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ABSTRACT

Solar, stellar and galactic large-scale magnetic fields are originated due to a combined action of non-uniform (differential)
rotation and helical motions of plasma via mean-field dynamos. Usually, non-linear mean-field dynamo theories take into
account algebraic and dynamic quenching of alpha effect and algebraic quenching of turbulent magnetic diffusivity. However,
the theories of the algebraic quenching do not take into account the effect of modification of the source of turbulence by the
growing large-scale magnetic field. This phenomenon is due to the dissipation of the strong large-scale magnetic field resulting
in an increase of the total turbulent energy. This effect has been studied using the budget equation for the total turbulent energy
(which takes into account the feedback of the generated large-scale magnetic field on the background turbulence) for (i) a
forced turbulence, (ii) a shear-produced turbulence, and (iii) a convective turbulence. As the result of this effect, a non-linear
dynamo number decreases with increase of the large-scale magnetic field, so that that the mean-field « €2, o2, and «*Q dynamo

instabilities are always saturated by the strong large-scale magnetic field.
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1 INTRODUCTION

Large-scale magnetic fields in the Sun, stars, and galaxies are
believed to be generated by a joint action of a differential rotation
and helical motions of plasma (see e.g. Moffatt 1978; Parker 1979;
Krause & Ridler 1980; Zeldovich, Ruzmaikin & Sokoloff 1983;
Ruzmaikin, Shukurov & Sokoloff 1988; Riidiger, Hollerbach &
Kitchatinov 2013; Moffatt & Dormy 2019; Rogachevskii 2021;
Shukurov & Subramanian 2021). This mechanism can be described
by the «Q or a>Q mean-field dynamos. In particular, the effect of
turbulence in the mean-field induction equation is determined by the
turbulent electromotive force (EMF), (u# x b), which can be written
for a weak mean magnetic field B as (u x b) = o, B + Ve «
B — 1, (V x B), where o, is the kinetic « effect caused by helical
motions of plasma, 7, is the turbulent magnetic diffusion coefficient,
V© js the effective pumping velocity caused by an inhomogeneity
of turbulence. Here the angular brackets imply ensemble averaging,
u and b are fluctuations of velocity and magnetic fields, respectively.
The threshold of the o2 mean-field dynamo instability is described
in terms of a dynamo number Dy = «, §Q2 L /77, where 8 char-
acterizes the non-uniform (differential) rotation and L is the stellar
radius or the thickness of the galactic disc.

The mean-field dynamos are saturated by non-linear effects. In
particular, a feedback of the growing large-scale magnetic field on
plasma motions is described by algebraic quenching of the « effect,
turbulent magnetic diffusion, and the effective pumping velocity.
This implies that the turbulent transport coefficients, o (E) . (E) s
and V" (B) depend on the mean magnetic field B via algebraic
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decreasing functions. The quantitative theories of the algebraic non-
linearities of the « effect, the turbulent magnetic diffusion and the
effective pumping velocity have been developed using the quasi-
linear approach for small fluid and magnetic Reynolds numbers
(Riidiger & Kichatinov 1993; Kitchatinov, Pipin & Riidiger 1994;
Riidiger, Hollerbach & Kitchatinov 2013) and the tau approach for
large fluid and magnetic Reynolds numbers (Field, Blackman &
Chou 1999; Rogachevskii & Kleeorin 2000, 2001, 2004, 2006).

In addition to the algebraic non-linearity, there is also a dynamic
non-linearity caused by an evolution of magnetic helicity density of
a small-scale turbulent magnetic field during the non-linear stage of
the mean-field dynamo. Indeed, the o effect has contributions from
the kinetic o effect, o, determined by the kinetic helicity and a
magnetic o effect, o, described by the current helicity of the small-
scale magnetic field (Pouquet, Frisch & Léorat 1976). The dynamics
of the current helicity are determined by the evolution of the small-
scale magnetic helicity density Hy, = (a-b), where b = V xa and a
are fluctuations of the magnetic vector potential. The total magnetic
helicity, i.e. the sum of the magnetic helicity densities of the large-
scale and small-scale magnetic fields, Hy + Hy,, integrated over the
volume, f (Hwm + Hy) dr3, is conserved for very small microscopic
magnetic diffusivity 7. Here Hy = A-B is the magnetic helicity
density of the large-scale magnetic field B = VxA and A is the
mean magnetic vector potential.

