into this long-standing problem (since Richardson9) has been gained through more rigorous
analysis of the turbulent energetics involving additional budget equation for the turbulent potential
energy (TPE) conceptually similar to the Lorenz’s10 available potential energy, and accounting for
the energy exchange between TKE and TPE (see Refs. 11–15). This analysis uses the conservation
law for the total turbulent energy (TTE = TKE+TPE), the budget equation for turbulent heat flux and
opens new prospects toward developing consistent and practically useful turbulent closures based
on a minimal set of equations. This approach results in the asymptotically linear Ri-dependence
of the turbulent Prandtl number and removes the puzzling, almost the century old problem of the
unrealistic turbulence cutoff (implying the existence of a critical Richardson number).

In contrast to meteorology, the energy exchange between TKE and TPE was discussed long
ago in the context of the oceanic stably stratified turbulence16 (see also Refs. 17–30). Detailed
discussions of the state of the art in the turbulence closure problem for stably stratified flows can be
found in Refs. 12–14, 31, and 32.

The above discussed new ideas should be comprehensively investigated and validated using
laboratory experiments and numerical simulations in different setups. The goal of this study is
to conduct a comprehensive experimental investigation of heat transport in temperature stratified
forced turbulence. In the experiments, turbulence is produced by the two oscillating grids located
nearby the side walls of the chamber. We use particle image velocimetry (PIV) to determine the
velocity field, and a specially designed temperature probe with sensitive thermocouples is em-
ployed to measure the temperature field. Similar experimental setup and data processing procedure
were used previously in the experimental study of different aspects of turbulent convection (see
Refs. 33 and 34) and in Refs. 35–39 for investigating a phenomenon of turbulent thermal
diffusion.40, 41 Comprehensive investigation of turbulent structures, mean temperature distributions,
velocity and temperature fluctuations can elucidate a complicated physics related to particle cluster-
ing and formation of large-scale inhomogeneities in particle spatial distributions in stably stratified
turbulent flows.

In the present study, we perform a detailed comparison with experimental results obtained
recently in unstably stratified forced turbulence,33 whereby transition phenomena caused by the
external forcing (i.e., transition from Rayleigh-Bénard convection with the large-scale circulation
(LSC) to the limiting regime of unstably stratified turbulent flow without LSC where the temperature
field behaves like a passive scalar) have been studied. In particular, when the frequency of the
grid oscillations is larger than a certain value, the large-scale circulation in turbulent convection
is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean
temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio[
(�x∇x T )2 + (�y∇y T )2 + (�z∇zT )2

]
/〈θ2〉 varies slightly (even in the range of parameters whereby

the behaviour of the temperature field is different from that of the passive scalar).33

This paper is organized as follows. The theoretical predictions are given in Sec. II. Section III
describes the experimental setup and instrumentation. The results of laboratory study of the stably
stratified turbulent flow and comparison with the theoretical predictions are described in Sec. IV.
Finally, conclusions are drawn in Sec. V.

II. THEORETICAL PREDICTIONS

In our theoretical analysis, we use three budget equations for the turbulent kinetic energy Ek

= 〈u2〉/2, for the temperature fluctuations Eθ = 〈θ2〉/2 and for the turbulent heat flux Fi = 〈uiθ〉
DEk

Dt
+ div �k = −〈ui u j 〉 ∇ jU i + 〈u·f f 〉 + β Fz − εk, (1)

DEθ

Dt
+ div �θ = −(F·∇)T − εθ , (2)

DFi

Dt
+ ∇ j �

(F)
i j = βi 〈θ2〉 − 1

ρ
〈θ ∇i p〉 − 〈ui u j 〉 ∇ j T
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−(F·∇)U i − ε
(F)
i (3)

(see, e.g., Refs. 12, 13, 42, and 43), where D/Dt = ∂/∂t + U·∇, u are the fluctuations of the fluid
velocity, θ are the temperature fluctuations, U is the mean velocity, T is the mean temperature,
p are the pressure fluctuations, β i = β ei, e is the vertical unit vector, and ρ is the fluid den-
sity. The terms �k, �θ and �

(F)
i j include the third-order moments. In particular, �k = ρ−1〈u p〉

+ (1/2)〈u u2〉 determines the flux of EK, �θ = 〈u θ2〉/2 determines the flux of Eθ , and �
(F)
i j

= 〈ui u jθ〉 determines the flux of F. The term 〈u · ff〉 in Eq. (1) determines the production rate of
turbulence caused by the grid oscillations and εk is the dissipation rate of the turbulent kinetic energy.
The term εθ in Eq. (2) determines the dissipation rate of Eθ , while the term ε

(F)
i in Eq. (3) is the

dissipation rate of the turbulent heat flux.
By means of Eq. (2) we arrive at the evolutionary equation for the turbulent potential energy Ep

