
ELSEVIER Physica D 85 (1995) 156-164 

PHYSICA 

Nonlinear waves and pattern formation in multiphase flows in 
porous media 

T. Elperin a, N. Kleeorin a, I. Rogachevskii b 
a The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of Negev, 

POB 653, 84105 Beer-Sheva, Israel 
b Tile Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel 

Received 10 October 1994; revised 10 February 1995; accepted 22 February 1995 
Communicated by F.H. Busse 

Abstract  

The paper analyzes pattern formation in initially homogeneous one-dimensional two-phase flows in porous medium. It is 
shown that generally these flows are unstable. The mechanism of the instabilities is associated with inertial effects. Such 
instabilities are of explosive type and are probably important in various engineering applications and natural phenomena. 
In small-amplitude finite approximation the evolution of patterns is governed by the Korteweg-de Vries-Burgers equation. 
Pattern formation occurs when the coefficient multiplying the Burgers term becomes negative. During nonlinear evolution a 
soliton with a tail is formed. The amplitude of the soliton increases while the tail decreases. These results can be regarded as 
a generalization of results by Harris and Crighton (1994) to the case of two-phase flows in porous medium. The obtained 
solution in form of soliton with a tail can be interpreted as initial phase of formation of the phase composition inhomogeneities 
in porous media. In the case of fluidized beds this pattern can be regarded as initial phase of bubble formation in a fluidized 
bed of granular material. The characteristic size of bubbles and time of its formation are estimated. 

1. Introduction 

Patterns in mult iphase flows are generally formed 

due to different instabilities. The well known example 

is Saffman-Taylor instabil i ty [ 1 ] of  interface between 

different fluids during two-phase filtration in porous 

media. This instabil i ty leads to formation of  viscous 
fingers. Another  example is an instabil i ty of  flows with 

init ial ly homogeneous phase composit ion,  i.e. without 

dist inct  phase interface. This instabili ty was studied 

in linear approximation for fluidized bed by [ 2 - 5 ] .  A 

mechanism of  this instabil i ty is associated with inertial 

terms in the Navier-Stokes equation. 

However, the inertial effects are commonly not con- 

sidered in filtration problems but in many cases their 

effect becomes crucial. Indeed, inertial effects in mul- 

t iphase filtration are generally small. Actual ly  this con- 

dition implies the main equation of  filtration flows - 

Darcy 's  law. However the analysis of  long time be- 

havior of  the system requires to take these effects into 

account. The instabili ty of  phase composi t ion in mul- 

tiphase flows in porous media  is studied in the present 

paper. Thus, e.g., during long t ime operation of  any 

device with multiphase filtration flows this instabil i ty 

is generally excited and may consequently lead to an 

accident. The analysis presented below probably can 

be of  relevance in this respect. 

Simultaneously with inertial terms we also consid- 
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ered viscous type (Stokes) terms. It has been shown 
recently that these viscous effects can cause the cubic 
dispersion of both 'magma'  waves in the Earth [6,7] 
and nonlinear waves in fluidized beds [8] and in 
porous media [9]. When nonlinear effects are taken 
into account this results in appearance of soliton 
type solutions, which can be described in the small- 
amplitude finite approximation by the Korteweg-de 
Vries equation. For the case of two-phase filtration 
it was found in [9] that the perturbations of the 
phase composition result in formation of structures 
similar to nonstationary nondissipative shock waves 
[ I0].  The nondissipative shock wave emerges as a 
nonstationary multi-soliton solution of the Korteweg- 
de Vries equation that describes evolution of small 
perturbations of  phase composition. 

When inertial effects in two-phase flow are taken 
into account the small-amplitude finite approximation 
yields generally the Korteweg-de Vries-Burgers equa- 
tion for ftuidized beds [4,5] and in suspensions of 
particles in fluids [ 11,36]. The instability and pattern 
formation occur when the coefficient multiplying the 
Burgers term becomes negative [4,5]. 

The present paper can be considered as a certain 
generalization of results [4,5] to the case of two- 
phase flows in porous medium. We have shown that 
the developing instability of two-phase flows in porous 
medium is of  explosive type and of the nonlinear stage 
of its evolution a soliton with a tail is formed. The am- 
plitude of the soliton increases while the tail decreases. 
This solution can be interpreted as initial phase of for- 
mation of the phase composition inhornogeneities in 
porous media. In the case of  fluidized beds this pattern 
can be regarded as initial phase of bubble formation in 
a fluidized bed of granular material (see, e.g., [4,5] ). 
The characteristic size of bubbles and time of its for- 
mation are estimated. For simplicity we consider the 
one-dimensional case since it allows us to demonstrate 
the principal effects. This paper presents in detail the 
results reported previously in [ 13]. 

