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Large-scale instabilities in a nonrotating turbulent convection
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A theoretical approach proposed by Elperin et al. [Phys. Rev. E 66, 066305 (2002)] is developed
further to investigate formation of large-scale coherent structures in a nonrotating turbulent
convection via excitation of a large-scale instability. In particular, the convective-wind instability
that causes formation of large-scale coherent motions in the form of cells, can be excited in a
shear-free regime. It was shown that the redistribution of the turbulent heat flux due to nonuniform
large-scale motions plays a crucial role in the formation of the coherent large-scale structures in the
turbulent convection. The modification of the turbulent heat flux results in strong reduction of the
critical Rayleigh number (based on the eddy viscosity and turbulent temperature diffusivity)
required for the excitation of the convective-wind instability. The large-scale convective-shear
instability that results in the formation of the large-scale coherent motions in the form of rolls
stretched along imposed large-scale velocity, can be excited in the sheared turbulent convection.
This instability causes the generation of convective-shear waves propagating perpendicular to the
convective rolls. The mean-field equations that describe the convective-wind and convective-shear
instabilities, are solved numerically. We determine the key parameters that affect formation of the
large-scale coherent structures in the turbulent convection. In particular, the degree of thermal
anisotropy and the lateral background heat flux strongly modify the growth rates of the large-scale
convective-shear instability, the frequencies of the generated convective-shear waves, and change
the thresholds required for the excitation of the large-scale instabilities. This study elucidates the
origin of the large-scale circulations and rolls observed in the atmospheric convective boundary

layers. © 2006 American Institute of Physics. [DOL: 10.1063/1.2401223]

I. INTRODUCTION

Large-scale coherent structures in a nonrotating turbu-
lent convection at very large Rayleigh numbers are observed
in the atmospheric convective boundary layers,k12 in numer-
ous laboratory experiments in the Rayleigh-Bénard
apparatus,w_23 and in direct numerical simulations.”** Spa-
tial scales of the large-scale coherent structures in a turbulent
convection are much larger than turbulent scales and their
lifetimes are larger than the largest time scales of turbulence.
In the atmospheric shear-free convection, the structures
(cloud cells) represent large, three-dimensional, long-lived
Bénard-type cells composed of narrow uprising plumes and
wide downdrafts. They usually embrace the entire convective
boundary layer (of the order of 1-3 km in height) and in-
clude pronounced convergence flow patterns close to the sur-
face. In the sheared convective flows, the structures represent
large-scale rolls (cloud streets) stretched along the mean
wind.">"?

Coherent structures in convective turbulent flows were
comprehensively studied theoretically, experimentally, and in
numerical simulations.' However, some aspects related to
the origin of large-scale coherent structures in nonrotating
turbulent convection are not completely understood. Hartlep
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et al. (2003) noted that there are two points of view on the
origin of large-scale circulation in turbulent convection.”*
“According to one point of view, the rolls which develop at
low Rayleigh numbers near the onset of convection continu-
ally increase their size as Rayleigh number is increased and
continue to exist in an average sense at even the highest
Rayleigh numbers reached in the e:xperiments.29 Another
hypothesis holds that the large-scale circulation is a genuine
high Rayleigh number effect.”"?

Recently, a new mean-field theory of nonrotating turbu-
lent convection has been develope:d.3O’31 This theory predicts
the convective-wind instability in the shear-free turbulent
convection that results in the formation of large-scale mo-
tions in the form of cells. In the sheared convection, the
large-scale instability causes generation of convective-shear
waves. The dominant coherent structures in this case are
rolls. It was demonstrated’*" that a redistribution of the tur-
bulent heat flux due to nonuniform large-scale motions plays
a crucial role in the formation of the large-scale coherent
structures in turbulent convection.

In this study, a theoretical approachm’31 is developed fur-
ther to investigate the formation of the coherent structures in
the nonrotating turbulent convection. In particular, we inves-
tigated how the modification of the turbulent heat flux due to
nonuniform large-scale motions affects the critical Rayleigh
number (based on the eddy viscosity and turbulent thermal
conductivity) required for the excitation of the convective-
wind instability. We performed a numerical study of the
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convective-wind and convective-shear instabilities in order
to determine key parameters that affect formation of the
large-scale coherent structures in the turbulent convection.

The paper is organized as follows. In Sec. II we discuss
the physics of the formation of the large-scale coherent struc-
tures and formulate the mean-field equations that describe
the formation of the coherent structures. In Sec. III we de-
termine the critical Rayleigh number required for the excita-
tion of the convective-wind instability in a shear-free turbu-
lent convection. In Sec. IV we study numerically the
convective-shear instability in a sheared convection. Finally,
conclusions are drawn in Sec. V.

Il. TURBULENT HEAT FLUX AND MEAN-FIELD
EQUATIONS

In this section we discuss a redistribution of the turbu-
lent heat flux due to the nonuniform large-scale motions as a
key mechanism for the formation of the large-scale coherent
structures in turbulent convection. Here we also formulate
the mean-field equations that describe the formation of the
coherent structures. Traditional theoretical models of the
boundary-layer turbulence, such as the Kolmogorov-type lo-
cal closures, imply the following assumptions. Fluid flows
are decomposed into organized mean motions and turbulent
flow. Turbulent fluxes are assumed to be proportional to the
local mean gradients, whereas the proportionality coeffi-
cients (eddy viscosity, turbulent temperature diffusivity) are
uniquely determined by local turbulent parameters. For
example,32 the turbulent heat flux reads F={su)=—«;VS,
where «7 is the turbulent temperature diffusivity, S is the
mean entropy, and u and s are fluctuations of the velocity
and entropy, respectively. This turbulent heat flux F does not
include the contribution from anisotropic velocity fluctua-
tions.