As the mean-field dynamo instability amplifies the mean magnetic
field, the large-scale magnetic helicity density Hy grows in time.
Since the total magnetic helicity f (Hy + Hy,) dr? is conserved for
very small magnetic diffusivity, the magnetic helicity density H,,
of the small-scale field changes during the dynamo action, and
its evolution is determined by the dynamic equation (Kleeorin &
Ruzmaikin 1982; Zeldovich, Ruzmaikin & Sokoloff 1983; Gruzi-
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nov & Diamond 1994; Kleeorin, Rogachevskii & Ruzmaikin 1995;
Kleeorin & Rogachevskii 1999), which includes the source terms
and turbulent fluxes of magnetic helicity (Kleeorin & Rogachevskii
1999; Blackman & Field 2000; Kleeorin et al. 2000; Vishniac & Cho
2001; Brandenburg & Subramanian 2005; Kleeorin & Rogachevskii
2022; Gopalakrishnan & Subramanian 2023).

Taking into account turbulent fluxes of the small-scale magnetic
helicity, it has been shown by numerical simulations that a non-
linear galactic dynamo governed by a dynamic equation for the
magnetic helicity density H,,, of a small-scale field (the dynamical
non-linearity) saturates at a mean magnetic field comparable with
the equipartition magnetic field (see e.g. Kleeorin et al. 2000;
Blackman & Brandenburg 2002; Kleeorin et al. 2002, 2003a; Bran-
denburg & Subramanian 2005; Shukurov et al. 2006; Chamandy et al.
2014; Chamandy & Singh 2018). Numerical simulations demonstrate
that the dynamics of magnetic helicity plays a crucial role in solar
and stellar dynamos as well (see e.g. Kleeorin et al. 2003b; Sokoloff
et al. 2006; Zhang et al. 2006; Kipyld, Korpi & Brandenburg
2010; Hubbard & Brandenburg 2012; Zhang et al. 2012; Del Sordo,
Guerrero & Brandenburg 2013; Kleeorin et al. 2016; Safiullin et al.
2018; Kleeorin et al. 2020; Rincon 2021; Kleeorin et al. 2023).
Different forms of magnetic helicity fluxes have been suggested
in various studies using phenomenological arguments (Kleeorin &
Rogachevskii 1999; Kleeorin et al. 2000; Vishniac & Cho 2001;
Kleeorin et al. 2002; Subramanian & Brandenburg 2004; Branden-
burg & Subramanian 2005). Recently, the turbulent magnetic helicity
fluxes have been rigorously derived (Kleeorin & Rogachevskii 2022;
Gopalakrishnan & Subramanian 2023). In particular, Kleeorin &
Rogachevskii (2022) apply the mean-field theory, adopt the Coulomb
gauge and consider a strongly density-stratified turbulence. They
have found that the turbulent magnetic helicity fluxes depend on the
mean magnetic field energy and include non-gradient and gradient
contributions. In addition, Gopalakrishnan & Subramanian (2023)
have recently shown that contributions to the turbulent magnetic
helicity fluxes from the third-order moments can be described using
the turbulent diffusion approximation.

In a non-linear «2 dynamo, one can define a non-linear dynamo
number Dy (B) =« (B) 8Q L*/n2 (B). If the non-linear dynamo
number Dy (E) decreases with the increase of the large-scale
magnetic field, the mean-field dynamo instability is saturated by the
non-linear effects. However, if the « effect and the turbulent magnetic
diffusion are quenched as (B / Eeq)_2 for strong mean magnetic fields,
the non-linear dynamo number Dy (E) x (E/ﬁeq)z increases with
the increase of the large-scale magnetic field, and the mean-field
dynamo instability cannot be saturated for a strong mean magnetic
field. Here, Beg = (1o P (u?)) 2 is the equipartition mean magnetic
field and po is the magnetic permeability of the fluid. How is it
possible to resolve this paradox?

The mean-field dynamo theories of the algebraic quenching imply
that there is a background helical turbulence with a zero-mean
magnetic field. The large-scale magnetic field is amplified by the
mean-field dynamo instability. In a non-linear dynamo stage, the
dissipation of the generated strong large-scale magnetic field results
in an increase of the turbulent kinetic energy (TKE) of the background
turbulence. The latter effect causes an increase of the turbulent
magnetic diffusion coefficient and decrease of the non-linear dynamo
number. This additional non-linear effect results in a saturation of
the dynamo growth of a strong large-scale magnetic field.