The instability discussed here is similar to the phe- 
nomenon of spinodal decomposition whereby an ini- 
tially homogeneous binary system decomposes into its 
constituents. The origin of  the phenomenon of spin- 
odal decomposition is associated with metastability of 

the initial homogeneous state. Remarkably this phase 
transition is similar to the macroscopic effect of  phase 
decomposition of the homogeneous two-phase flow 
(see, e.g., [ 14] ). 

2. The governing equations 

Let us analyze the case of one-dimensional filtra- 
tion of two liquids through porous medium. The con- 
tinuity equations for both phases and their equations 
of motion in non-dimensional form are given by: 

0--7- ~- (~iUi) :- 0 , ( 1 ) 

z / Ovi Ovi'~ 
Pi~ ~ "~- U i ~  ) = - T ~  ~- Gpi  - oli~iv i 

1 0 : ~ O v i , ,  
"Oi--~ii'~X~j~ i i ~ X )  "~ S(~gi,j)~j(vj--vi) , (2) 

where pi, Pi, vi are the non-dimensional density, pres- 
sure and velocity of the i-th phase (i = 1,2) mea- 
sured in units of p . ,  p . ,  v. , respectively; ¢i is the 
volume fraction of the i-th phase. For the two-phase 
media 41 + ¢2 = 1. The coordinate x and time t are 
measured in units of L. and L . / v . ,  respectively. The 
basic dimensionless parameters of the problem are 

2 p . v . K ,  v .  p .  
5 -  - -  F =  - -  T = e - -  ' ' 2 '  L . t z .  g L ,  p . v .  

]Lgi 77iK. 
a : P-~' ol i = ~ ,  t~i = L2. 

(3) 

Here F is the Froude number, ].g i and T]i are the 
dynamic viscosities measured in units of  /z,. Dy- 
namic viscosities/*i are determined by the filtration 
of each of the liquids through the porous medium 
(the Darcy's term), while "g]i corresponds to the 
Brinkman's (Stokes) term (see, e.g., [15]) .  The 
function S(~)  = o - ( ¢ ) q ~ ( 1 -  4~) determines the 
mutual friction of the two filtrating liquids, K is the 
permeability of the porous medium measured in the 
units K . .  A form of the function o-(~) depends on 
the model of the medium. For example, for a porous 
medium with Carman-Kozeny law (see, e.g., [ 16] ) 
o-(~) = Kq~ -3 , where the coefficient K depends upon 
the geometry of the porous medium. The numerical 
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values of the parameter K for various types of porous 
media can be found in [ 16]. The parameters e (mul- 
tiplying the inertial terms) and /3i (multiplying the 
Brinkman term) are small since x/K-2. << L . ,  but for 
slow processes these terms can be essential as shown 
below. The value of v ~ .  is determined by the mi- 
croscale of pores. The appearance of the Brinkman 
and inertial terms in the governing equations results 
in a qualitative change of the evolution of finite per- 

turbations in multiphase flows in porous media (see 

below). 
The system of Eqs. (1) , (2)  is widely used for 

analysis of multiphase flows of different nature. Ex- 
amples of these flows are pneumatic transport, flu- 
idized beds, multiphase hydrodynamics, problems of 
viscous consolidation, flows of magma through vis- 
cous deformable rock, two-fluids magnetohydrody- 
namics (with the Ampere force), and other media 
(see, e.g., [ 17-21 ] ). The governing equations of two- 
phase flows through porous media can be derived from 
mass and momentum conservation equations for a 
three-phase continuum (see, e.g., [ 17] ) where one of 
the phases is a rigid porous matrix and the densities Pi 

of the liquid phases are constant. A unique nontrivial 

solution of these equations for the velocitY Vm of the 
rigid porous matrix is given by vn, = const .  Transition 
to a frame moving with the velocity v~, yields the sys- 
tem of Eqs. (1) , (2) .  Here the velocities of the liquid 
phases are measured relative to the velocity Vm • 

The unknowns in Eqs. (1) , (2)  are Vl, v2, p~, P2 
and 42 • Here 41 = 1 - 42 • In such systems the 
pressures of phases are either equal or the pressure 
difference is considered as a known function of vi and 
42 (see below). Thus we arrive at a system of four 
equations for four unknown functions. 