= (β2/N2) Eθ

DE p

Dt
+ div �p = Pp − βFz − εp (4)

(see, e.g., Refs. 12 and 13), where N 2 = β ∇zT , �p = (β2/N2) �θ , Pp = −(β2/N 2) (Fh ·∇)T is
the source (or sink) of the turbulent potential energy caused by the horizontal turbulent heat flux
Fh = 〈uh θ〉, uh is the horizontal component of the velocity fluctuations and εp = (β2/N2) εθ .
The buoyancy term, β Fz, appears in Eqs. (1) and (4) with opposite signs and describes the energy
exchange between the turbulent kinetic energy and the turbulent potential energy. These two terms
cancel in the budget equation for the total turbulent energy, E = Ek + Ep

DE

Dt
+ div � = Pp − 〈ui u j 〉 ∇ jU i + 〈u·f f 〉 − ε, (5)

where � = �k + �p and ε = εk + εp. The concept of the total turbulent energy is very useful
in analysis of stratified turbulent flows. In particular, it allows to elucidate the physical mechanism
for the existence of the shear produced turbulence for arbitrary values of the Richardson number,
and abolish the paradigm of the critical Richardson number in the stably stratified atmospheric
turbulence (see Refs. 12 and 13).

Now we use the budget equation (3) for the turbulent heat flux Fi = 〈uiθ〉. According to the
estimate made in Ref. 12, β i 〈θ2〉 − ρ−1 〈θ ∇ ip〉 ≈ Cθβ i 〈θ2〉, where Cθ is an empirical constant.
In a steady-state case, Eq. (3) yields the components of the turbulent heat flux Fx = −DT

x ∇x T ,
Fy = −DT

y ∇y T and Fz = −DT
z ∇zT + Cθ CF τ0 β 〈θ2〉, where DT

i = CF τ0 〈u2
i 〉 with i = x, y, z

are the turbulent temperature diffusion coefficients in x, y, and z directions and CF is an empirical
constant. Here, we have taken into account that the dissipation rate of the turbulent heat flux is
ε

(F)
i = Fi/CFτ0, the diagonal components of the tensor 〈uiuj〉 are much larger than the off-diagonal

components, and τ x ≈ τ y ≈ τ z = τ 0.
On the other hand, in a steady-state case Eq. (2) yields

〈θ2〉 = −2 τ0 (F·∇)T , (6)

where we have taken into account that the dissipation rate of Eθ = 〈θ2〉/2 is εθ = 〈θ2〉/2τ 0. To estimate
the dissipation rate εθ , we apply the Kolmogorov-Obukhov hypothesis: εθ ≈ 〈θ2〉/2τ 0 (see, e.g.,
Refs. 44 and 45), where τ 0 = �/u0 is the characteristic turbulent time and u0 is the characteristic
turbulent velocity at the integral turbulent scale �. Indeed, εθ ≡ D〈(∇θ )2〉 = D 〈θ2〉 ∫ kb

k0
k2 Ẽθ (k) dk

≈ 〈θ2〉/2τ0, where D is the coefficient of molecular temperature diffusion, Ẽθ (k)
= (2/3) k−1

0 (k/k0)−5/3 is the spectrum function of the temperature fluctuations, k0 = �−1, kb = �−1
b ,

�b = �/Pe3/4, and Pe = u0 �/D is the Peclet number. The latter estimate implies that the main contri-
bution to the dissipation rate εθ arises from very small molecular temperature diffusion scales �b.

Substituting the components of the turbulent heat flux into Eq. (6), we obtain the following
equation:

�∗ ∇∗T√
〈θ2〉

= 1

2CF
= const, (7)
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where

[�∗ ∇∗T ]2 = [
(�x∇x T )2 + (�y∇y T )2 + (�z∇zT )2

]

×[
1 + 2CθCFβτ 2

0 (∇zT )
]−1

. (8)

In deriving Eq. (7), we have neglected the terms ∼ O[�3/L3
T ; �3/(L2

T LU )], where LT and LU are the
characteristic spatial scales of the mean temperature and velocity field variations.