Actually, the mean-velocity gradients can directly affect
the turbulent heat flux. The reason is that additional essen-
tially anisotropic velocity fluctuations are generated by tan-
gling the mean-velocity gradients with the Kolmogorov-type
turbulence due to the influence of the inertial forces during
the life time of large turbulent eddies. The Kolmogorov-type
turbulence supplies energy to the anisotropic velocity fluc-
tuations that cause formation of coherent structures due to
the excitation of a large-scale instability.30’3 : Anisotropic ve-
locity fluctuations are characterized by a steeper spectrum
than the Kolmogorov-type turbulence.>***%

The theoretical model™ of the anisotropic velocity fluc-
tuations and their effect on the turbulent heat flux includes
the following steps in the derivations: applying the spectral
closure, solving the equations for the second moments in the
k-space, and returning to the physical space to obtain formu-
las for the Reynolds stresses and the turbulent heat flux. The
derivation are based on the Navier-Stokes equation and the
entropy evolution equation formulated in the Boussinesq ap-
proximation. This derivation™ yields the following expres-
sion for the turbulent heat flux F = (su):
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where 7, is the correlation time of turbulent velocity corre-
sponding to the maximum scale of turbulent motions,
W=V XU is the mean vorticity, U=U +U, is the mean
velocity with the horizontal U, and vertical U, components,
« is the degree of thermal anisotropy, and

Fi=—kVS— TOF:VZUI(»O)(z) (2)

g

is the background turbulent heat flux that is the sum of the
contribution due to the Kolmogorov-type turbulence [de-
scribed by the first term in Eq. (2)] and a contribution of the
anisotropic turbulence caused by the shear of the imposed
large-scale mean velocity U®)(z) [the so-called counter-wind
heat flux described by the second term in Eq. (2)],

Kij = KT[aij + beiej] (3)

is a generalized anisotropic turbulent temperature diffusivity
tensor. For turbulent convection, b=(3/2)(2+7%), ¥ is the ra-
tio of specific heats (e.g., y=7/5 for the air flow) and e is the
vertical unit vector. The equation for the tensor k;; was de-
rived in Appendix A in Ref. 30 using the budget equations
for the turbulent kinetic energy, fluctuations of the entropy
and the turbulent heat flux. The anisotropic part of the tensor
Kij [described by the second term in the square brackets of
Eq. (3)], is caused by a modification of the turbulent heat
flux by the buoyancy effects. Note that for a laminar convec-
tion b is set to zero and the coefficient of the turbulent tem-
perature diffusivity «; should be replaced by the coefficient
of the molecular temperature diffusivity. The parameter « in
Eq. (1) is given by

~ ]+4§ ~ l_J_>2/3_
Ty ‘5_(1 b @

4

where [, and [, are the horizontal and vertical scales, respec-
tively, in which the background turbulent heat flux F:(r)
=(s(x)u,(x+r)) tends to zero. The parameter & describes the
degree of thermal anisotropy. In particular, in isotropic case
when [, =[, the parameter =0 and a=1. For [, <[, the
parameter é=—1 and a=-9/2. The maximum value &, of
the parameter £ is given by &,,,=2/3 for a=3. The upper
limit for the parameter & arises because the function F:(r)
has a global maximum at r=0. Depending on the parameter
a, the small-scale thermal structures in the background tur-
bulent convection have the form of columns or pancakes
(sometimes they are called small-scale thermal plumes). For
a<1, the small-scale thermal structures have the form of
columns (I, </.), and for @>1 there exist pancake thermal
structures (I, >1,) in the background turbulent convection
(i.e., a turbulent convection with zero gradients of the mean
velocity).

The terms in the square brackets in the right-hand side of
Eq. (1) result from the anisotropic turbulence and depend on
the "mean” (including coherent) velocity gradients. These
terms lead to the excitation of large-scale instability and for-
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mation of coherent structures. In Eq. (1), the terms with zero
divergence are omitted, because only div F contributes to the
mean-field dynamics. Neglecting the anisotropic turbulence
term in Eq. (1) recovers the traditional equation for the tur-
bulent heat flux.

The physical meaning of Eq. (1) is the following. The
first term x—ryaF. div U, in square brackets in Eq. (1) de-
scribes the redistribution of the vertical background turbulent
heat flux F: by the perturbations of the convergent (or diver-

gent) horizontal mean flows U 1. This redistribution of the
vertical turbulent heat flux occurs during the lifetime of tur-

bulent eddies. The second term o7y(a+3/ 2)(W X F:) in
square brackets in Eq. (1) determines the formation of the
horizontal turbulent heat flux due to "rotation” of the vertical
background turbulent heat flux F: by the perturbations of the

horizontal mean vorticity W . The last term o 7,(W, X F") in
square brackets in Eq. (1) describes the formation of the
horizontal heat flux through the “rotation” of the horizontal
background heat flux Fi (the “counter-wind” heat flux in Eq.
(2)) by the perturbations of the vertical component of the

mean vorticity WZ. These three effects are determined by the
local inertial forces in inhomogeneous mean flows. A more
detailed discussion of Eq. (1) is given in Secs. IIT and IV.