In the new variables 4 ( x , t )  and q t ( x , t )  Eqs. 
(1) , (2)  can be reduced to 

04 04 #g" 
at + W-&-x + c~x 

W { 4 ( a l  + a2) - a l}  + gtq~+ G ( p l  -- P2) 

(4) 

= e P ( ~ , 4 ) ,  (s) 

where W = ( 1 - 4 ) u  1 -~- 4 u 2  is the total volume flow 
rate which is independent of the coordinate x ,  the rel- 

ative velocity of two phases is V = v2 - vl, g~(x, t) = 
V4( 1 -- 4 ) ,  4 ~ 42 ,  q9 = O~ 1 --]- O~ 2 -I- 0 - ( 4 )  . The 

function p(gr, qO) is given by 

(~gq~ W~gqt ~ O~ /~(~F,@) = - P a - ~  + 3 x ] - 2 p b gr "~X 

3p23Cl o / 0 2 ~  0 2 ~ \  
+pc g+ -'lea-a-jx  +w-aT) 

0 Q ( 4 ' ~ 2 )  (6)  

c~x 

where we take into account a possible difference be- 

tween the pressures of phases 

Q(4,1t 0"2) = ~ , 2  (p  1 (X) -- p 2 ( x )  ) , (7)  
p . o .  

Pl + P2 Pl P2 
Pa = 1---'--~ ~ "  Pb = ( 1 -  4 )  ~ 42,  

Pl /92 
Pc = (1 - 4 )  ~ + 43 ' 

/31 .~_ /32 /31 B2 
/~ = 1-----~ ~--' /~b= ( 1 - 4 )  ~ 42'  

/31 /32 
t i c -  ( 1 - 4 )  ~ + - 4 3 '  . (8) 

Since we assume that/3 < e , i.e. /3 is sufficiently 
small, the function P(f f ,  4 )  defined above is of or- 
der 1 . In the opposite case, i.e./3 > e ,  the parame- 
ter/3 can be considered as a small parameter instead 
of e and the final results do not change. The explicit 
form of the function Q (4 ,  ~F 2) depends on the specific 
model of interaction between phases. For the analy- 

sis of stability of two-phase flows we have to know 
only derivatives of the function Q which is supposed 
to be known. It is important to note that in case of 
single phase filtration Eqs. (4) , (5)  are not valid. All 
the effects discussed below occur only in the case of 
multiphase filtration. 

In equilibrium a homogeneous and steady flow of 
a two-phase medium filtrated through the matrix is 
determined by 

W { a l  - 4 o ( o q  + a2)} = gt0q~0 + G ( p l  - P2) , (9) 

where the subscript 0 corresponds to equilibrium val- 
ues. The condition (9) relates the total volume flow 
rate W,  the equilibrium volume fraction 40, and the 
relative velocity of two phases l,b for given parame- 
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ters of the porous medium and two liquid phases. This 
equilibrium flow can be unstable, i.e., small perturba- 
tions can grow. 

For small e and f l i  we can study this instability (see 
Section 3) and evolution of finite amplitude perturba- 
tions (see Section 4). For this purpose we represent 
the volume fraction 4) and the function g~ as a sum of 
two terms: 

4 ) = 4 ) 0 + f ,  g t = g r 0 + O .  (10) 

A nonlinear equation for the finite perturbation of 
volume fraction f in a frame moving with velocity V. 
is given by (for details see Appendix) 

Of b f O f~--ax C-~x303 f 3 2 f  02 f 
a t  + + = OxOt 

- e F O ~ x 2  - c a - -  , (11) 

where 

Vd 1 
a = P a - - ,  b = - - ( 2 V a o - l o  - g%~rloI), 

q~O q~O 

1 
C= - - ( t ~ b -  Vd~a) , ( 1 2 )  

q~0 
1 

Fo = - -  [paV2a x ( p ,  g~o, 4)0) + 2geoVdQre -- Q4,] , 

q~0 (13) 

and 

Va = W -  V . ,  

1 
V. = - -  [ Wo-o - Vo~r~o4)o ( 1 - 4)o) ] , 

q~o 

do-o 
~,o = ~ ( 4 )  = 4)o), ~r'° = d 4 )  ' 

pc( o  
x(p, o,4)o) = 1 +  + , 

OQ OQ 

Q e  = ~ - ~ ,  Q ~  = c ~ 2  • 

In the next section we study the instability of two- 
phase flow by means of Eq. ( 11 ). 