However, this non-linear effect has not been yet taken into account
in non-linear mean-field dynamo theories that derive the algebraic
quenching of the turbulent magnetic diffusion. In the present study,
we have taken into account this feedback effect of the mean magnetic
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field on the background turbulence using the budget equation for the
total (kinetic plus magnetic) turbulent energy. We consider three
different types of astrophysical turbulence:

(1) a forced turbulence (e.g. caused by supernova explosions in
galaxies);

(ii) a shear-produced turbulence (e.g. in the atmosphere of the
Earth or other planets); and

(iii) a convective turbulence (e.g. in a solar and stellar convective
zones).

We have demonstrated that the non-linear dynamo number indeed
decreases with the increase of the mean magnetic field for any strong
values of the magnetic field, resulting in saturation of the mean-field
dynamo instability.

This paper is organized as follows. In Section 2, we explain the
essence of the algebraic and dynamic non-linearities, and discuss
the procedure and assumptions for the derivation of the non-linear
turbulent EMF. In Section 3, we consider the budget equations for
the turbulent kinetic and magnetic energies which allow us to take
into account the increase of TKE of the background turbulence by
the dissipation of a strong mean magnetic field and to determine
asymptotic properties of turbulent magnetic diffusion and non-linear
dynamo numbers for a strong mean magnetic field for the mean-field
a Q dynamo (see Section 4), the a? and o> 2 dynamos (see Sec. 5). In
addition, in Sec. 5 we outline important asymptotic properties in the
a?Q dynamo. Finally, in Section 6, we discuss the obtained results.

2 NON-LINEAR TURBULENT EMF

To explain the essence of the algebraic and dynamic non-linearities,
we discuss in this section the procedure and assumptions for the
derivation of the non-linear turbulent EMF in a non-rotating and
helical small-scale turbulence. In the framework of the mean-field
approach, the mean magnetic field B is determined by the induction
equation

0B _ _
¥:wax3+g(3)—wxm, (1)
where U is the mean velocity (differential rotation), n is the
magnetic diffusion due to the electrical conductivity of plasma, and
E(B) = (u x b) is the the turbulent EMF. To derive equations for the
non-linear coefficients defining the turbulent EMF, we use a mean-
field approach in which the magnetic and velocity fields, the fluid
pressure and density are separated into the mean and fluctuating parts,
where the fluctuating parts have zero mean values. We consider the
case of large hydrodynamic and magnetic Reynolds numbers. The
momentum and induction equations for the turbulent fields are given
by

ut,x)  Vpu

+%[(b.V)§+(§.V)b}

ot P Hop
+u” +F, @)
abgt, *) _ (B-V)u—(-V)B+b", 3)

where p is the mean plasma density, (¢ is the magnetic permeability
of the plasma, F is a random external stirring force, #" and b" are
the non-linear terms that include the molecular dissipative terms,
Pt =P+ (uop)"' (B - b) are fluctuations of the total pressure
and p are fluctuations of the plasma pressure. For simplicity, let
us consider incompressible flow, so that the velocity u satisfies to the
continuity equation, V - # = 0 and the fluid density is constant. The
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assumptions and the procedure of the derivation of the non-linear
turbulent EMF are as follows:

(1) We apply the multiscale approach (Roberts & Soward 1975),
which allows us to introduce fast and slow variables, and separate
small-scale effects corresponding to fluctuations and large-scale
effects describing mean fields. The mean fields depend on slow
variables, while fluctuations depend on fast variables. Separation
into slow and fast variables is widely used in theoretical physics, and
all calculations are reduced to the Taylor expansions of all functions
assuming that characteristic turbulent spatial and time-scales are
much smaller than the characteristic spatial and time-scales of the
mean magnetic field variations.

(ii) Using equations (2)—(3) written in a Fourier space, we derive
equations for the second-order moments for the velocity field f; =
(u;u;), the magnetic field hy = (b;b;) and the cross-helicity g; =

(iii) We split the tensors f;j, hj, and gj; into non-helical h; and
helical, hfjH) parts. The helical part of the tensor hff) for magnetic
fluctuations depends on the small-scale magnetic helicity, and its
evolution is determined by the dynamic equation that follows from
the magnetic helicity conservation arguments (Kleeorin & Ruz-
maikin 1982; Gruzinov & Diamond 1994; Kleeorin, Rogachevskii &
Ruzmaikin 1995; Kleeorin & Rogachevskii 1999; Kleeorin et al.
2000; Blackman & Brandenburg 2002). The characteristic time of
the evolution of the non-helical part of the magnetic tensor Aj is
of the order of the turbulent correlation time ty = £y/uy, while the
relaxation time of the helical part of the magnetic tensor h,(-JH) is of the
order of 7o Rm, where Rm = £yuo/n > 1 is the magnetic Reynolds
number, and i is the characteristic turbulent velocity in the integral
scale £ of turbulent motions.

