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Abstract. Turbulent transport of aerosols and droplets in a 
random velocity field with a finite correlation time is studied. 
We derived a mean-field equation and an equation for the 
second moment for a number density of aerosols. The finite 
correlation time of random velocity field results in the ap- 
pearance of the high-order spatial derivatives in these equa- 
tions. The finite correlation time and compressibility of the 
velocity field can cause a depletion of turbulent diffusion and 
a modification of an effective mean drift velocity. The co- 
efficient of turbulent diffusion in the vertical direction can 
be depleted by 25 % due to the finite correlation time of a 
turbulent velocity field. The latter result is in compliance 
with the known anisotropy of the coefficient of turbulent dif- 
fusion in the atmosphere. The effective mean drift velocity 
is caused by a compressibility of particles velocity field and 
results in formation of large-scale inhomogeneities in spa- 
tial distribution of aerosols in the vicinity of the atmospheric 
temperature inversion. Results obtained by Saffman (1960) 
for the effect of molecular diffusivity in turbulent diffusion 
are generalized for the case of compressible and anisotropic 
random velocity field. A mechanism of formation of small- 
scale inhomogeneities in particles spatial distribution is also 
discussed. This mechanism is associated with an excitation 
of a small-scale instability of the second moment of number 
density of particles. The obtained results are important in 
the analysis of various atmospheric phenomena, e.g., atmo- 
spheric aerosols, droplets and smog formation. 
0 2000 Elsevier Science Ltd. All rights reserved. 

1 Introduction 

Mean-field theory for turbulent transport of particles and gases 
is of a great importance in view of numerous applications. In 
particular, this theory is applied for analysis of transport of 
aerosols, pollutants and cloud droplets in atmospheric tur- 
bulence of the Earth and other planets (see, e.g., Twomey, 
1977; Csanady, 1980; Seinfeld, 1986; Elperin et al., 1997; 
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Elperin et al., 2000a; and references therein), dust transfer in 
interstellar turbulence and turbulent transport of particles and 
gases in industrial flows (see, e.g., Piterbarg and Ostrovskii, 
1997; Baldyga and Boume, 1999; and references therein). 
Turbulent transport of aerosols in turbulent atmosphere was 
studied in a number of publications. However, a range of 
validity and applicability of mean-field equation for number 
density of aerosols still remain a subject of discussions. In 
particular, it is not elucidated why the mean-field equation 
for number density of aerosols does not contain high-order 
spatial derivatives and what is a role of the molecular diffu- 
sion. 

Problem of formation and dynamics of aerosol and gaseous 
clouds is of fundamental significance in many areas of en- 
vironmental sciences, physics of the atmosphere and mete- 
orology. Analysis of experimental data shows that spatial 
distributions of droplets in cumulus and stratiform clouds is 
strongly inhomogeneous (see, e.g., Paluch and Baumgardner, 
1989; Korolev and Mazin, 1993; Haman and Malinowski, 
1996; and references therein). One of the mechanisms which 
determines formation and dynamics of clouds is the prefer- 
ential concentration of atmospheric particles and droplets. 
However, in turbulent atmosphere a mechanism of concen- 
tration of atmospheric particles in nonconvective clouds is 
still a subject of active research. It is well-known that turbu- 
lence results in a decay of inhomogeneities of concentration 
due to turbulent diffusion, whereas the opposite process, e.g., 
the preferential concentration of particles in atmospheric tur- 
bulent fluid flow still remains poorly understood. 

In the present study we derived a mean-field equation and 
an equation for the second moment for a number density of 
inertial particles (aerosols and droplets) advected by a tur- 
bulent velocity field with a finite correlation time. We have 
shown that the finite correlation time of random velocity field 
results in the appearance of the high-order spatial derivatives 
in the equations for a number density of inertial particles, and 
causes strong depletion of the coefficient of turbulent diffu- 
sion in the vertical direction and a modification of an effec- 
tive mean drift velocity. The effective mean drift velocity 
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is caused by a compressibility of particles velocity field and a small correlation time and the model of a random velocity 

results in formation of large-scale inhomogeneities in spa- field with Gaussian statistics for the Wiener trajectories. In 
tial distribution of aerosols in the vicinity of the atmospheric the model of the velocity field with a small correlation time 
temperature inversion. A mechanism of formation of small- we expand the functions [(t, s) and G(r, 5) in Taylor series 

scale inhomogeneities in particles spatial distribution is also of small correlation time T. Thus an equation for the mean 

discussed. number density of small inertial particles is given by 

2 Mean-field equations for a number density of small 
inertial particles 

dN/dt + (V,, . V)N = D,,,V,V,N , 

where 

(3) 