where k is the wave number, and OA is the frequency. 
Substituting (14) into the linearized version of equa- 
tion ( 11 ) yields the growth rate of the instability 

k 2 
3/= ~q ~--~ [paV2X(p '  ~O' + 2~oVdQt~ -- Qep] 

(15) 

and the frequency of the growing volume fraction 
waves 

k 3 
OAR = k V .  + - - ( f l a V a  - f ib)  , ( 1 6 )  

~Oo 

where OA = OAR + iy. Eqs. (15) and (16) can be re- 
garded as the generalization of results [2,4,5] to the 

case of two-phase flows in porou s medium (see be- 
low). The first term (oc X) in Eq. (15) is always 
positive. This means that for Q = 0 (i. e. when the 
pressures of phases are equal) the equilibrium homo- 
geneous flow of the two-phase medium through the 
matrix is unstable. In a general case Q -7' 0 and there 
exists a threshold for excitation of the instability. The 
excitation of the instability ( i f  y > 0 ) results in the 
formation of inhomogeneities in the phase composi- 
tion of the mixture. 

Eq. (16) for/3i = 0 describes the kinematic waves 
of phase composition of the mixture and of the relative 
velocity with linear dispersion law (see, e.g., [22] ). 
It is the well known result of the classical theory of fil- 
tration in which the inertial term ~ e and the dynamic 
viscosity ~ /3 i  are neglected. 

Now we consider several characteristic cases which 
are important in view of their applications. 

1. g~0 = 0, i.e. zero relative velocity between the 
phases. This is interesting for the analysis of flow pat- 
terns during pneumatic transport of granular or pow- 
dered materials (see, e.g., [18] ) since the wall fric- 
tion in pneumatic transport systems can be modeled by 
local Darcy-type friction term. Waves with frequency 

3. Instability of  two-phase flow 

We seek a solution of Eq. ( 11 ) in the form 

4) = 4)0 + f e x p { i ( k x  - OAt)) ,  

q t  = qt  o + ~ e x p { i ( k x  - OAt)} , (14) 

k Wo'0 k 3 
OAR = -~- --(t~aWqvc -- fib) ( 1 7 )  

~P0 ¢P0 

are excited and the growth rate is 

k 2 
3 / = ~ - -  [pa(W~c)  2 -- Q¢o] . ( t 8 )  

q~0 
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Here q~c = (eel + ce2)/q~0. The zero slip equilibrium 
flow in this case can exist even without gravitation 
[see Eq. (9) ]. The above instability is similar to the 
Saffman-Taylor instability of two-phase flow in porous 
media [ 1] which arises due to the different viscosi- 
ties of each of the liquids filtrated through the porous 
medium. It results in the appearance of a relative veloc- 
ity between the two phases (i.e., excitation of the in- 
stability) and formation of fingers. However the above 
discussed instability is different from the Saffman- 

Taylor instability since pattern formation in Saffman- 
Taylor instability is associated with the growth of in- 
terface perturbations. In our case the heterogeneities 
are formed in the volume with initially homogeneous 
composition and uniform velocity. This result means 
that zero-slip two-phase flow is unstable (at least if 
Q~ < 0 ). The presence of the gravitational field pro- 
motes the growth of the instability. 

2. I f  the volume flow rate W = 0, the growth rate of 
the instability and the frequency of the excited waves 
are given by Eqs. (15) ,(16) with Va = !F0o-~/q~0. This 
case is important, for example, for filtration of viscous 
melt (magma) through very viscous deformable rock 
and for the problem of viscous consolidation (see, 
e.g., [7,19,23,24]). When W -- 0 the directions of 
the flows of two phases are opposite and the heavier 
liquid moves in the direction of the gravitational field. 
The relative velocity of the phases increases and the 
instability is excited. In this case also the difference 
between the viscosities of the liquids promotes the 
instability. 