(iv) Equations for the second-order moments contain higher-order
moments and a problem of closing the equations for the higher-order
moments arises. Various approximate methods have been proposed
for the solution of this closure problem (Monin & Yaglom 1971; Mc-
Comb 1990; Monin & Yaglom 2013; Rogachevskii 2021). For small
fluid and magnetic Reynolds numbers, the quasi-linear approach can
be used (Riidiger & Kichatinov 1993; Kitchatinov, Pipin & Riidiger
1994; Riidiger, Hollerbach & Kitchatinov 2013), while for large fluid
and magnetic Reynolds numbers, the minimal tau approach (Field,
Blackman & Chou 1999) or the spectral T approach (Rogachevskii &
Kleeorin 2000, 2001, 2004, 2006) are applied to derive the non-linear
turbulent EMF. For instance, the spectral t approach postulates that
the deviations of the third-order moments, /M f,-(j”” (k), from the
contributions to these terms afforded by the background turbulence,

M ]”,»5-1”’0)(k), can be expressed through the similar deviations of the

second-order moments, f,-(j”)(k) — f,-i-”‘o)(k) (Orszag 1970; Pouquet,
Frisch & Léorat 1976; Kleeorin, Rogachevskii & Ruzmaikin 1990):

1 — £
7,(k) ’

where 7,(k) is the scale-dependent relaxation time, which can be
identified with the correlation time (k) of the turbulent velocity
field for large fluid and magnetic Reynolds numbers. The superscript
(0) corresponds to the background turbulence (with B = 0), and 7 (k)
is the characteristic relaxation time of the statistical moments. We
apply the spectral T approach only for the non-helical part A;; of the
tensor for magnetic fluctuations. The spectral T approach is widely
used in the theory of kinetic equations, in passive scalar turbulence
and magnetohydrodynamic turbulence.

(v) We use the following model for the second-order moment ,-(J-O)
of isotropic inhomogeneous incompressible and helical background

./\}lfig-””(k) _ Mf,«y”'o)(k) _ ()

MNRAS 530, 382-392 (2024)

turbulence in a Fourier space:

E(h) i
100 = 25 { [ — ks + 5 (s
—ij,-)] ) - é eiipky (- (VX 1)) } (5)

Here, §;; is the Kronecker tensor, k;; = k; k,»/k2 and (u - (Vxu))
is the kinetic helicity. The energy spectrum function is E(k) =
(2/3)ky ! (k/ko)™>3 in the inertial range of turbulence ky < k <
k,. Here the wave number ky = 1/, the length ¢, is the integral
scale of turbulent motions, the wave number k, = £, the length
£, = £yRe™3* is the Kolmogorov (viscous) scale, and the expression
for the turbulent correlation time is given by #(k) = 2 7o (k/ko) /.
The model for the second moment hg-)) for magnetic fluctuations in a
Fourier space caused by the small-scale dynamo (with a zero mean
magnetic field) is
Ek 0

W) = 0 (5~ k) (87). ©)
We also take into account that the turbulent EMF is produced in a
turbulence with a non-zero mean magnetic field, so that the cross-
helicity tensor in the background turbulence vanishes, i.e. gf;-)) =0.

(vi) We assume that the characteristic time of variation of the
mean magnetic field B is substantially larger than the correlation
time (k) for all turbulence scales (which corresponds to the mean-
field approach). This allows us to get a stationary solution for the
equations for the second moments. Using the derived equations for
the second moments f;;, &, and gij, we determine the non-linear
turbulent EMF &; = ¢, f gmn(k) dk. The details of the derivation of
the non-linear turbulent EMF are given by Rogachevskii & Kleeorin
(2004).