Next, we derive equation for the vertical turbulent velocity in the stably stratified turbulent flow.
We use the budget equation for the vertical turbulent kinetic energy Ez = 〈u2

z 〉/2

DEz

Dt
+ div �z = 〈uz fz〉 + β Fz + Qz − εz, (9)

(see, e.g., Refs. 12, 13, 42, and 43) where the third-order moment �z = ρ−1〈uz p〉 e + (1/2)〈u u2
z 〉

determines the flux of Ez, 〈uzfz〉 is the production term, and Qz is the inter-component energy
exchange term that according to the “return-to-isotropy” hypothesis46 is given by Qz = −Cr(Ez −
Ek/3)/2τ 0. Here, we have neglected a small production term due to the weak non-uniform mean flow.
In the steady state, Eq. (9) yields

Ez = τ0 [〈uz fz〉 + β Fz]

1 + Cr (1 − 1/3Az)
, (10)

where Cr is an empirical constant, Az = Ez/Ek is the vertical anisotropy parameter. Using a simple
estimate for the vertical heat flux, Fz ∼ −C

√〈u2
z 〉

√
〈θ2〉 (where C is the correlation coefficient), we

arrive at the following equation for the rms of the vertical turbulent velocity in the stably stratified
turbulent flow:

√
〈u2

z 〉 ∼
[
〈(u∗

z )2〉 − Cu�z β
√

〈θ2〉
]1/2

, (11)

where Cu is an empirical constant to be determined in the experiment, and we have
taken into account that the characteristic velocity for the isothermal turbulence 〈(u∗

z )2〉
∼ 2τ0〈uz fz〉/ [1 + Cr (1 − 1/3Az)].

III. EXPERIMENTAL SETUP AND INSTRUMENTATION

In this section, we describe the experimental setup. The experiments in stably stratified turbu-
lence have been conducted in rectangular chamber with dimensions 26 × 58 × 26 cm3 in air flow
with the Prandtl number Pr = 0.71. The side walls of the chambers are made of transparent Perspex
with the thickness of 1 cm. In the experiments, turbulence is produced by two oscillating grids. Pairs
of vertically oriented grids with bars arranged in a square array (with a mesh size 5 cm) are attached
to the right and left horizontal rods (see Figs. 1–3). The grids are positioned at a distance of two
grid meshes from the chamber walls and are parallel to the side walls. Both grids are operated at
the same amplitude of 3.05 cm, at a random phase and at the same frequency which is varied in the
range from 1 Hz to 10.5 Hz. To increase the size of the domain with a homogeneous turbulence and

FIG. 1. Experimental setup: (1) Laser light sheet in yz plane; (2) heat exchangers; (3) grid driver; (4) digital CCD camera.
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FIG. 2. Experimental setup with the laser light sheet in xz plane.

to decrease the mean velocity, partitions were attached to the side walls of the chamber. We use the
following system of coordinates: z is the vertical axis, the y-axis is perpendicular to the grids, and
the xz-plane is parallel to the grids. The aspect ratio of the chamber Hy/Hz = 1.52, where Hy is the
size of the chamber along y-axis between partitions and Hz is the height of the chamber, respectively.

A vertical mean temperature gradient in the turbulent air flow was formed by attaching two
aluminium heat exchangers to the bottom and top walls of the test section (a cooled bottom and a
heated top wall of the chamber). To improve heat transfer in the boundary layers at the bottom and
top walls, we used heat exchangers with rectangular fins 0.3 × 0.3 × 1.5 cm3 (see Fig. 3) which
allowed us to form a mean temperature gradient up to 1.15 K/cm at a mean temperature of about
308 K when the frequency of the grid oscillations f > 10 Hz. The thickness of the aluminium plates
with the fins is 2.5 cm. The bottom plate is a top wall of the tank with cooling water. Temperature
of water circulating through the tank and the chiller is kept constant within 0.1 K. Cold water is
pumped into the cooling system through two inlets and flows out through two outlets located at
the side walls of the cooling system. The top plate is attached to the electrical heater that provides
constant and uniform heating. The voltage applied to the heater varies up to 155 V. The power of the
heater varies up to 300 W.

The temperature field was measured with a temperature probe equipped with 12 E-
thermocouples (with the diameter of 0.013 cm and the sensitivity of ≈65 μV/K) attached to a

FIG. 3. Rectangular chamber: (1, 2) Partitions; (3) rectangular fins; (4, 5) oscillating grids; (6, 7) heat exchangers;
(8) temperature measurement system.
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vertical rod with a diameter 0.4 cm. The spacing between thermocouples along the rod was 2.2 cm.
Each thermocouple was inserted into a 0.1 cm diameter and 4.5 cm long case. A tip of a thermocouple
protruded at the length of 1.5 cm out of the case. The temperature in the central part of the chamber
was measured for 2 rod positions in the horizontal and vertical directions, i.e., at 24 locations in
a flow (see Fig. 3). The exact position of each thermocouple was measured using images captured
with the optical system employed in PIV measurements. A sequence of 500 temperature readings for
every thermocouple at every rod position was recorded and processed using the developed software
based on LabVIEW 7.0.