Number density n(t, r) of small inertial particles advected 

by a turbulent compressible fluid flow is given by 

dn/dt + V. (nv) = Dan , (1) 

where v is a random velocity of inertial particles or droplets 
which they acquire in turbulent atmospheric fluid velocity 

field, D is the coefficient of molecular (Brownian) diffusion. 

D mn = D6,, + (w,u,)T - ~(~v,~u,)T~ 

+ (02~~ /3) (Afmn + V7pV7nf,np 

+VpV?n.fiLp)r=O , 

V eff = W - (vb)~ + (4D/3)((V,~)(V,b))7-~ 

+2(b(v V)v)r” , 

The goal of the present study is to derive a mean-field 
equation for inertial particles advected by turbulent atmo- 
spheric velocity field with a finite correlation time. For the 
derivation of this equation we used an exact solution of the 
equation for n(t, r) in the form of a functional integral for an 

arbitrary velocity field taking into account a small yet finite 
molecular diffusion (see Elperin et al., 2000b). This func- 
tional integral implies an averaging over random Brownian 
motions of a particle. The form of the exact solution used 
in the present paper allows us to separate the averaging over 
both, a random Brownian motions of a particle and turbulent 
atmospheric velocity field. 

W is the terminal fall velocity, fmn = (um(t, x)vn(t, y)), 
r = y - x, V = d/h. The last term in the equation for 
D mn describes interactions between turbulent diffusion and 
molecular diffusion for the mean concentration field and gen- 
eralizes the result by Saffman (1960) to the case of compress- 
ible and anisotropic random velocity field. 

In the model of a random velocity field with Gaussian 
statistics for the Wiener trajectories the equations for the mean 
number density of particles ,li has a form of Eq. (3) with 

The derived mean-field equation for a number density of 
small inertial particles is given by 

N(& r) = n/ri{(G(t, s, <) exp(5* V))IN(s, r) , (2) 

(see, Elperin et al., 2000b), where N(t, r) = (n(t, r)) is the 
mean number density of particles, the angular brackets (.) 
denote the ensemble average over the random velocity field, 

G(t, s, C) = exp[- 1’ b(a, C) do] , 
3 

D mn = D~{4,m - (3/2)1(1’eff - Wlu012emen> , 

V eff = w - T(Vb) 

Here DT = u&/3 is the coefficient of turbulent diffusion, 
lo is the maximum scale of turbulent motions, uo is the char- 
acteristic velocity in the scale lo, e, is the unit vector in the 
direction opposite to the gravity g. The last term in the equa- 
tion for D,,, describes a depletion of the turbulent diffu- 
sion coefficient due to the finite correlation time of a random 
velocity field. The effective velocity V,E of particles de- 
termines a turbulent contribution to particle velocity due to 
both, effect of inertia and mean temperature gradient. The 
effective velocity V,E can be estimated as 

b = V . v, and MC{.} denotes the average over the Wiener 

paths 

c = x - s’-” v[t - C, [(t, g)] do + (2D)1’2w(t - s) , 

0 

<* = 6 - x and w(t) is the Wiener process. 
The derived mean-field equation for a number density of 

small inertial particles generally is a integro-differential equa- 
tion. However, when the characteristic scale of variation of 
the mean number density of small inertial particles is much 
larger than the correlation length of a random velocity field 
the mean field equation has the form of a second-order dif- 
ferential equation in spatial derivatives. 