For illustration of these results, we consider a small-scale ho-
mogeneous turbulence with a mean velocity shear, U = Sz e y. We
also consider an axi-symmetric «$2 dynamo problem in the Carte-
sian coordinates, so the mean magnetic field, B = B,(x,z)e, +
V x[A(x, 2) e,], is determined by the following non-linear dynamo

equations (Rogachevskii & Kleeorin 2004):

A — = .

o5 = B +ayB)] By +1." (B) AA, @)

By V. A+, (1 (B) V)] B ®)
or x iy jl By

Here, the non-linear « effect is given by

a(B) = ay(B) + a,(B), ©)

where a®(B) is the kinetic « effect, and «™ (B) is the magnetic
« effect, which are given by

a (B) =P ¢ (B)(1 —e), (10)
ay (B) = 3;ZﬁHc (B) ¢y (B). (11)

Here, ¥ = —19H,/3 with H, = (u-(Vxu)) being the kinetic
helicity, B = /8 B/Beg, the parameter € = (b*)© ¢,/((u?)©¢y)
characterized the small-scale dynamo is varied in the range 0 <
€ < 1, where (b*)© /2 and (u2)©@ /2 are turbulent magnetic and
kinetic energies of the background turbulence, ¢, is the characteristic
scale of the localization of the magnetic energy due to the small-
scale dynamo, and H, (B) = (b-(V xb)) is the current helicity of
the small-scale magnetic field b.

The quenching functions ¢, (B) and ¢,,(B) of the kinetic and
magnetic « effects are given by equations (A1)—-(A2) in Appendix A.
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Here, ¢,,(B) is the quenching function of the magnetic « effect
derived by Field, Blackman & Chou (1999) using the minimal
approximation (the t approach applied in a physical space) and
Rogachevskii & Kleeorin (2000) using the spectral T approach.

The non-linear turbulent magnetic diffusion coefficients for the
poloidal n') (B) and toroidal n'® (B) mean magnetic field are given
by

B =0 ¢ (B). 1B =0 o (B). (12)

where n(TO) =1 <u2> /3 is the characteristic value of the turbulent
magnetic diffusivity. The quenching function ¢\ (8) = ¢, (8) +
¢(B) and the functions ¢, (B) and ¢(B) are given by equations
(A1) and (A3) in Appendix A. Here, for simplicity, we consider
a homogeneous background turbulence, so the effective pumping
velocity of the large-scale magnetic field vanishes.

The asymptotic formulas for the kinetic and magnetic « effects,
and the non-linear turbulent magnetic diffusion coefficients of the
mean magnetic field for a weak field B < Eeq /4 are given by

2

() =l (1-€) (1— 125’3 ) (13)
o (B — 0 B _Lﬂz)
™ (B) = - 1. (B) (1 2. (14)
M) =n? (1 - 15—2 /32) , (15)
(B = (1 - %(5 - 4e)52) , (16)
and for a strong field B 3> B.q/4 they are given by

a©
a®(p) = /7"2 (1—e), a7

— H. (B)

™ (B) = , 18
o™ (B) rop  B? e

© 21
Wgy - M mygy~ T
n,(B) = g B = 35 (1+e). 19)

It follows from equations (13)—(19) that small-scale dynamo de-
creases the kinetic o effect, and it increases the turbulent magnetic
diffusion of the toroidal mean magnetic field.

As follows from equation (11), the magnetic « effect is propor-
tional to the current helicity H,. (F) of the small-scale magnetic field
(Pouquet, Frisch & Léorat 1976), which describes the dynamical
quenching of the « effect. Note that the dynamical quenching
related to evolution of the magnetic o effect is derived only from
the induction equation, and it is a contribution from small-scale
current helicity (b-(V xb)), which is related to the small-scale
magnetic helicity density. On the other hand, the algebraic quenching
of the kinetic and magnetic alpha effects and turbulent magnetic
diffusion coefficients of the large-scale magnetic field are derived
from both, the Navier-Stokes equation for velocity fluctuations and
the induction equation for magnetic fluctuations. In particular, the
algebraic quenching is a contribution from the correlation functions
for velocity fluctuations (u;u;), magnetic fluctuations (b;b;) and the
cross-helicity correlation function (u;b;). The algebraic quenching
is a physical effect related to a feedback of the growing large-scale
magnetic field on plasma motions. If the algebraic quenching of the «
effect is taken into account, the algebraic quenching of the turbulent
magnetic diffusion should be taken into account as well. For instance,
many studies related to the mean-field numerical simulations of
the evolution of the solar and galactic magnetic fields take into
account algebraic and dynamic quenching of the « effect, but ignore
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the algebraic quenching of the turbulent magnetic diffusion (see
e.g. Covas et al. 1997, 1998; Kleeorin et al. 2000; Blackman &
Brandenburg 2002; Kleeorin et al. 2002, 2003b; Brandenburg &
Subramanian 2005; Shukurov et al. 2006; Guerrero, Chatterjee &
Brandenburg 2010; Chamandy et al. 2014; Kleeorin et al. 2016;
Safiullin et al. 2018; Kleeorin et al. 2020, 2023).