The velocity fields were measured using a Stereoscopic PIV, see Refs. 47–49. In the experiments,
we used LaVision Flow Master III system. A double-pulsed light sheet was provided by a Nd-YAG
laser (Continuum Surelite 2 × 170 mJ). The light sheet optics include spherical and cylindrical
Galilei telescopes with tuneable divergence and adjustable focus length. We used two progressive-
scan 12 bit digital CCD cameras (with pixel size 6.7 μm × 6.7 μm and 1280 × 1024 pixels) with a
dual-frame-technique for cross-correlation processing of captured images. A programmable timing
unit (personal computer interface card) generated sequences of pulses to control the laser, camera,
and data acquisition rate. The software package LaVision DaVis 7 was applied to control all hardware
components and for 32 bit image acquisition and visualization. This software package comprises
PIV software for calculating the flow fields using cross-correlation analysis.

To obtain velocity maps in the central region of the flow in the cross-section parallel to the
grids and perpendicular to a front view plane, we used one camera with a single-axis Scheimpflug
adapter. The angle between the optical axis of the camera and the front view plane as well as the
angle between the optical axis and the probed cross-section was approximately 45◦ (see Fig. 2). The
perspective distortion was compensated using Stereoscopic PIV system calibration kit whereby the
correction was calculated for a recorded image of a calibration plate. The corrections were introduced
in the probed cross-section images before their processing using a cross-correlation technique for
determining velocity fields.

An incense smoke with sub-micrometer particles (ρp/ρ ∼ 103) was used as a tracer for the
PIV measurements. Smoke was produced by high temperature sublimation of solid incense grains.
Analysis of smoke particles using a microscope (Nikon, Epiphot with an amplification of 560) and
a PM-300 portable laser particulate analyzer showed that these particles have an approximately
spherical shape and that their mean diameter is of the order of 0.7 μm. The probability density
function of the particle size measured with the PM300 particulate analyzer was independent of the
location in the flow for incense particle size of 0.5–1 μm. The maximum tracer particle displacement
in the experiment was of the order of 1/4 of the interrogation window. The average displacement of
tracer particles was of the order of 2.5 pixels. The average accuracy of the velocity measurements
was of the order of 4% for the accuracy of the correlation peak detection in the interrogation window
of the order of 0.1 pixel (see, e.g., Refs. 47–49).

We determined the mean and the rms velocities, two-point correlation functions, and an integral
scale of turbulence from the measured velocity fields. Series of 520 pairs of images acquired with a
frequency of 1 Hz, were stored for calculating velocity maps and for ensemble and spatial averaging
of turbulence characteristics. The center of the measurement region in yz- and xz-planes coincides
with the center of the chamber. We measured velocity in a flow domain 25.6 × 25.6 cm2 with a
spatial resolution of 1024 × 1024 pixels. This corresponds to a spatial resolution 250 μm/pixel. The
velocity field in the probed region was analyzed with interrogation windows of 32 × 32 or 16 × 16
pixels. In every interrogation window, a velocity vector was determined from which velocity maps
comprising 32 × 32 or 64 × 64 vectors were constructed. The mean and rms velocities for every
point of a velocity map were calculated by averaging over 520 independent maps, and then they
were averaged over the central flow region.

The two-point correlation functions of the velocity field were determined for every point of the
central part of the velocity map (with 16 × 16 vectors) by averaging over 520 independent velocity
maps, which yields 16 correlation functions in x, y and z directions. Then the two-point correlation
function was obtained by averaging over the ensemble of these correlation functions. An integral
scale of turbulence, �, was determined from the two-point correlation functions of the velocity field.
In the experiments, we evaluated the variability between the first and the last 20 velocity maps of
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the series of the measured velocity field. Since very small variability was found, these tests showed
that 520 velocity maps contain enough data to obtain reliable statistical estimates. We also found
that the measured mean velocity field is stationary.

The characteristic turbulence time in the experiments τ z = 0.2 − 1 s that is much smaller than
the time during which the velocity fields are measured (520 s). The size of the probed region did
not affect our results. The temperature difference between the top and bottom plates, 	T , in all
experiments was 50 K.

IV. EXPERIMENTAL RESULTS AND COMPARISON
WITH THE THEORETICAL PREDICTIONS

We will start with the discussion of the experimental results on the temperature measurements
in stably stratified turbulent flows. To avoid side effects of the grids, we present the experimental
results recorded in the central region of the chamber with the size of 10 × 10 × 10 cm3. The
temperature was measured at 24 locations in a flow (the spacing between thermocouples was
2.2 cm). The separation distance of 2.2 cm between thermal couples is sufficient to measure the
gradients of the mean temperature. Indeed, the integral scale of turbulence is about 2 cm (see below),
and the characteristic length scale of the mean temperature field, LT = |∇T /T |−1, is much larger
than the integral scale of turbulence.