V,E = -(2/3)PLt’A(Re, a,)hp ln(Re)(VT)/T , (4) 

where Ap = lVPf/Pfp,l-‘, Pf is the fluid pressure, Re = 
louo/v is the Reynolds number, and v is the kinematic vis- 
cosity, a, is the size of a particle, A(Re, a,) = 1 for a, < 
a,,,andA(Re,u,) = l-3ln(ct,/a,,)/ln(Re) fora, 2 ucr, 

and acr = rd(p/p,)l/“, and rd = loRe-3/4 is the viscous 
scale of turbulent fluid flow, p is the fluid density, pP is the 
material density of particles, T is the mean fluid tempera- 
ture. Thus, e.g., ucr N 20pm for Re = 107, lo = 1OOm and 
pP = 1 g / cm3. The effective velocity V,E can cause forma- 
tion of inhomogeneities in the spatial distribution of inertial 
particles. The turbulent flux of particles is given by 

Indeed, in order to simplify mean-field equation for a num- 
ber density of small inertial particles we use two models of 
random velocity field: the model of the velocity field with 

JT = NV,, - DTVN . (5) 

The additional turbulent nondiffusive flux of particles due to 
the effective velocity V,E can be also estimated as follows. 
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We average Eq. (1) over the ensemble of the turbulent veloc- 
ity fluctuations and subtract the obtained averaged equation 
from (1). This yields equation for the turbulent component 
0 = n - N of the particles number density 

d0/dt - DA@ = -V . (NV + Q) , (6) 

where Q = v0 - (~0). Equation (6) is written in a frame 
moving with the mean velocity V. The magnitude of d@/dt- 
DA@ + V . Q can be estimated as O/T, where 7 is the cor- 
relation time of the velocity field. Thus the turbulent field 0 
is of the order of 

Now we calculate the turbulent flux of particles JT = (~0) : 

JT - -N(Tv(V . v)) - (TVU~)V~N . (7) 

The first term in Eq. (7) describes the additional turbulent 
nondiffusive flux of particles due to the effective velocity 
V Ed. Notably, similar turbulent cross-effects can occur in 
turbulent fluid flows with chemical reactions, or phase tran- 
sitions, or fast rotation (see Elperin et al., 1998b; 1998~). 

Remarkably, Eq. (4) for the effective velocity of particles 
provides local parameterization of these turbulence effects, 
and it can be directly incorporated to existing atmospheric 
numerical models. It is seen from Eq. (4) that the ratio 
IV,E/WI is of the order of 

(see Elperin et al., 1996a; 1998a; 2000a), where 6T is the 
temperature difference in the scale AT, and T, is the charac- 
teristic temperature. Note that the additional particle veloc- 
ity V,R is of the order of the terminal fall velocity W in the 
vicinity of the atmospheric temperature inversion (see Sec- 
tion 4). In the atmosphere without temperature inversion the 
effective particle velocity is directed opposite to the terminal 
fall velocity, and the effective particle velocity decreases the 
effective sedimentation velocity by 10 - 30 percents. In the 
atmosphere with a temperature inversion the effective parti- 
cle velocity V,tf is directed to the temperature minimum and 
it results in accumulation of particles in the vicinity of the 
temperature inversion. 

The additional turbulent nondiffusive flux of particles due 
to the effective velocity Vex results in formation of inhomo- 
geneities of aerosols distribution whereby initial spatial dis- 
tribution of particles in the turbulent atmosphere evolves un- 
der certain conditions into large-scale inhomogeneous distri- 
bution due to excitation of an instability. One of the most im- 
portant conditions for the instability is inhomogeneous spa- 
tial distribution of the mean atmospheric temperature. In par- 
ticular, the instability can be excited in the vicinity of the 
minimum in the mean temperature (see Elperin et al., 1996a; 
1998a). The characteristic time of formation of inhomo- 
geneities of particles is of N AT/IV& - WI. The formation 

of inhomogeneities is possible when I& > W. The initially 
spatial distribution of the concentration of the inertial parti- 
cles evolves into a pattern containing regions with increased 

(decreased) concentration of particles. Characteristic vertical 

size of the inhomogeneity is of the order of 

Therefore, it is important to take into account the additional 
turbulent nondiffusive flux of particles due to the effective 
velocity V,a in atmospheric phenomena (e.g., atmospheric 
aerosols, cloud formation and smog formation). 