The approach discussed in this section allows us to derive the
non-linear turbulent EMF for an intermediate non-linearity. This
means that the mean magnetic field is not enough strong to affect
the background turbulence. The theory for a strong mean magnetic
field should take into account a modification of the background
turbulence by the mean magnetic field. In the next sections we take
into account this effect. In particular, we obtain the dependence of
the TKE 7 (u?)®/2 on the mean magnetic field using the budget
equations for the turbulent kinetic and magnetic energies. This
describes an additional non-linear effect of the increase of the TKE
of the background turbulence by the dissipation of a strong mean
magnetic field. The latter increases turbulent magnetic diffusion and
decreases the non-linear dynamo number for a strong field, resulting
in a saturation of the dynamo growth of the large-scale magnetic
field.

3 BUDGET EQUATIONS
Using the Navier—Stokes equation for velocity fluctuations, we derive

the budget equation for the density of TKE, E, = p (u?)/2 as

E, .
o1 +dive, =11 — ¢, (20)

where @, = (u (pu?/2+ p)) —vp VE, is the flux of TKE, &, =
vp < (Vju,-)2> is the dissipation rate of TKE, and

1'[K=—L{(lp[lzx(vXb)])—(uX(VXb))'ﬁ
Mo

+(u X b) (V ><§):| +ﬁ|:ng — <Mil/tj> VjU,’
+- )] @

is the production rate of TKE. Here, U is the mean velocity, v is
the kinematic viscosity and the angular brackets imply ensemble
averaging, F = (s u) is the turbulent flux of the entropy, s = 6/T +
(y~!' = 1)p/ P are entropy fluctuations, 6 and T are fluctuations and
mean fluid temperature, p and p are fluctuations and mean fluid
density, p and P are fluctuations and mean fluid pressure, y = cpley
is the ratio of specific heats, g is the acceleration due to the gravity,
and p f is the external steering force with a zero mean.

We consider three different cases when turbulence is produced
either by convection, or by large-scale shear motions or by an
external steering force, see the last three terms in the right-hand side
(RHS) of equation (21). The first two terms in the RHS of equation
(21) describe an energy exchange between the turbulent kinetic and
magnetic energies (see below), and the third term in the RHS of
equation (21) are due to the work of the Lorentz force in a non-
uniform mean magnetic field. The estimate for the dissipation rate
of the TKE density in homogeneous isotropic and incompressible
turbulence with a Kolmogorov spectrum is &, = E, /79, where 7 is
the characteristic turbulent time at the integral scale.

Using the induction equation for magnetic fluctuations, we derive
the budget equation for the density of turbulent magnetic energy
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(TME), E,, = (b*) /210 as
OE, ..
+dive, =11, —¢,, (22)

ot

where

o, = /%[(bx(u><b)>+<ub,->§j—<u‘b)§
0
+{(b*) U~ {(bb;) U; —n (bx(V xb))} (23)

is the flux of TME, &,, = n ((V x b)?) /o is the dissipation rate of
TME, and

HM=L{(u-[bx(Vxb)])—(ux(VXb))'E
Mo

T (biby) VT, - (B (V .v)} 24)

is the production rate of TME. Here, 7 is the magnetic diffusion due
to electrical conductivity of the fluid. The first two terms in the RHS
of equation (24) describe an energy exchange between the turbulent
magnetic and kinetic energies. The estimate for the dissipation rate
of the TME density is e, = E\, /7.

The density of total turbulent energy (TTE), E, = E, + E,;, is
determined by the following budget equation:

0E, .
o +dive, =11, — ¢, (25)

where
1, = | ({00 = o (wa) ) V0= () (7-0)
—(uxb)-(VxE)]ual—i—ﬁ(ng—i—(wf)). (26)

is the production rate of E,, &, = &, + €, is the dissipation rate of
E . and &, = &, + & isthe flux of E,.