The counter-wind turbulent heat flux (in the direction
opposite to the mean wind) is well known in the atmospheric
physics and arises due to the following reason. In the sheared
turbulent convection an ascending fluid element has larger
temperature then that of surrounding fluid and smaller hori-
zontal fluid velocity, while a descending fluid element has
smaller temperature and larger horizontal fluid velocity. This
causes the background turbulent heat flux F*l=—TOF:VZU(lO>
in the direction opposite to the background horizontal mean
sheared fluid velocity U(f)(z).

We use the mean-field approach whereby the small-scale
turbulent convection is parametrized. This is the reason we
do not explicitly use thermal plumes in the consideration.
The main reason for the appearance of the large-scale coher-
ent structures is related to the modification of the heat flux by
the nonuniform mean flows. The thermal plumes contribute
to the modification of the turbulent heat flux. To some extent,
the redistribution of the turbulent heat flux can be interpreted
as a redistribution of the thermal plumes.

In order to study the formation of the large-scale coher-
ent structures in a small-scale nonrotating turbulent convec-
tion we used the mean-field Navier-Stokes equation and the
mean entropy evolution equation [with the turbulent heat
flux (1)] formulated in the Boussinesq approximation. These
mean-field equations yield the following linearized equations

for the small perturbations from the equilibrium, U= U,
- Uio), W=W,— Wio), and S=5-5©:

] _ _

<&—t + U0V, - VTA>AU= gA S, (5)
d . 0 = =
P + UV =vA |W=-0V,U, (6)
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(% + U;°>vy>§ =—(V-F)-(V.s"U, (7)

where vy is the eddy viscosity, A l=A—V§, and

~ 4 N =~
V.F=_ 4—;0{(1«* -e)[10aA | — (8a—3)A]T

+6[(F" X e) - VIW} - k(A + bV2)S, (8)

k7 is the turbulent temperature diffusivity. In order to derive
Eq. (5), the pressure term was excluded by calculating the
curl of the momentum equation. Equations (5)—(7) allow us
to study the linear stage of the large-scale instabilities. The

variables U s W, and S describe the large-scale coherent struc-
tures. In Sec. III we study a shear-free convection with
UY=0, and in Sec. IV we investigate turbulent convection
with the background (equilibrium) large-scale velocity shear
U%(z)=0ze, and the background mean vorticity W=V
xUOV=—ge,.

lll. SHEAR-FREE CONVECTION

Let us consider a shear-free convection (U?=0). In the
shear-free regime, the large-scale instability is related to the

first term «—7aF, div U, in square brackets in Eq. (1) for
the turbulent heat flux.”>>' When ﬂf/z/ dz>0, perturbations
of the vertical velocity ﬁz cause negative divergence of the

horizontal velocity, divU, <0 (provided that div U=0).
This strengthens the local vertical turbulent heat flux and
causes increase of perturbations of the local mean entropy
and buoyancy. The latter enhances perturbations of the local

mean vertical velocity 172, and by this means, the convective-
wind instability is excited. Similar reasoning is valid when

a(?zl 9z<0, whereas divU 1 >0. Negative perturbations of
the vertical flux of entropy then lead to a decrease of pertur-
bations of the mean entropy and buoyancy, which enhances
the downward flow and once again excites the convective-
wind instability. Therefore, nonzero div U | causes redistri-
bution of the vertical turbulent heat flux and formation of
regions with large values of this flux. These regions (where

divU | <0) alternate with the low heat flux regions (where

divU | >0). This process results in formation of the large-
scale coherent structures.

The role of the second term OCTO(C(+3/2)(WXF:) in
square brackets in Eq. (1) is to decrease the growth rate of
the large-scale instability for @ >-3/2. Indeed, the interac-
tion of perturbations of the mean vorticity with the vertical
background turbulent heat flux F: produces the horizontal
turbulent heat flux. The latter decreases (increases) the mean
entropy in the regions with upward (downward) local flows,
thus diminishing the buoyancy forces and reducing the mean

vertical velocity U, and the mean vorticity W. This mecha-
nism dampens the convective-wind instability for a>-3/2.
The above two competitive effects determine the growth rate
of the convective-wind instability. A solution of Egs. (5) and
(7) in the shear-free convection regime yields the following
expression for the growth rate y of long-wave perturbations:
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. 2en i 3 5a _, |
y gF. 75K>\ B|sin 6| =g = sin o . 9)

where the parameter 8=(l,K)™>> 1, [, is the maximum scale
of turbulent motions, @ is the angle between the vertical unit
vector e and the wave vector K of small perturbations, and g
is acceleration of gravity. The analysis of the convective-
wind instability was performed in Refs. 30 and 31 only for a
small square of Brunt-Viisild frequency. In particular, Eq.
(9) was derived in Refs. 30 and 31 for the case |N?|
<gF, 7k?, where N*=—(g-V)S¥ <0 is the square of Brunt-
Viisild frequency.