3 Formation of small-scale inhomogeneities in particles 
spatial distribution 

In order to describe a formation of small-scale structures we 
derived equation for the second-order correlation function 

+(t, x, Y) = @(t, x)@(t, Y>) 

of number density of particles advected by a random velocity 
field with a small yet finite correlation time 7. The equation 
is given by 

a@/& = [B(r) - 2u,v, + D,,V,V,]@(& r) ) 

where 

(8) 

D mn = 2D6,, + 2&, + St2Q,,m.) , (9) 

(10) 

aA, 2 -- ( >)I7 ar, 
(12) 

and A, = afm,larp, L = fmn(0) - fmn(r), St = 
27/7-o is the Strouhal number, 7-o = ZO/UO. For simplicity 
we assumed here that a random velocity field has a Gaussian 
statistics. 

The correlation function fmn for homogeneous, isotropic 
and compressible velocity field is given by 

f mn = (4/3){(F + F&L, + (rF’P)P,, 

+r+,,} , (13) 

where Pmn(r) = S,, - rmn, r,, = r,rn/r2 and F’ = 
dF/dr. The function F,(r) describes the potential (compress- 
ible) component whereas F(r) corresponds to the vertical 
part of a random velocity field. Note that the condition V . 
v # 0 is associated either with a compressibility of a ,low- 
Mach-number compressible fluid flow or with particles in- 
ertia (see Maxey, 1987; Elperin et al., 1996a; 1998a). For 
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inertial particles V . v = r,~IPf/p and the degree of com- 

pressibility of particles velocity is 

c = ((V +Y)/((V x v)“) = 12&7,2/y = 12Re(T,/To)’ , 

where rp is the Stokes time and E = ug/ro. The functions 
F(r) and F,(r) are chosen as follows. In scales 0 < T < 1 
incompressible F(r) and compressible F,(r) components of 
the random velocity field are given by F(T) = (1 - r2) / (1 + 
a) andF,(r) = OF(T), h w ere T is measured in the units of 
the maximum scale of turbulent motions lo. In scales r 2 1 

the functions F = F, = 0. 
Turbulent diffusion tensor D,, is determined by the field 

of Lagrangian trajectories 6. Due to a finite correlation time 
of a random velocity field the field of Lagrangian trajecto- 
ries 5 is compressible even if the velocity field is incom- 
pressible (0 = 0). Indeed, for 0 = 0 we obtain ((V . 
<)2) = (20/s)%“. We will show that the compressibility 
of the field of Lagrangian trajectories results in the excitation 
of a small-scale instability of the second moment of parti- 
cles number density and formation of small-scale inhomo- 
geneities of fluctuations of particles number density even for 
very small compressibility of a random velocity field with a 
finite correlation time. 

Using Eq. (13) we calculate the functions D,,(r) I Urn(r) 
and B(r). Thus, Eq. (8) can be rewritten in the form 

aG?/at = (l/m)@’ + X(T)@’ + B@ ) (14) 

where @’ = da/&, Q” = d%/d?, T = Iy - XI, 

l/m = 2(1 +X2)/Pe, 

X = 2[2 + X2(1 + 2C)]/(rPe) , 

C = (cz+St”cg)/4/3, X(T) = mr, andPe = &o/D > 
1 is the Peclet number, ,0 = (CQ + St”c6)/2, and B = 
cl + St2cs, and 

20a 
Cl = - 

2(19a + 3) 

lfcr’ %= 3(1+a) ’ 

c3 = 
2(3r + 1) 

3(1+a) ’ 
1 

c5 = - 
27(1 + c)” 

(12 - 12780 - 30670~) ? 