To determine the production rate of TTE, we use the following
second moments for magnetic fluctuations (Rogachevskii & Kleeorin
2007),

B2

)= [ @) 00 (B) (ovm)]. )

and velocity fluctuations,

) = =5 [200 ) 8y~ (B) (5,45,

+7 (), 28)

(see Appendix B), where ;; = E,-Ej /B?. The tensor <u,» uj >(0) fora
background turbulence (with a zero-mean magnetic field) in equation
(28) has two contributions caused by background isotropic velocity
fluctuations and tangling anisotropic velocity fluctuations due to the
mean velocity shear (Elperin et al. 2002):

1

(ui ”j>(0) =3
where (aU),.j =(V;U;+V;U;)/2 and v;o) = 10(u®)®/3 is the
turbulent viscosity. For simplicity, in equation (27), we do not take
into account a small-scale dynamo with a zero-mean magnetic field.
The non-linear functions qP(E) and g,(B) entering in equation
(27)-(28) are given by equations (B6)—(B7) in Appendix B. The
asymptotic formulae for the non-linear functions g,(B) and g4(B) are

W) 5; — 200 (30) (29)

ij’
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as follows. For a very weak mean magnetic field, B < Beq/ 4Rm'/*,
the non-linear functions are given by

2 4 5
¢p(B) = S {1an+ E} +0(8%), (30)
gs(B) = 8 {1an+ 3] +0(8%), 31
15 15

where qu = po p (u?). For Eeq/4le/4 < B« Eeq/4, these non-
linear functions are given by

_ 16
a(B) = 52 [SIIn(V2p) + 1 +4p7] (32)
) 13,
4(B) = 1 {| In(v28)| + TR } : 33)
and for B 3> B.y/4 they are given by
_ 4 — 72
w®B) = 355 aB)= 3 (34)

where = /8 B/B.,.

Substituting equations (27)—(29) into equation (26), we obtain the
production rate of the TTE as
B2

— 7.2\ ()
B (4, (B) . (B) ) - "<3>} v.0)

210

1. =

T

+on )7 @0), - o (B) BB | (D),

1 — _
——£(B) - VxB)+p (s F+tu- ), (35)
o

where & (E) = (u x b) is the turbulent non-linear EMF. The
turbulent viscosity v, (E) depends on the mean magnetic field.

- — g
Mo

In particular, for weak field B < Eeq/4, the turbulent viscosity

v, (E) ~ I);O) = 10(u?)©/3, and for strong field B > Bey/4, it is

v, (B) ~ vl +€)/(4B/B.y) (Rogachevskii & Kleeorin 2007).

Using the steady-state solution of equation (25), we estimate the TTE

density as E, + E,; ~ t I1, where 7 is of the order of the turbulent

time. Equation (27) yields the density of TME E,, = (b) /2110 as
B2

By = [y (B) ~ 24, (B)] . G6)

In the next sections, we apply the budget equations for analysis of
non-linear mean-field «Q2, o, and > dynamos.

4 MEAN-FIELD 2 DYNAMO

In this section, we consider the axisymmetric mean-field & €2 dynamo,
so that the mean magnetic field can be decomposed as

B = Ey(t, x,z)e, + rot[A(t, x, 2)ey], 37

and non-linear mean-field induction equation reads

0 (A of A
23)-56)

where the operator N is given by

(P (B)a «(B)

N = B , (39)
RyR,Q  V;n'® (B)V;

and the operator

—  9(8Qsinv, A)
A= ————= 4
3G ) (40)

e
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describes differential rotation. Here, 9 is the angle between 62 and
the vertical coordinate z and L is the characteristic scale (e.g. the
radius of a star or the thickness of a galactic disc). The total « effect
is the sum of the kinetic o effect, aK(E), and the magnetic « effect,
oy, (B), a(B) = oy (B) + oy, (B), where the kinetic « effect is pro-
portional to the kinetic helicity H, = (u-(V xu)), and the magnetic
a effect is proportional to the current helicity H, (B) = (b-(V xb))
of the small-scale magnetic field b. Equations (38)—(40) are written
in dimensionless variables: the coordinate is measured in the units of
L; the time 7 is measured in the units of turbulent magnetic diffusion
time L2/ n(TO); the mean magnetic field is measured in the units of
B., where B, =0 B.', 0 = £y/v2L, B." = ug/mop,; and the
magnetic potential A is measured in the units of R,LB,. Here,
Ry = . L/n'Y, the fluid density 7 is measured in the units p,;
the differential rotation §2 is measured in units of the maximal
value of the angular velocity 2; the « effect is measured in units
of the maximum value of the kinetic « effect, «,; the integral scale
of the turbulent motions £y = 1y 1o and the characteristic turbulent
velocity ug = /(u?)© at the scale £ are measured in units of their
maximum values in the turbulent region; and the turbulent magnetic
diffusion coefficients are measured in units of their maximum values.
The magnetic Reynolds number Rm = £y u/n is defined using the
maximal values of the integral scale ¢, and the characteristic turbulent
velocity uy. The dynamo number for the linear «€2 dynamo is defined
as D;, = R,R,,, where R, = (692) Lz/n(TO)‘