In our study, we employ a triple decomposition whereby the instantaneous temperature T tot

= T + θ , where θ are the temperature fluctuations and T is the temperature determined by sliding
averaging of the instantaneous temperature field over the time that is by one order of magnitude
larger than the characteristic turbulence time (for the temperature difference between the top and
bottom plates 	T = 50 K and the frequency f = 10.5 Hz of the grid oscillations the sliding average
time is 1.6 s, while the vertical turbulence time is 0.17 s). This temperature T is given by a sum,
T = T + δT , where δT are the long-term variations of the temperature T due to the nonlinear
temperature oscillations around the mean value T . The mean temperature T is obtained by the
additional averaging of the temperature T over the time 400 s.

In the temperature measurements, the acquisition frequency of the temperature was 1.25 Hz.
The corresponding acquisition time is 0.8 s, that is, larger than the characteristic turbulence time,
0.17 s, and is much smaller than the period of nonlinear oscillations of the mean temperature, 12 s
(see below). On the other hand, the time interval of the one realization of the temperature field is
400 s, which corresponds to 500 data points of the temperature field over which we perform averaging.
Therefore, the acquisition frequency of temperature is high enough to provide sufficiently long time
series for statistical estimation of the mean temperature T .

Let us now analyze the frequency dependence of vertical profiles of the mean temperature T (z)
(Fig. 4). Inspection of Fig. 4 shows that the increase of the frequency f of the grid oscillations weakly
modifies the vertical profiles of the mean temperature T (z). However, the gradients of the mean
temperature T in the vertical, ∇zT , and horizontal, ∇y T , directions are affected by the increase of
the frequency f of the grid oscillations (Fig. 5). In particular, the horizontal and vertical temperature

0 10 20

298

308

318

z

T

FIG. 4. Vertical profile of the mean temperature T (z) for different frequencies f of the grid oscillations for the stably stratified
turbulent flow: f = 1 Hz (triangles), f = 2 Hz (squares), and f = 10.5 Hz (snowflakes) for �T = 50 K. The temperature is
measured in K and the distance in cm.
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FIG. 5. Vertical gradients of the mean temperature ∇z T (squares) and rms of δ(∇zT) (diamonds) characterizing amplitude
of the long-term nonlinear oscillations versus the frequency f of the grid oscillations for the stably stratified turbulent flow
for �T = 50 K. Similar dependencies are also shown for horizontal gradients of the temperature ∇y T (snowflakes) and rms
of δ(∇y T ) (stars). The temperature gradient is measured in K cm−1 and the frequency f is measured in Hz.

gradients grow with the frequency of oscillation. The reasons for that will be explained in this
section.

In the experiments, we have observed the long-term nonlinear oscillations δT of the temperature
occurring around the mean temperature T with the periods which are much larger than the turbulent
correlation time (see Fig. 6). In particular, in Fig. 6 we show time dependencies of the instantaneous
(actual) temperature T tot = T + θ , the long-term variations of mean temperature δT = T − T and
the long-term variations of the vertical mean temperature gradient δ(∇zT ) = ∇zT − ∇zT due to the
nonlinear oscillations of the mean temperature. We also determined the long-term variations of the
mean temperature gradients δ(∇i T ) = ∇i T − ∇i T in other directions, where i = x, y, z.

In Fig. 7, we show the results of a Fourier analysis of the signal δT = T − T . Inspection of
Fig. 7 shows that there are two main maxima in the spectrum with the periods 12 s and 20 s.
Other smaller maxima in the spectrum are at the frequencies which are multiples of these main
frequencies or their sums and differences. These are typical features of nonlinear oscillations. The
theory that explains the mechanism of these nonlinear oscillations of the mean temperature field,
has not been developed yet. A possible mechanism for such nonlinear oscillations could be related
to the large-scale Tollmien-Schlichting waves in sheared turbulent flows (see Ref. 50).

We will compare the results of our experiments in the stably stratified turbulence with the
results obtained in the similar experimental setup, but for the unstably stratified turbulence or for
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FIG. 6. Time dependencies of the instantaneous temperature T tot = T + θ , the variations of mean temperature δT = T − T
and the variations of the vertical mean temperature gradient δ(∇z T ) = ∇z T − ∇z T due to the long-term nonlinear oscillations
of the mean temperature (with the period ∼12 s). These time dependencies are measured in the center of the chamber at
the frequency f = 10.5 Hz of the grid oscillations for the stably stratified turbulent flow for �T = 50 K. These temperature
characteristics are measured in K and time is measured in seconds.
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FIG. 7. The normalized spectrum function En( f̃ ) = |(δT ) f̃ |2/
∫ |(δT ) f̃ |2 d f̃ of the signal δT = T (t) − T , where in the

Fourier space (δT ) f̃ = ∫
δT exp[−i f̃ t] dt and f̃ is the frequency of the nonlinear long-term oscillations of the mean

temperature.