3. In the absence of solid matrix ( o, 1 = 0 ,  O~ 2 = 

0 ) the oscillations of the phase composition and the 
relative velocity are amplified in gravitation field with 
the growth rate determined by Eq. (15) with Va = 
~F0o-~/o-0, q~0 = o-0. The frequency of the oscilla- 
tions is given by Eq. (16) with corresponding val- 
ues of V~ and q~0 • The equilibrium exists only in 
the gravitational field: the equilibrium condition is 
G(p2 - pl ) = o-0gt0 • This equilibrium is unstable 
since the work performed by the gravitational force is 
positive for the period of oscillations. This situation 
is typical for fluidized beds and was investigated in 
detail in [ 2,4,5 ]. Notably the growth rate of instabil- 
ity derived in [2,4,5] coincides with our more general 
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expression (15) with O: 1 m O~ 2 = 0 and Qt~ = 0. 
In all the above cases the mutual friction of the two 

filtrating liquids results in the decrease of the growth 
rate of the instability. Note that the instability of the 
two-phase flow in porous media in the general case 
arises both due to the different viscosities of the liquids 
and the gravitational field. This case is important for 
chemical catalytic bed reactors (hot spot formation) 
and the two-phase filtration in natural porous forma- 
tions with applications in petroleum industry and irri- 
gation (see, e.g., [16] ). In the next section we con- 

sider the evolution of finite perturbations. 

4. Nonlinear waves: solitons and 'oscillating' shock 

waves 

In new variables Eq. (11) for the case 8 << t3]/3 << 
1 reduces to the well known Korteweg-de Vries- 
Burgers equation: 

of  o3i 02/ 
- -  + f~ -~  + (19)  
at =  5x2 ' 

where 

f = b c - 1 / 3 f ,  X = c -1 /3x ,  /z = - e / ' o c  -2/3.  

This nonlinear partial differential equation is encoun- 
tered in various fundamental and applied fields of sci- 
ence ( see, e.g., [ 10,25-33] ). It is interesting to note 
that the Burgers term in Eq. (19) arises due to inertial 
effects, i.e. in two-phase flows inertial terms are re- 
sponsible for dissipation or excitation of disturbances. 
On the other hand, the Stokes friction terms result in 
effective dispersion while the interphase friction terms 
describe nonlinear terms in the Korteweg-de Vries- 
Burgers equation. Eq. (19) can be considered as a 
generalization of results [ 11,36,4,5] to the case of 
two-phase flows in porous medium (cq 7( a 1 7 ( 0 ) .  

For small/z a solution ofEq. (19) in form of 'oscil- 
lating' shock wave can be described as a solution of the 
Korteweg-de Vries equation perturbed by ixO2f/OX 2 
(see, [ 31-33,5 ] ). The shape of the head (with largest 
amplitude) soliton in the oscillating shock wave can 
be described by the following equation: 

f~ = 12k2(t) cosh-2{k(t)  [X - ~:(t) 1}, (20) 
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with slowly varying amplitude 5. Discussion 

k( t )  = k0~l + ~ )  - ½ `  ¢ \  , 7 "  = ]-~ I ]./~15" k2,-10) , (21) 

where k0 = k ( t  = 0) (see [34,35,32]). The function 
g: (t) satisfies the following differential equation: 

dsC = 4k2(t) q- 8tzk( t  ) (22) 
dt 

(see [31-33] ). 
For small negative values of the parameter/x (in the 

case of an unstable two-phase flow) the solution of 
Eq. (19) can be obtained via a simple modification of 

the solution derived in [ 34,35,32]. This solution can 
be represented as the sum of a soliton with a slowly 

varying amplitude and a long negative 'tail ' , f = f s  + 
f t .  The shape of this soliton is described by Eq. (20) 

with 

_ !  

k( t )  =k0 1 -  , ¢0 = (]/x )-1 (23) 

The above solution exists at times t < To • At t --~ r0 
the Korteweg-de Vries-Burgers equation (19) is not 
valid for description of an unstable two-phase flow. 
The correct description of the two-phase flow can be 
achieved by abandoning the small amplitude approx- 
imation. The shape of the 'tail '  far from the soliton 
( - z  >> 1) and at times t < r0 can be described by 
the following expression: 

f ,  ~- - ~ ) z l k ( t )  [ 1 + z = exp(2z)  ] . (24) 

where z = k ( t )  [ X -  so(t)] . Remarkably the solution 
obtained satisfies the following conservation law: 

t o  0/ f ( t ,  x)  dX = 0 .  ( 2 5 )  

- - 0 ( 3  

Eq. (23) was derived first by [5] in the theory of gas- 
ftuidized beds. We generalize this result to the case of 

two-phase flows in porous media. 
In the case e 1/2 << 1 and fli << e 3/2 , i.e., inertial ef- 

fects prevail, Eq. (11) reduces to the Burgers equation 
(see, e.g., [ 10,26] ). Thus these nonlinear equations 
can predict complex behavior and pattern formation 
in two-phase flows in porous media. 