1 
c,j = 

27(1-t g)” 
(36 + 466g + 2499a2) , 

the distance T is measured in units of lo, time t is measured 
in units of TO. In order to obtain a solution of Eq. (14) we 
use a separation of variables, i.e., we seek a solution in the 
following form: Q(t, T) = G(T) exp(yt), whereby y is a 
free parameter to be specified by the boundary conditions 
@(T = 0) = 1 and @(T -+ a) = 0. Since the function 
Q(t, r) is the two-point correlation function, it has a global 
maximum at T = 0 and therefore it satisfies the conditions: 
&i(r = 0) = 0, and &“(T = 0) < 0, and 6(r = 0) > 
I@(r > O)l. Solution of Eq. (14) can be analyzed using 
an asymptotic analysis which is based on the separation of 
scales. In particular, the solution of Eq. (14) has different 

regions where the form of_the functions m(r) and X(T) are 
different. The functions a’(r) and &‘(T) in these different 
regions are matched at their boundaries in order to obtain 
continuous solution for the correlation function. Note that 
the most important part of the solution is localized in small 
scales (i.e., T < 1). Using the asymptotic analysis of the ex- 
act solution for X > 1 allowed us to obtain the necessary 
conditions of a small-scale instability of a number density of 
particles. The results obtained by this asymptotic analysis 
are presented below. 

The solution of Eq. (14) has the following asymptotics: 
for X (< 1 (i.e., in the scales 0 5 T < l/a) the solution 
for the second moment 4 is given by 

&(X) = (1 - (rc/6)[X2 + 0(X4)]} , (15) 

where K = (B - y)/2p. For X >> 1 (i.e., in the scales 
l/G < T < 1) the function (i, is given by 

g(X) = R+lX-C*=} . (16) 

When C” - I(. < 0 the second-order correlation function for 
a number density of particles & is given by 
^ 
a(~) = Ag -c COS(YI 111 T + ‘p) ) (17) 

where VI = dn, C > 0 and y is the argument of the 

complex constant A. For T >_ 1 the second-order correlation 
function is given by 

$(r) = (Ad/r) exp(-r m) , (18) 

for y > 0. The total number of particles in a closed volume is 
conserved, i.e., particles can only be redistributed in the vol- 
ume. It yields the condition so” r2i(r) dr = &(k = 0) = 0. 
The later yields ‘p = -~/2 for In Pe < 1 and y <( 1. When 

C2 - K > 0 the solution i(X) = AX-“*- cannot 
be matched with solutions (15) and (18). Thus the condition 
C” - n < 0 is the necessary condition for thk existence of the 
solution for the correlation function. The condition C > 0 
provides the existence of the global maximum of the corre- 
lation function at T = 0. Matching functions Q and a’ at 
the boundaries of the above-mentioned regions yields coef- 
ficients ilk and y. In particular, the growth rate of a small- 
scale instability of the the second-order correlation function 
for particles number density is given by 

(19) 

where Ic = 1,2,3, . . . Analysis shows that the small-scale 
instability can be excited in a very wide range of parame- 
ters St and CJ. There is only a small range of values (T (e.g., 
0.02 < ~7 < 0.2) for which there is no instability of the 
second moment. The sufficient condition for the generation 
of fluctuations of particles number density is Pe > PecC’), 
where the critical Peclet number PeCC’) is given by PeCcr) = 
Pe(y = 0). 
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The causes for the excitation of a small-scale instability of of Lagrangian trajectories determines the coefficient of tur- 
fluctuations of particles number density are both, the com- bulent diffusion (i.e. the coefficient D,, near the second- 
pressibility of the velocity field and the compressibility of order spatial derivative of the second moment of particles 
the field of Lagrangian trajectories. The compressibility of number density in Eq. (8) and causes depletion of turbu- 
the field of Lagrangian trajectories when St # 0 implies that lent diffusion in small scales even for u = 0. On the other 
the number of particles flowing into a small control volume hand, compressibility of the velocity field determines a co- 
in a Lagrangian frame does not equal to the number of parti- efficient B(r) near the second moment of a passive scalar in 
cles flowing out from this control volume during a correlation Eq. (8). This term is responsible for the exponential growth 
time. This can result in the depletion of turbulent diffusion. of the second moment of a number density of particles. 