In the present study we consider arbitrary values of the
Brunt-Viisilad frequency, and we investigate the effect of the
modification of the turbulent heat flux (due to nonuniform
large-scale motions) on the critical effective Rayleigh num-
ber required for the excitation of the convective-wind insta-
bility. We also study here the effect of the anisotropy of
turbulent thermal diffusivity (caused by the buoyancy) on the
critical effective Rayleigh number. To this end, we rewrite
Egs. (5) and (7) in a nondimensional form:

Jd -
(a—t—A)AV=Ra A,S, (10)

B _eomoven(Z)”
Prp P (A+bV)S=V+pu Ra
X[10aA | - (8a-3)AlV,  (11)

where V=Pry {A(? is dimensionless velocity, the length is
measured in the units of the total vertical size L, of the sys-
tem, the parameter b=3(2+7)/2 describes the anisotropy of
turbulent thermal diffusivity caused by the buoyancy effect
[see Eqgs. (3)], Ra=6A3/Pr; is effective Rayleigh number
based on the turbulent viscosity, vy, and the turbulent tem-
perature diffusivity, 7, A=L_/ly, Pry=vy/ky is the turbulent
Prandtl number, the parameter u is given by

_ﬁ(é)“ [ 8 o7
B=s\g) - Ty

oT is the mean temperature difference between bottom and
upper boundaries of the turbulent convection, the parameter
a*=2gTOF:/ u(2), and T, is the reference mean temperature.
The last term oy in the right-hand side of Eq. (11) deter-
mines the modification of the turbulent heat flux due to the

nonuniform large-scale motions, and the parameter

<PrT>1/3 4g7'0F:
MRa) = v3L2

has the meaning of the normalized heat flux, where |N?|
=gdT/[T,L.] and Ra=|N?|L}/[vyxy).

A. Solution for two free boundaries

Let us consider the solution of Egs. (10) and (11) for two
free boundaries, using the following boundary conditions
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FIG. 1. Effective Rayleigh number versus the aspect ratio L.,/L, of the
perturbations for two free boundaries and different values of the parameter
w: =0 (dashed line); for u=0.7 (dotted line); w=>5 (dashed-dotted line).
Here, a=1 and b=5.1. The classical Rayleigh solution for the laminar con-
vection (h=0) with the two free boundaries is shown by solid curve.

V=VV=5=0 for z=0;l. (12)
We seek for a solution of Egs. (10) and (11) in the form

V,S o« sin(mnz)exp(yr—iK, -r),

where n is the integer number and K | is the horizontal com-
ponent of the wave vector. The critical effective Rayleigh
number (at y=0) is determined by the equation

(K% + (b + 1)mn®](K% + 72n?)?
= K’ {Ra, - u(PrRa}) "
X[Q2a+ 3)Ki - (8a-3)mn*]},

where the critical effective Rayleigh number Ra,. is based on
the turbulent viscosity and the turbulent temperature diffu-
sivity.

In the case of u=0 (i.e., there is no modification of the
turbulent heat flux due to the nonuniform large-scale mo-
tions), the critical effective Rayleigh number is given by

(KL + )KL+ (b+ Dn’]

Ra, 5
K

(13)

(&

The minimum value of the critical effective Rayleigh number
for the first mode (n=1) for b=0 is Ra,~657.5. This is the
classical Rayleigh solution for the laminar convection with
two free boundaries. The critical effective Rayleigh number
increases with the increase of the anisotropy of turbulent
temperature diffusivity [see Eqs. (3)] described by the pa-
rameter b. Indeed, for b=3.9, the critical effective Rayleigh
number is Ra.~?2247, and for b=5.1 it is Ra.=2722.

The modification of the turbulent heat flux due to non-
uniform large-scale motions strongly decreases the critical
effective Rayleigh number. Indeed, Fig. 1 shows the effective
Rayleigh number versus the aspect ratio L,/L, =K, /K,
=tan 6 of the perturbations for different values of parameter
. The increase of the parameter w causes strong reduction
of the critical Rayleigh number (see Table I).
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TABLE I. Critical effective Rayleigh numbers for different types of the boundaries. Here for the turbulent flow
a=1 and b=5.1. The case of laminar convection is presented in Table I only for comparison with the results

obtained for the turbulent convection.

Boundaries
Two free One free and one rigid Two rigid

Case L/L, Ra, L/L, Ra. L./L, Ra,
Laminar flow 0.707 657.5 0.854 1101 0.994 1708
Turbulent flow

un=0 0.891 2722 1.096 4023 1.280 5547

u=0.7 0.613 1076 0.697 1328 0.754 4218

©n=2.0 0.578 344 0.645 420 0.688 1743

©n=5.0 0.568 98 0.628 120 0.662 549

B. Solution for two rigid boundaries

Now let us consider the solution of Egs. (10) and (11) for
two rigid boundaries. In view of the symmetry of this prob-
lem with respect to two bounding planes, it is convenient to
translate the origin of z to be midway between the two
planes. Fluid is then confined between two planes z=+1/2,
and we seek for a solution of Egs. (10) and (11) satisfying
the following boundary conditions

7= *3. (14)

We seek for the solution of Egs. (10) and (11) in the form V,

Saexp(yr+qz—iK | -r), where the critical effective Rayleigh
number is determined by the equation

(K% - (14 )g")K = )’
= K% {Ra, - p(PrrRa;)

X[(2a+3)K] +(8a-3)q*]}. (15)
The problem is symmetric with respect to the two boundaries
so the eigenfunctions fall into two distinct classes: the even
mode with vertical velocity symmetry with respect to the
midplane and the odd mode with vertical velocity asymme-
try. Following the procedure described in Refs. 37-39, we
adopted the even solution that has minimum critical effective
Rayleigh number. Our numerical analysis showed that the
anisotropy of turbulent temperature diffusivity described by
the parameter b increases the critical effective Rayleigh
number. In particular, for b=0 the critical effective Rayleigh
number is Ra.=~1707.8. This is classical Rayleigh solution
for the laminar convection with the two rigid boundaries. For
wm=0 and b=3.9, the critical effective Rayleigh number is
Ra,=~4683, and for h=5.1 it is Ra,~5547.