the isothermal turbulence when �T = 0. The details of this experimental setup and measurements
are given in Ref. 33, in which the Rayleigh-Bénard apparatus with an additional source of turbulence
produced by the two oscillating grids located nearby the side walls of the chamber was used.
Additional forcing for turbulence allows to observe evolution of the mean temperature and velocity
fields during the transition from turbulent convection with the LSC for very small frequencies of
the grid oscillations, to the limiting regime of unstably stratified flow without LSC for very high
frequencies of the grid oscillations. In the latter case of the unstably stratified flow without LSC, the
temperature field behaves like a passive scalar.33

In our experiments with the stably stratified turbulence, we determined the dependence of the
rms of the temperature fluctuations

√
〈θ2〉 versus the frequency f of the grid oscillations (see Fig. 8),

where θ are fluctuations of fluid temperature. The temperature fluctuations monotonically increase
with the increase of the frequency f of the grid oscillations (except for the higher frequency) due
to the monotonic increase of the mean temperature gradients. In the case of the unstably stratified
turbulent flow, the dependence

√
〈θ2〉 versus frequency is more involved.

We also determined the frequency dependencies of the following measured turbulence pa-
rameters: the rms velocity fluctuations, urms = [〈u2

x + u2
y + u2

z 〉
]1/2

(Fig. 9), the vertical anisotropy
Az = 〈u2

z 〉/u2
rms (Fig. 10), and the integral scales of turbulence along horizontal y (Fig. 11) and

vertical z (Fig. 12) directions (�y and �z). Except for the small frequencies of the grid oscillations, the
horizontal integral scale of turbulence behaves similarly for both, the stably and unstably stratified
turbulent flows, while the vertical integral scale of turbulence is systematically higher for the un-
stably stratified turbulent flow. On the other hand, the vertical anisotropy Az only slightly increases
with the frequency of the grid oscillations.
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FIG. 8. The rms of temperature fluctuations θrms =
√

〈θ2〉 versus the frequency f of the grid oscillations for the stably
(squares) and unstably (stars) stratified turbulent flows.
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FIG. 9. The rms turbulent velocity urms versus frequency f of the grid oscillations for the stably stratified turbulent flow
with �T = 50 K (squares) and for isothermal turbulence (triangles). The turbulent velocity is measured in cm s−1 and the
frequency f is measured in Hz.
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FIG. 10. Vertical anisotropy Az = 〈u2
z 〉/u2

rms versus frequency f of the grid oscillations for the stably stratified turbulent flow
with �T = 50 K (squares) and for isothermal turbulence (triangles).
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FIG. 11. Horizontal integral scale of turbulence �y versus the frequency f of the grid oscillations for the stably (squares) and
unstably (stars) stratified turbulent flows with �T = 50 K, and for isothermal turbulence (triangles). The turbulent length
scales are measured in mm and the frequency f is measured in Hz.
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FIG. 12. Vertical integral scale of turbulence �z versus the frequency f of the grid oscillations for the stably (squares) and
unstably (stars) stratified turbulent flows with �T = 50 K, and for isothermal turbulence (triangles). The turbulent length
scales are measured in mm and the frequency f is measured in Hz.
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FIG. 13. The turbulent times τy = �y/
√

〈u2
y〉 (snowflakes) and τz = �z/

√〈u2
z 〉 (squares) along horizontal y and vertical z

directions versus the frequency f of the grid oscillations for the stably stratified turbulent flow with �T = 50 K. The turbulent
times are measured in s and the frequency f is measured in Hz.

Note that in the case of unstably stratified turbulent flow, a cutoff at the frequency of nearly
1.5 Hz is observed (see Figs. 8, 11, and 12). At this frequency of the grid oscillations, the large-scale
coherent structures (convective cells) begin to break down due to the external forcing.

The two-point correlation functions of the velocity field have been calculated by averaging
over 520 independent velocity maps (the time difference between the obtained velocity maps is by
one order of magnitude larger than the turbulent time scales), and then they have been averaged
over the central flow region. The integral scales of turbulence, �y and �z, have been determined
from the normalized two-point longitudinal correlation functions of the velocity field, e.g., Fy(ỹ)
= 〈uy(r0) uy(r0 + ỹ ey)〉/〈u2

y(r0)〉 [and similarly for Fz(z̃) after replacing in the above formula y

by z], using the following expression: �y = 〈∫ L
0 Fy(ỹ) d ỹ〉S [and similarly for �z after replacing in

the above formula y by z], where L = 10 cm is the linear size of the probed flow region, ey is
the unit vector in the y direction, and 〈...〉S is the additional averaging over the yz cross-section of
the probed region. Since the integral scales of turbulence, �y and �z are less than 3 cm, the size of the
probed region, L = 10 cm, is sufficiently large to assure a correct calculation of the integral scale of
turbulence. We have checked that the increase of the size of the probed region, does not change the
integral scales of turbulence.