The role of the compressibility of the velocity field is as 
follows. The condition V . v # 0 is associated with particles 
inertia. For inertial particles one obtains V . v = r,APf /p 
(see Section 4 and Elperin et al. 1996a; 1998). The inertia 
of particles results in that particles inside the turbulent eddies 

are carried out to the boundary regions between the eddies by 
inertial forces (i.e., regions with-low vorticity or high strain 
rate). For large Peclet numbers V . v 0: -dn/dt. Therefore, 
dn/dt cx -rr,APf/p. Thus there is accumulation of iner- 
tial particles (i.e., dn/dt > 0) in regions with APf < 0. 
Similarly, there is an outflow of inertial particles from the re- 
gions with APf > 0. This mechanism acts in a wide range 
of scales of a turbulent fluid flow. Turbulent diffusion results 
in relaxation of fluctuations of particle concentration in large 
scales. However, in small scales where turbulent diffusion is 
small, the relaxation of fluctuations of particle concentration 
is very weak. Therefore the fluctuations of particle concen- 
tration are localized in the small scales (see Elperin et al., 
1996b; 1998a). 

4 Discussion 

This phenomenon is considered for the case when density 
of fluid p is much less than the material density pp of particles 
(p << pp). When p 2 pp the results coincide with those 
obtained for the case p < pp except for the transformation 
rp + Ptrp, where 

In the present study we derived a mean-field equation and 
an equation for the second moment for a number density of 
inertial particles (aerosols and droplets) advected by turbu- 
lent atmospheric velocity field with a small yet finite correla- 
tion time. The finite correlation time of the turbulent velocity 
field results in the appearance of the higher than the second- 
order spatial derivatives in these equations and causes a de- 
crease of turbulent diffusion and a modification of an effec- 
tive drift velocity. The effective mean drift velocity is caused 
by a compressibility of particles velocity field and results in 
formation of large-scale inhomogeneities in spatial distribu- 
tion of aerosols in the vicinity of the atmospheric temperature 
inversion. A mechanism of formation of small-scale inho- 
mogeneities in particles spatial distribution is also discussed 
here. This mechanism is associated with an excitation of a 
small-scale instability of the second moment of number den- 
sity of particles. 

The obtained results are important in some atmospheric 
phenomena (e. g., atmospheric aerosols, cloud formation and 
smog formation) and turbulent industrial flows. We consid- 
ered turbulent velocity field with V . v # 0 which is due to, 
e.g., particle inertia (see, e.g., Maxey, 1987; Elperin et al., 
1996a; 1998a). The velocity of particles v depends on the 
velocity of the atmospheric fluid, and it can be determined 
from the equation of motion for a particle. This equation rep- 
resents a balance of particle inertia with the fluid drag force 
produced by the motion of the particle relative to the atmo- 
spheric fluid and gravity force. Solution of the equation of 
motion for small particles with pp > p yields 

P*= (1+-$(1-&). 

For p 2 pp the value dn/dt oc -/3*rpAP/p. Thus there is 
accumulation of inertial particles (i.e., dn/dt > 0) in regions 
with the minimum pressure of a turbulent fluid since ,f?* < 0. 

In the case p > pp we used the equation of motion of parti- 
cles in fluid flow which takes into account contributions due 
to the pressure gradient in the fluid surrounding the particle 
(caused by acceleration of the fluid) and the virtual (“added”) 
mass of the particles relative to the ambient fluid. 

When the second moment of particles number density grows 
in time the higher moments of passive scalar also grow. The 
growth rates of the higher moments of particles number den- 
sity is larger than those of the lower moments, i.e., spatial 
distribution of particles number density is intermittent (see 
Elperin et al., 1996b; 1998a). This process can be damped by 
the nonlinear effects (e.g., two-way coupling between parti- 
cles and turbulent fluid flow). Note that excitation of the sec- 
ond moment of a number density of particles requires two 
kinds of compressibilities: compressibility of the velocity 
field (cr # 0) and compressibility of the field of Lagrangian 
trajectories (St # 0), which is caused by a finite correlation 
time of a random velocity field. Compressibility of the field 

v = u + w - Tp{dll/& + [(u + W) . V]u} + O(T,) ) 