The effective Rayleigh number versus the aspect ratio
L./L, of the perturbations for two rigid boundaries is plotted
in Fig. 2. Increasing of the parameter u decreases both the
critical effective Rayleigh number and the aspect ratio L,/L |
of perturbations (see Table I). If w=5, the behavior of the
effective Rayleigh number drastically changes; i.e., there are
two local minima for the effective Rayleigh number.

C. Solution for one rigid and one free boundaries

Solution for one rigid and one free boundary can be
obtained from the results for two rigid boundaries using the
odd mode. We use the domain from z=0 (the free boundary)
to z=1/2 (the rigid boundary). The anisotropy of turbulent
temperature diffusivity described by the parameter b in-
creases the critical effective Rayleigh number. Indeed, for
b=0, the critical effective Rayleigh number is Ra.=~ 1101
(the classical Rayleigh solution for the laminar convection).
For u=0 and b=3.9, the critical effective Rayleigh number
is Ra,=3359, and for b=5.1 it is Ra.~4023. The effective
Rayleigh number versus the aspect ratio L,/L | of the pertur-
bations for the one rigid and one free boundary is plotted in
Fig. 3. Increasing the parameter u decreases the critical ef-
fective Rayleigh number and reduces the aspect ratio L,/L |
of the perturbations (see Table I).

Therefore, for these three types of boundaries the modi-
fication of the turbulent heat flux due to the nonuniform
large-scale motions strongly reduces the critical effective
Rayleigh number (based on the eddy viscosity and turbulent
temperature diffusivity) required for the excitation of the
convective-wind instability. We summarized the final results
for the above three types of the boundary conditions in Table

Ra

8000+

60001

40007

2000y

FIG. 2. Effective Rayleigh number versus the aspect ratio L./L, of the
perturbations for two rigid boundaries and different values of the parameter
w: =0 (dashed line); ©=0.7 (dotted line); u=35 (dashed-dotted line). Here,
a=1 and b=5.1. The classical Rayleigh solution for the laminar convection
(b=0) with the two rigid boundaries is shown by the solid curve.
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FIG. 3. Effective Rayleigh number versus the aspect ratio L./L, of the
perturbations for one rigid and one free boundary and different values of the
parameter u: u=0 (dashed line); w=0.7 (dotted line); u=5 (dashed-dotted
line). Here, @=1 and h=5.1. The classical Rayleigh solution for the laminar
convection (b=0) with one rigid and one free boundary is shown by solid
curve.

I. The case of laminar convection is presented in Table I only
for comparison with the results obtained for the turbulent
convection.

IV. SHEARED TURBULENT CONVECTION

In this section we consider turbulent convection with a
large-scale linear velocity shear U(O)(z)=crzey. In a sheared
turbulent convection the mechanism of the convective-shear

instability”””! is related to the last term «7y(W_XF") in
square brackets in Eq. (1). The generation of the potential
temperature perturbations by vorticity perturbations plays the
key role in this mechanism. Indeed, in two adjacent vortices
with the opposite directions of the vertical vorticity WZ, the
turbulent fluxes of potential temperature are directed towards
the boundary between the vortices. This increases perturba-
tions of the mean potential temperature and the buoyancy,
and generates the upward flow between the vortices. These
vertical flows excite vorticity perturbations, and the
convective-shear instability mechanism is sustained.

Let us consider an evolution of perturbations with zero

y-derivatives of the fields l7, W, and S. We seek for a solu-
tion of Egs. (5)—(7) in the form «<exp(yr—iK-r). The growth
rate of the convective-shear instability of long-wave pertur-
bations is given by30’31

yo gF:*rsz(,B)\ sin® 6)3, (16)

where AN=o07, is the shear parameter, the parameter

= -2 —Jr2s g2 . .
B=(l,K)™*>1 and K=K +K. The convective-shear insta-
bility causes formation of large-scale coherent fluid motions
in the form of rolls (see Fig. 4) aligned along the imposed
mean velocity U?). The instability can also result in genera-
tion of the convective-shear waves with the frequency

Q o< \3gF: 2K(B\ sin” 6)%3, (17)

which implies the wave-number dependence Qe K?*?. The
convective-shear waves propagate perpendicular to convec-
tive rolls (see Fig. 4). The analysis of the convective-shear
instability was performed in Refs. 30 and 31 only for a small
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&OXfJOY“

zt y K,

X [
FIG. 4. Large-scale coherent rolls formed due to the convective-shear insta-
bility and aligned along the sheared mean velocity U(z). The instability

results in generation of the convective-shear waves which propagate perpen-
dicular to the convective rolls.

square of Brunt-Viisild frequency and zero y-derivatives of

the fields U s W and S. This corresponds to the convective-
shear instability for a very small component of the wave
number along the imposed mean shear (i.e., uniform pertur-
bations along the large-scale shear velocity). In this case the
growth rate of the convective-shear instability is maximum.