It has been demonstrated here that multiphase fil- 
tration flows are generally unstable. The nature of this 
instability is associated with inertial effects. The in- 
stability can be considered as a 'volumetric' analog of 
the well known Saffman-Taylor instability and is of 
explosive type. In the small-amplitude finite approxi- 
mation the evolution of this instability is governed by 
the Korteweg-de Vries-Burgers equation. The analysis 
allows one to estimate the characteristic size and ve- 
locity of the heterogeneities that are formed. Certainly 
a complete investigation of the problem requires at 

least a two-dimensional analysis and the abandonment 
of the small-amplitude finite approximation. Recently 
the consistent theory of inhomogeneities formation in 

fluidized beds without small-amplitude finite approx- 
imation was developed in [ 5]. 

Now we discuss an application of the results de- 
scribed in Sections 3 and 4 to the problem of bubble 
formation in fluidized beds. Fluidization is a process 
in which a bed of solid particles is subjected to a ver- 
tical, upward flow of fluid (see, e.g., [20] ). I f  a fluid 
is passed upward through a bed of fine particles at a 
low flow rate, the fluid merely percolates through the 
void spaces between stationary particles. At a higher 
velocity, a point is reached where all the particles are 
just suspended by the upward-flowing gas or liquid. 
At this point the frictional force between particle and 
fluid just counterbalances the weight of the particles 
and fluidized bed is formed (see, e.g., [361 ). In view 
of applications it is important to create an homoge- 
neous and stable fluidized bed. However, experiments 
(see, e.g., [ 20] ) show that inhomogeneous structures, 
so called bubbles are formed in ftuidized beds. The 
bubbles emerge as cavities with lower concentration 
of particles of granular material and are filled with gas. 
The bubbles are frequently accompanied by a long tail 
(stem) with decreasing gas volume fraction: clusters 
of solid particles are observed in the flow behind the 
rising bubble. The obtained solution in form of a soli- 
ton with a tail with slowly changed parameters can 
be interpreted as initial phase of bubble formation in 
granular media (see [51 ). 

Now let us estimate a characteristic size of the bub- 
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ble. The characteristic size can be estimated as a char- 
acteristic dispersion length of the soliton. We rewrite 
Eq. (19) in dimensional form for the function f .  = 

b v . f  : 

Of .  , t a 3 f .  6. 02f .  
O--}- + f * ~  ÷ ~ = -  ~ x  2 , (26) 

where A = c L . v . ,  6.  = s F o L . v . ,  and c and F0 are 
given by Eqs. (12) and (13), respectively. The disper- 
sion scale of the soliton is given by A = 2 (A/L.v.)1/2 

(see, e.g., [ 10,26] ). In explicit form the dispersion 
scale of the soliton is given by 

{ [ O'DU2 - " 2q) 1/2~. 2 K,r/lV. 1 - - q ~ o ( 1  . . . .  

a 1 Z-~o /~.oov2 o'ov, 
(27) 

where we take into account that for the particles vl = 
0. The characteristic velocity is v, = gp2p,  K , / i x , .  

Using the equation of equilibrium (9) we obtain the 
characteristic size of the bubble 

A = D 5 /2 fCrpysns[1  + sr(¢°) ] ~1/2 
* t 6/~,(1 ~ ¢~0) J ' (28) 

where 

with experiments [20] and numerical simulations 
[38]. Note that the characteristic size of a bubble 

_3/2 scales as D.  where D .  is a particle diameter. 
Characteristic time of the bubbles formation is of the 

order of the characteristic time of the instability ~- ,-~ 
L2./8. ,.., ( L . / u .  ) e -  1. The values of e ~ 10 - 4 - 1 0 - 2  

and the characteristic time of the bubbles formation is 
of the order of 10 2 -- 104 of the residence time of the 

gas in the fluidized bed. 
Note that the condition (25) has the clear physical 

meaning of mass conservation when the soliton with 
tail solution describes bubble like patterns in fluidized 

beds of a granular material. Indeed, experiments (see, 
e.g., [20] ) show that bubbles formed in fluidized beds 
are frequently accompanied by a long tail (stem) with 
decreasing gas volume fraction: clusters of solid parti- 
cles are observed in the flow behind the rising bubble. 
The evolution of the bubble like flow pattern described 
by the soliton with a tail is accompanied by the slow 
growth of its amplitude and velocity. Although the lat- 
ter property is the natural behavior of the soliton type 
solutions, it of interest to note that it can be validated 
by experiments. 