where u is the velocity of the atmospheric fluid, W = Tpg is 
the terminal fall velocity, g is the acceleration due to gravity, 
rp is the characteristic time of coupling between the particle 
and atmospheric fluid (Stokes time). For instance, for spheri- 
cal particles of radius a, the Stokes time is rr, = m,/(67ra,pv), 
where mp is the particle mass. The velocity field of particles 
is compressible, i.e., V . v # 0. Indeed, the equation for 
the velocity of particles and Navier-Stokes for atmospheric 
fluid yield V . v = rpAPf/p + O($), where Pf is atmo- 
spheric fluid pressure and we neglected small V . u. Since 
dnfdt cc -a ’ v - -r,APf/p, in regions where APf < 0 
there is accumulation of inertial particles (i.e., dn/dt > 0). 
Similarly, there is an outflow of inertial particles from the 
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regions with AP, > 0. When there is a large-scale inho- 
mogeneity of the temperature of the turbulent flow, the mean 
heat flux (~0) # 0. Therefore fluctuations of both, tempera- 
ture 0 and velocity u of fluid, are correlated. Fluctuations of 
temperature cause fluctuations of pressure of fluid and vise 
versa. The pressure fluctuations result in fluctuations of the 
number density of inertial particles. Indeed, increase (de- 
crease) of the pressure of atmospheric fluid is accompanied 
by accumulation (outflow) of the particles. Therefore, direc- 
tion of mean flux of particles coincides with that of heat flux, 
i.e. (vn) cc (u(J) CC -VT, where T is the mean temperature 

of atmospheric fluid. Therefore the mean flux of the inertial 
particles is directed to the minimum of the mean temperature 
and the inertial particles are accumulated in this region, e.g., 
in the vicinity of the temperature inversion layer. The latter 
results in formation of large-scale inhomogeneities in spa- 
tial distribution of aerosols in the vicinity of the atmospheric 
temperature inversion (for details see Elperin et al., 1996a; 

1998). 
Using the characteristic parameters of the atmospheric tur- 

bulent boundary layer: maximum scale of turbulent flow lo N 
lo3 - lo4 cm; velocity in the scale la : uo - 30 - 100 
cm/s; Reynolds number Re N 10G - lo7 we estimate the 
ratio IV,ff/WI and the depletion of the turbulent diffusion 
coefficient. For particles with material density pp - 1 - 2 g 
I cm3 and radius a, = 30pm the ratio IV,tf/WI M 0.9 for 
the temperature gradient lK/200 m, where W + 10-2a~ 
cm / s and a, is measured in micrones. For these parameters 
the coefficient of turbulent diffusion in the vertical direction 
can be depleted by 25% due to the finite correlation time of 
a turbulent atmospheric velocity field. The latter result is in 
compliance with the known anisotropy of the coefficient of 
turbulent diffusion in the atmosphere. Thus, two competitive 

mechanisms of particles transport, i.e., the mixing by the de- 
creased turbulent diffusion and accumulation of particles due 
to the effective velocity act simultaneously together with the 
effect of gravitational settling of particles. This can result in 
formation of large-scale inhomogeneities in spatial distribu- 
tion of aerosols in the vicinity of the atmospheric temperature 
inversion. The characteristic time of excitation of the insta- 
bility of concentration distribution of particles varies in the 
range from 0.3 to 3 hours depending on parameters of both, 
the atmospheric turbulent boundary layer and the tempera- 
ture inversion layer. We expect that the spatial density mm 
of particles inside the inhomogeneous structures is of the or- 
der of the density p of surrounding fluid. 

The analyzed effect of self-excitation (exponential growth) 
of fluctuations of particles concentration is important in at- 
mospheric turbulence. Using the parameters of the atmo- 
spheric turbulent boundary layer we find that the degree of 
compressibility of g z 1.2 x 10v6a:, where hereafter the 
size of a particle a, is measured in micrones, and the Stokes 
time rp M 10-5uq for particles with material density pp = 1 
g / cm3. The instability is not excited when the degree of 
compressibility of particles velocity 0.02 < g < 0.2, i.e., for 
particles and droplets of the size 14.3pm < a, < 25.4pm. 

On the other hand, for droplets of the size a, > 25.4bm 

the small-scale instability can be excited. This effect causes 
formation of small-scale inhomogeneities in droplet clouds 
which were recently observed in atmospheric turbulence in 
small cumulus clouds (see Baker and Brenguier, 1998). No- 
tably, small-scale inhomogeneities in spatial distribution of 
inertial particles were observed also in laboratory turbulent 
flow (see Fessler et al., 1994; Hainaux et al., 2000). 
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