In the present study we consider arbitrary values of the
Brunt-Viisild frequency and perform the numerical analysis
of the convective-shear instability for nonzero y-derivatives
of the fields U , VT/ and S. We consider the eigenvalue prob-
lem with boundary conditions. We seek for a solution of Egs.
(5)—(7) in the form «W(z)exp(yr—iK -r), where the eigen-
function W(z) and the growth rate vy of the convective-shear
instability are determined by Egs. (5)—(7). The system of the
ordinary differential equations for the eigenvalue problem is
solved numerically with the following boundary conditions:
U=U0"=U"Y=W=5=0 at z=0, and U'=W'=5"=0 at z=1,
where f’=df/dz. We also take into account that for a turbu-
lent convection, the turbulent Prandtl number can be esti-
mated as Pr}1 ~4/(1+Pr)=2.34 with Pr=0.71 (for air flow).
The latter estimate follows from the balance equations for
the turbulent heat flux, the entropy fluctuations and the tur-
bulent kinetic energy.30

Let us consider the thermally isotropic (a=1) tur-
bulent convection. Figure 5 shows the range of parameters

LZ/L '\
4t 02 0.1 0.05 4
3 Instability
2 L -
1t 0.0
Instability

O I ] ] I L/l

¢ 10 20 30 40 0

FIG. 5. Range of parameters (L./L,; L/l,) for which the convective-shear
instability occurs, for different values of the shear parameter
A=0; 0.05; 0.1; 0.2. Here, a=1.
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L /L
z
4.5

35
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FIG. 6. Range of parameters (L./L,; L/l,) for which the convective-shear
instability occurs, for different values of the angle ¢ between the horizontal
wave vector and the x axis: ¢=0° (solid line); ¢=18° (dashed line);
¢=30° (dotted line); ¢=90° (dashed-dotted line). Here, a=1 and A=0.1.

(L,/L,; L1ly), for which the convective-shear instability oc-
curs for different values of the shear parameter N. Here,
[ dulerer
L=1/ \"L;2+L12, and we assumed that a:=1. The case
A=0 in Fig. 5 corresponds to the convective-wind instability
(the shear-free turbulent convection). Inspection of Fig. 5
shows that the increase of shear is favorable for the excita-
tion of the convective-shear instability. In Fig. 6 we plotted
the range of parameters (L./L,; L/l,) for the convective-
shear instability for different values of the angle ¢ between
the horizontal wave vector K, and the x axis. Increasing the
angle ¢ prevents from the excitation of the convective-shear
instability (i.e., reduces the range of parameters for which the
instability occurs). In Fig. 7 we plotted the growth rates of
the convective-shear instability and the frequencies of the
generated convective-shear waves versus L, /L, and L/I.
The curves in Fig. 7 have a point L. whereby the first de-
rivative dy/dK has a singularity, which is indicative of bi-
furcation. The growth rate of the convective-shear instability

for very small y-derivatives of the fields 17, W, and § is
determined by cubic algebraic equation.30 Below the bifur-
cation point, the cubic equation has three real roots (which
corresponds to aperiodic instability without generation of
waves). Above the bifurcation point, the cubic equation has
one real and two complex conjugate roots. In this case the
convective-shear waves are generated. The source of energy
for these waves is the turbulence energy.

Now we perform the detailed numerical analysis of the
convective-shear instability in order to determine the key
parameters that affect this instability. First, we study the ef-
fect of the thermal anisotropy « on the convective-shear in-
stability. Figure 8 shows the range of parameters (L./L ;
L/l,) for which the convective-shear instability occurs, for
different values of the thermal anisotropy «. In Fig. 9 we
plotted the growth rates of the convective-shear instability
and the frequencies of the generated convective-shear waves
for different values of @. The decrease of the degree of ther-
mal anisotropy « increases the threshold in the parameter
L/l required for the excitation of the convective-shear insta-
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FIG. 7. Growth rates of the convective-shear instability and the frequencies
of the generated convective-shear waves versus: L./L, and L/l,. Corre-
sponding dependencies on the parameters L/[, are given for different L_/L |
and vice versa. Here, a=1 and A=0.1.

bility. Figure 10 shows the growth rates of the convective-
shear instability versus the angle ¢ between the horizontal
wave vector K, and the x axis for different values of a.
Here, the values L,/L | and L/l correspond to the maximum
growth rates of the instability. For &> 0.7 the growth rate of
the convective-shear instability attains the maximum for
¢,,=>0°. An increase of the degree of thermal anisotropy «
increases the angle ¢,,. In the thermally isotropic (a=1) tur-
bulent convection the angle ¢,,=18°, while for «=0.8 (i.e.,
£=0.92), the angle ¢,,~ 10°. Note that according to the at-
mospheric observations, the observed angle between the
cloud streets and direction of the wind is of the order of
10°-14°. The calculated angle ¢,, is in compliance with these
observations. Note that the convective rolls are stretched in
the horizontal plane in the direction perpendicular to K| and
the shear velocity is directed along the y axis. Inspection of
Figs. 9 and 10 shows that decrease of the parameter « re-
duces the growth rates of the convective-shear instability. In
Figs. 8—10 we considered the case @< 1, which is of interest
in view of the atmospheric applications.