In Fig. 13, we show the turbulent times, τy = �y/
√

〈u2
y〉 and τz = �z/

√〈u2
z 〉, along horizontal y

and vertical z directions versus the frequency f of the grid oscillations. This figure demonstrates that
the turbulent times along horizontal y and vertical z directions nearly coincide. In Fig. 14, we also
show the rates of dissipation of the turbulent kinetic energies, εy = 〈u2

y〉3/2/�y and εz = 〈u2
z 〉3/2/�z ,

along horizontal y and vertical z directions versus the frequency f of the grid oscillations. The
difference in the rates of dissipation of the turbulent kinetic energies along horizontal y and vertical
z directions increases with increase of the frequency f of the grid oscillations. This is due to the fact
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FIG. 14. The rates of dissipation of the turbulent kinetic energies εy = 〈u2
y〉3/2/�y (snowflakes) and εz = 〈u2

z 〉3/2/�z (squares)
along horizontal y and vertical z directions versus the frequency f of the grid oscillations for the stably stratified turbulent
flow with �T = 50 K. The rates of dissipation of the turbulent kinetic energies are measured in cm2 s−3 and the frequency f
is measured in Hz.



015111-12 Eidelman et al. Phys. Fluids 25, 015111 (2013)

2 4 6 8 10
150

200

250

300

350

400

f

Re

FIG. 15. Reynolds number Re = � urms/ν versus frequency f of the grid oscillations for the stably stratified turbulent flow for
�T = 50 K (squares) and for isothermal turbulence (triangles).

that when the frequency f increases, the horizontal turbulent velocity fluctuations increase faster than
that in the vertical direction.

In Fig. 15, we show the Reynolds number Re = � urms/ν versus frequency of the grid oscillations
for the stably stratified turbulent flow, where � = (�2

x + �2
y + �2

z )1/2. The Reynolds number increases
with the increase of the frequency of the grid oscillations due to increase of the production rate of
turbulence. On the other hand, for the largest frequency f the Reynolds number is independent of
the stratification. This is because for the largest frequency f of the grid oscillations the production
of turbulence by the grid oscillations is much larger than suppression of the turbulence due to the
buoyancy. We stress again that the parameters shown in Figs. 8–15, have been calculated by the
spatial averaging over the central part of the chamber where the turbulent flow is nearly uniform.

Now let us explain why the mean temperature gradients increase with the frequency f of the
grid oscillations (see Fig. 7). When the frequency f of the grid oscillations increases, the fluctuations
of velocity, urms, and temperature, θ rms, increase, while the integral scale of turbulence, �, decreases
(see Figs. 8, 9, 11, and 12). This is the reason why the turbulent heat flux (∝ urms θrms) increases
faster than the turbulent diffusivity (DT ∝ urms �). Consequently, the mean temperature gradients
|∇i T | ∼ |Fi |/DT

i , increase with the frequency f of the grid oscillations.
In Fig. 16, we plot the non-dimensional ratio �∗ ∇∗T /

√
〈θ2〉 [see Eqs. (7) and (8)] versus the

frequency f of the grid oscillations for the stably stratified turbulent flow (squares) obtained in our
experiments. For comparison in the same figure, we show also this non-dimensional ratio obtained
previously33 for the unstably stratified turbulent flow (stars). Inspection of Fig. 16 shows that this
non-dimensional ratio is nearly independent of the frequency of the grid oscillations and has the same
magnitude for both, stably and unstably stratified turbulent flows, in agreement with the theoretical
predictions. Here, we assumed that �x = �y, CF = 0.2 and Cθ = 0.83 for the unstably stratified
turbulence, while Cθ = 1.4 for the stably stratified turbulence. Small deviations of the experimental
results from the theoretical predictions [see Eq. (7)] may be caused by a non-zero term, div �θ .

Our measurements showed that τ y = τ z (see Fig. 13), where τ i = �i/ui, and the deviation of the
ratio τ z/τ x from 1 is small. It should be noted also that the accuracy of the velocity measurements
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FIG. 16. The non-dimensional ratio �∗ ∇∗T /θrms versus the frequency f of the grid oscillations for the stably (squares) and
unstably (stars) stratified turbulent flows for �T = 50 K, where θrms =

√
〈θ2〉.
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FIG. 17. Ratios u∗
z /urms

z (squares) and u∗
z /ũz (circles) versus the frequency f of the grid oscillations. Here, urms

z is the
rms of the vertical component of velocity fluctuations in the stably stratified turbulent flow, u∗

z is the rms of the vertical
component of velocity fluctuations in the isothermal turbulence, ũz is the vertical component of the effective turbulent
velocity, ũz = [(u∗

z )2 − Cu�z β
√

〈θ2〉]1/2, that takes into account the attenuation of the turbulence by buoyancy. Here, Cu is
an empirical constant that is about 1.81 for stably stratified turbulence and is about 4 for unstably stratified turbulence. The
velocity is measured in cm s−1 and the frequency f is measured in Hz.

in the x direction is probably less than in the y, z directions, because of the use of Scheimpflug
correction. In the theoretical estimates for simplicity, we assumed that τ x ≈ τ y ≈ τ z = τ 0. However,
our main results [Eqs. (7) and (8)] are nearly independent of this assumption since main contributions
to Eqs. (7) and (8) is from the term ∝ (∇zT )2.