g ' ( y ) = ( 1 - - y ) [ 2 y -  1 

÷ y (  1 -- y ) P ' / P  (y )  ] P ( y ) ,  
3 rll = q'rpsVsnsD./6 , 

P ( y )  = ( 9 / 2 ) K . / S ( y ) D 2 .  . 

Here Vs is an effective kinematic viscosity of solid 
phase, ns is the number density of solid particles, D,  
is a diameter of solid particles, Ps and p f  are densities 
of solid particles and gas ,  respectively, the function 
p (~b) is determined by the dependence of the friction 
force between solid particles and gas on the volume 
fraction of the solid phase. For instance, this function 
determined experimentally is given by [ 37 ] 

P ( ~ )  = exp [ ( 0 . 3 6 5 2 q ~ - - 4 . 0 9 3 ) 1 / 3 ( ~ - ) 1 / 2 ]  . 

Using typical parameters for fiuidized bed ( P s / P f  '~  

103;D. ~ 5 × 10 -2 cm; ~o = 0.5;v.  ~ 102 

cm/s  (see, e.g., [20,36]) and assuming that Us 

v./(~rD2,ns) we obtain A --~ 10 cm. It is in agreement 
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Appendix. Nonlinear equation 

We represent the volume fraction ~ and the function 
9 r as a sum of two terms: 

¢ = q ~ o +  f ,  q r = ~ o + O .  (A.1) 

Substitution (A.1) into Eqs. (4) , (5)  yields 
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O f  O0 = 0 ,  (A .2 )  
at + W ~x + 0--7 

W { ( a l  + a2 )  (q~o + f )  - all} 

q- ( grO -b O )q~( q~o q- f )  -q- G(pI  - P2) 

= eP( ! / to  + ~h, ~o0 + f )  , ( A . 3 )  

) 2 
X ( P , ~ o , ~ o )  = 1 -#-z . . . .  +. potV ) 

OQ OQ 
Q @ = - ~ ,  Q ~ =  Ogt2. 
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We  search for  a solut ion o f  Eq.  (A .3 )  for ~ by iter- 

ations. The  smal l  parameter  here  is e. No te  that the 

zero order  in 8 approx imat ion  o f  Eq.  (A .3 )  yie lds  the 

equ i l ib r ium solut ion ( 9 ) .  The  first i terat ion yields 

~1 = --Vdf l  . (A .4 )  

Here  gq ,  f l  ~" e. The  second i terat ion yields 

~2 = -- Vd f 2 q- ~-~o ( 2 VdO'to -- grotr'o' ) f21 

q- --~-~ P(g*0 q- ¢ 1 , ~ 0  -+- f l )  , (A .5 )  
q~0 

where  ~ 2 , f 2  ~ e 2 , /~(gro  + 0 1 , @ 0  + f t )  "~ O ( f l )  

e and 

V d = W - V . ,  

V . = ~ I  [ W ~ o - V 0 ~ 0 ( 1  - @ 0 ) 1 ,  
~0 

do- o 
q,0 = ~o(@ = ~ o ) ,  o-~ - d ~ '  

f = f l + f 2, O = lltl -~ ~112 • 

C o m b i n a t i o n  o f  ( A . 2 ) -  (A .5 )  yields a nonl inear  equa-  

t ion for  the f ini te  per turbat ion  o f  v o l u m e  fract ion f in 

a f rame m o v i n g  wi th  ve loc i ty  V.: 

Of q- b f o r  + a 3 f  
0--7 ox c Ox 3 

where  

O2f a 2 f  (A .6 )  
= - e F o  ~ - eaoxat  , 

Vd b 1 (  917.1 
a = P a - - ,  = - , . ~ o  - -  = . ~ o , ,  ~oo ~oo 

1 
c = - -  (~b  -- VdBa) ,  

q~o 
1 2 

Fo = - -  [ paVd X ( p ,  qto, q~o) + 2qeoVdQ~ - O@ ] , 
q~o 
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