Next, we study the effect of the lateral background heat

flux {determined by the third term o[(F*Xe)-V]W in
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L /L
z

Q
10

FIG. 8. Range of parameters (L./L, ; L/l;) for which the convective-shear
instability occurs, for A=0.1 for different values of the degree of thermal
anisotropy @: a=1 (solid line); @=0.9 (dashed line); a=0.8 (dotted line);
«=0.7 (dashed-dotted line).

the right-hand side of Eq. (8)}, on the convective-shear in-
stability. We introduce the angle ¢ between the horizontal
component F*l of the background turbulent heat flux and
x axes, where the total background heat flux is
F'=(F cos ¢,F sin (ﬁF:) The angle ¢ is determined by
the boundary conditions in the horizontal plane (e.g., by the
temperature gradient in the horizontal plane). Figure 11
shows the range of parameters (L./L; L/l)) for which the
convective-shear instability occurs, for different directions ¢
of the lateral background heat flux Fi In Figs. 12 and 13 we
plotted the growth rates of the convective-shear instability
and the frequencies of the generated convective-shear waves
for this case, where F' / F:=O.5. Note that the background
mean vorticity due to the imposed large-scale shear is W(©
=VXU®=—ge,. This is the reason there is no symmetry
with respect to the Y-Z plane of the large-scale shear; i.e.,
the contributions to the convective-shear instability caused

b
1 2 3 4 L/L

0.00 === T T T T
0

FIG. 9. Growth rates of the convective-shear instability and the frequencies
of the generated convective-shear waves for different values of the degree of
thermal anisotropy a: a=1 (solid line); @=0.9 (dashed line); «=0.8 (dotted
line); @=0.7 (dashed-dotted line). Here A=0.1 and L/[,=23.
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FIG. 10. Growth rates of the convective-shear instability versus the angle ¢
between the horizontal wave vector and the x axis for different values of the
degree of thermal anisotropy a: =1 (solid line); a=0.9 (dashed line);
a=0.8 (dotted line); a=0.7 (dashed-dotted line). Here, A=0.1; the values
L./L, and L/l correspond to maximum growth rates of the instability.

by the positive and negative angles ¢ of the lateral back-
ground heat flux are different. In particular, the range of the
convective-shear instability in the presence the lateral back-
ground heat flux with the positive angles ¢ is wider than that
for the negative angles i (see Fig. 11). On the other hand,
even for the negative angles ¢ the range of the convective-
shear instability is wider than that in the absence of the lat-
eral background heat flux. Note also that in the presence of
the lateral background heat flux with the positive angles ¢,
the convective-shear waves are not generated. This is reason
we plotted in Figs. 12(c) and 13(c) the frequencies of the
generated convective-shear waves only for ¢=<0.

Note that there are three groups of parameters in this
study of the large-scale coherent structures formed in a tur-
bulent convection:

(i) the external parameters: the value of shear o and the
background heat flux F'=(F cos ¢,F | sin ¢,F.);

(ii) the parameters that determine the background turbu-
lent convection: the degree of thermal anisotropy «, the cor-
relation time 7y=1[y/u,, and the parameter a*=2gTOF:/ u(z);

Lz/Ll
4
45
3
2
1 4
Instability
0 : ‘ X
5 10 15 20 L/1

4]

FIG. 11. Range of parameters (L./L, ; L/l,) for which the convective-shear
instability occurs, for different directions i of the lateral background heat
flux: ¢=—45°; y=0°; y=45°. Here, A=0.1.
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FIG. 12. Growth rates of the convective-shear instability and the frequen-
cies of the generated convective-shear waves versus L./L, for different
directions ¢ of the lateral background heat flux: y=—45°; =0°; y=45°. (a)
The growth rates of the instability for L/l,=10. (b) The growth rates of the
instability for L/l,=20. (c) The frequencies of the generated waves for
L/1,=10 (solid line) and L/1,=20 (dashed line). Here, A=0.1.

(iii) the parameters related to the characteristics of the
large-scale coherent structures: the aspect ratio of the struc-
ture L,/L, the minimum size L of the structure,
L.=L, cos ¢, the characteristic time of the formation of the
large-scale coherent structures «y~!, and the frequency () of
the generated convective-shear waves.

The parameters related to the characteristics of the large-
scale coherent structures are determined in this study. The
external parameters and the parameters that determine the
background turbulent convection at the present level of
analysis are treated as free parameters. The external param-
eters are determined by the boundary conditions. The degree
of thermal anisotropy « can be determined by the budget
equation for the two-point correlation function for the
velocity-entropy fluctuations. This parameter has been re-
cently measured in a laboratory experiment in turbulent con-
vection in air-flow.” In the range of the Rayleigh numbers
10’—10% (based on the kinematic viscosity and molecular
diffusivity) this parameter varies within the range from 0.5 to
2. The parameter a- and the correlation time 7,=1[y/u, can be
determined from the budget equations for the turbulent ki-
netic energy and vertical turbulent fluxes of momentum and
the entropy. The turbulent correlation time 7, and correlation
length [, are measured in laboratory convection (see, e.g.,
Ref. 23).
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FIG. 13. Growth rates of the convective-shear instability and the frequen-
cies of the generated convective-shear waves versus L/[, for different direc-
tions i of the lateral background heat flux: y=-45°; y=0°; y=45°. (a) The
growth rates of the instability for L /L, =0.5. (b) The growth rates of the
instability for L./L, =2. (c) The frequencies of the generated waves for
L./L,=0.5 (solid line) and L_/L, =2 (dashed line). Here, N=0.1.

V. DISCUSSION

In the present study we investigated formation of large-
scale coherent structures in a nonrotating turbulent convec-
tion due to an excitation of large-scale instabilities. In the
shear-free turbulent convection, the cell-like structures are
formed due to the convective-wind instability. The redistri-
bution of the turbulent heat flux due to the nonuniform large-
scale motions causes strong reduction of the critical effective
Rayleigh number required for the excitation of the
convective-wind instability. The effective Rayleigh number
is based on the eddy viscosity and turbulent thermal conduc-
tivity. We also found that the critical effective Rayleigh num-
ber increases with the increase of the anisotropy of turbulent
temperature diffusivity caused by the buoyancy effects.