We also determined the frequency dependence of the ratio u∗
z /urms

z (see Fig. 17), where urms
z

is the rms of the vertical component of velocity fluctuations in the stably stratified turbulent flow
and u∗

z is the rms of the vertical component of velocity fluctuations in the isothermal turbulence. We
also determine the ratio u∗

z /ũz , where ũz is the vertical component of the effective turbulent velocity,
ũz = [(u∗

z )2 − Cu�z β
√

〈θ2〉]1/2. This effective velocity [see Eq. (11)] that takes into account the
decay of the turbulence by buoyancy, is derived from the budget equation (9) for the vertical turbulent
kinetic energy in Sec. II. Inspection of Fig. 17 shows that the values of these ratios, u∗

z /urms
z and

u∗
z /ũz , are very close. The latter implies that the measured turbulent velocity in the stably stratified

turbulent flow, urms
z , is of the order of ũz , in agreement with the theoretical predictions.

In our experiments, the velocity and temperature fields are not acquired simultaneously. This
may impair the accuracy of the estimates of the correlation coefficient C in the vertical heat flux and
the empirical constant Cu in Eq. (11). However, in our experiments the turbulence is stationary in the
statistical sense. Therefore, the estimates of the correlation coefficient C and the empirical constant
Cu based on our experiments are reasonable.

To characterize the stably stratified flows, in Fig. 18 we show the turbulent Richardson number
RiT = N 2τ 2

0 versus frequency f of the grid oscillations for the stably stratified turbulent flow, where
τ 0 = �/urms is the characteristic turbulent time. The turbulent Richardson number RiT strongly
decreases with the increase of the frequency of the grid oscillations due to the strong decrease of
the turbulent correlation time τ 0 with increase of the frequency f. For large frequencies of the grid
oscillations whereby RiT � 1, the temperature field can be considered as a passive scalar.51 On
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FIG. 18. Turbulent Richardson number RiT = N 2τ 2
0 versus frequency f of the grid oscillations for the stably stratified

turbulent flow.
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the other hand, for smaller frequencies of the grid oscillations, RiT > 1, and the temperature field
behaves as an active field. Note that the passive-like scalar behaviour of the temperature field can
be understood in the kinematic sense. In particular, when the temperature fluctuations 〈θ2〉 do not
affect the turbulent kinetic energy, the temperature field can be considered as a passive scalar. This
implies that the evolution of the temperature field in a given turbulent velocity field is a kinematic
problem, whereby there is no dynamic coupling between the temperature fluctuations, 〈θ2〉, and the
turbulent kinetic energy. When the effect of the temperature fluctuations on the turbulent kinetic
energy cannot be neglected, the temperature is considered as an active field. This definition of
the passive or active behavior of the temperature field is different from that based on the scaling
behaviour of the temperature structure function.52

V. CONCLUSIONS

Temperature fluctuations in stably stratified forced turbulence in air flow are investigated in
laboratory experiments. The stratification is caused by an imposed vertical temperature gradient, and
the turbulence is sustained by vertical oscillating grids. We demonstrated that the ratio �∗ ∇∗T /

√
〈θ2〉

determined by Eq. (8), is nearly constant and is independent of the frequency of the grid oscillations
in both, stably and unstably stratified turbulent flows. We also found that for large frequencies of
the grid oscillations the turbulent Richardson number, RiT, is small and the temperature field can be
considered as a passive scalar, while for smaller frequencies of the grid oscillations the temperature
field behaves as an active field. The long-term nonlinear oscillations of the mean temperature in
stably stratified turbulence have been observed for all frequencies of the grid oscillations similar
to the case of the unstably stratified flow. One of the explanations of this effect could be related
to the large-scale Tollmien-Schlichting waves in sheared turbulent flows,50 which can result in the
nonlinear oscillations of the mean temperature field.

The temperature fluctuations have been investigated here also theoretically using the budget
equations for turbulent kinetic energy, turbulent potential energy (determined by the temperature
fluctuations), and turbulent heat flux. The developed theory is in a good agreement with the experi-
mental results.
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