In the sheared turbulent convection, the roll-like struc-
tures stretched along the imposed large-scale sheared veloc-
ity are formed due to the large-scale convective-shear insta-
bility. This instability produces the convective-shear waves
propagating perpendicular to the convective rolls. We studied
numerically the convective-shear instability and determined
the key parameters that affect the formation of the large-scale
coherent structures in the turbulent convection. In particular,
we found that the degree of thermal anisotropy and the lat-
eral background heat flux strongly modify the growth rates
of the large-scale convective-shear instability, the frequen-

Downloaded 14 Dec 2006 to 132.72.138.1. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



126601-10  Elperin et al.

cies of the generated convective-shear waves and change the
instability thresholds.

The results described in this study are based on the lin-
earized mean-field equations, and therefore, they cannot de-
scribe detail features of the turbulent convection observed in
the numerous laboratory experiments13 2 and in direct nu-
merical simulations.”*? In particular, we made the following
assumptions about the turbulent convection. We considered a
homogeneous, incompressible background turbulent convec-
tion (i.e., the turbulent convection without mean-velocity
gradients). The nonuniform mean velocity affects the back-
ground turbulent convection; i.e., it causes generation of the
additional strongly anisotropic velocity fluctuations by tan-
gling of the mean-velocity gradients with the background
turbulent convection. We assumed that the generated aniso-
tropic fluctuations do not affect the background turbulent
convection. This implies that we considered a one-way cou-
pling due to a weak inhomogeneity of the large-scale veloc-
ity. Thus, we studied simple physical mechanisms to describe
an initial stage of the formation of large-scale coherent struc-
tures in a nonrotating turbulent convection. The simple
model considered in our paper can only mimic the real flows
associated with laboratory turbulent convection. Clearly, the
comprehensive theoretical and numerical studies are required
for quantitative description of the laboratory turbulent con-
vection.

Although this model is very simple, it reproduces some
properties of the semi-organized structures observed in the
atmospheric turbulent flows.”’ The semi-organized structures
are observed in the form of rolls (cloud streets) or three-
dimensional convective cells (cloud cells). The observed
angle between the cloud streets and the mean horizontal
wind of the sheared turbulent convection is about 10°-14°,
the lengths of the cloud streets vary from 20 to 200 km, the
widths from 2 to 10 km, and convective depths from
2 to 3 km. The ratio of the minimal size of the structure to
the maximum scale of turbulent motions L/[,=10-100. The
characteristic lifetime of rolls varies from 1 to 72 h. Rolls
may occur over water surface or land surfaces."” Our study
yield the following parameters of the convective rolls: L/[,
=10-100, the characteristic time of formation of the rolls
~1/vy varies from 1 to 3 h. The lifetime of the convective
rolls is determined by a nonlinear evolution of the
convective-shear instability. The latter is a subject of a sepa-
rate ongoing study. We have shown that the maximum
growth rate of the convective-shear instability is attained
when the angle between the cloud streets and the mean hori-
zontal wind of the convective layer is about 10°-17° in
agreement with observations. We also found an excitation of
the convective-shear waves propagating perpendicular to
convective rolls. This finding is in agreement with observa-
tions in the atmospheric convective boundary layer, whereby
the waves propagating perpendicular to cloud streets have
been detected.'' In addition, the motions in the convective
rolls have a nonzero helicity in agreement with predictions
made in Ref. 40.

There are two types of cloud cells in the atmospheric
shear-free turbulent convection: open and closed. Open-cell
circulation has downward motion and clear sky in the cell
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center, surrounded by cloud associated with upward motion.
Closed cells have the opposite circulation.” Both types of
cells have diameters ranging from 10 to 40 km, they occur in
a convective layer with a depth of about 1 to 3 km, and the
characteristic lifetime of cloud cells is about several hours.
Our analysis shows that the minimum threshold value of the
effective Rayleigh number required for the excitation of the
large-scale instability is attained at L, /L.=2 (see Figs. 1-3,
dotted and dashed-dotted curves), is in agreement with
numerous observations. The ratio of the minimum size of
the structure to maximum scale of turbulent motions
L/1y=5-15. The characteristic time of formation of the con-
vective cells ~1/v varies from 1 to 3 h. Therefore, the pre-
dictions of the developed theory are in agreement with ob-
servations of the semi-organized structures in the
atmospheric convective boundary layer. The typical temporal
and spatial scales of structures are always much larger then
the turbulence scales. This justifies the separation of scales,
which was assumed in the suggested in the theory. Note that
the applicability of the mean-field equations for study of tur-
bulent convection was discussed in Ref. 41.

In our study we consider nonrotating turbulent convec-
tion and apply our results to the atmospheric convective
boundary layers, where the shear is usually caused by wind.
The rotation of the Earth usually affects the hight of the
atmospheric convective boundary layer. The rotation can also
affect the longitudinal spatial structure of the cloud streets.
Note that in astrophysical applications the shear (or differen-
tial rotation) can in general be a consequence of anisotropies
in rotating systems. Our study can be also useful for under-
standing the origin of formation of the mesogranular struc-
tures in the solar convection (see Ref. 42).
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