Now we define the non-linear dynamo number Dy (B) for the a2
dynamo as

a (B) sQL?

x () = 5 @) o (5)

(41)

where we take into account that the non-linear turbulent magnetic
diffusion coefficients of the poloidal and toroidal components of the
mean magnetic field are different (Rogachevskii & Kleeorin 2004).

Next, we take into account the feedback of the mean magnetic field
on the background turbulence using the budget equation for the TTE.
In a shear-produced non-convective turbulence, the leading-order
contributions to the production rate of the TKE for a strong large-
scale magnetic field (B > Beq/4) is due to the term —€ (B) - (V x
B)/ 110, so that the leading-order contribution to the TKE density for
a strong large-scale magnetic field is estimated as

E =——&(B)-(V xB). 42)
Mo

Indeed, let us estimate the leading-order contributions to the produc-

tion rate of the TTE given by (35). Using equations (7)—(8), we can

rewrite the turbulent EMF as & = «B; — ng)(V x B);, where ng)

is the diagonal tensor with components 7!} = 7\ and nsy = ni?.

Now we estimate:

0} (V x B);(V x B); = 1 (V x B), + n' (V x B);,

where (V x B), and (V x B), are the toroidal and poloidal compo-
nents of the electric current, which can be estimated as [(V x B),| ~
|Bpl/Lyand|(V x B),| ~ |By|/L . Here, the characteristic scale of
the mean magnetic field variations Lg is definedas Ly = B/|V x B|.
We also take into account that for a strong field (B > Eeq /4),
nid(B) ~ n®/p*, while n'®(B) ~ n'”/B, where B, and B, are the
toroidal and poloidal components of the mean magnetic field. For
the « 2 dynamo, the toroidal component of the mean magnetic field
is much larger than the poloidal component, i.e. |§p| < |§q,|. This
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yields

® B
—E(B)-(VxB)~ B, ~ -1 B, By, 43)
Ly ¢ 4Ly v

where the magnetic energy of the equipartition field B is defined
as Eiq /210 = EO. For a shear-produced turbulence, EQ ~ 7 £5 S
with the squared shear S* = (0U) 2/. and £y = t[(4?)©]"/2 being the

integral scale of turbulence at varllishing mean magnetic field. We
assume also that the correlation time is independent of the mean
magnetic field.

Contributions of other terms to the production rate of TTE and
TKE for a strong large-scale magnetic field are much smaller than
that described by equation (43). For instance, the contribution o B -
(VxB)to —& (f) -(V x B) is much smaller for a strong field,
because
i B _R B = 7 B,B,

B -(VxB)=B,(VxB),+B,(V x B), ~ L,

and for a strong field a(8) ~ «®/82. Similarly, the checking of the
contributions of the remaining terms to the production rate of TTE
and TKE for a strong large-scale magnetic field shows that they are
much smaller than that described by equation (43). Therefore, the
leading-order contribution to the TKE density E, (B) for strong
mean magnetic fields is

. EY (4,\'( B
5.0~ (22) (7): “

Equation (44) implies that the TKE increases due to the dissipation
of the strong large-scale magnetic field.

This yields the estimate for the turbulent magnetic diffusion coef-
ficient of toroidal magnetic field n'® (B) = n'? ¢\® E, (B) /E
in the limit of a strong field as

B) (B 1 ¢ 2
LT ( ) ~— (=2 = const, (45)
n(T‘” 24 \ Lp

where n© = 27 E®/3p and we take into account the increase of
the TKE caused by the dissipation of the strong large-scale magnetic
field [see equation (44)]. As follows from equation (19), the ratio
of turbulent magnetic diffusion coefficients of poloidal and toroidal
fields n'* (B) /n'® (B) is given by

1

A (B B\
M ~~ 1 (i) . (46)

n® (B) 2\ B

The dependence of the total « effect on the mean magnetic field,
a (B), is caused by the algebraic and dynamic quenching. The
algebraic quenching describes the feedback of the mean magnetic
field on the plasma motions, while the dynamic quenching of the total
o effect is caused by the evolution of the magnetic « effect related
to the small-scale current and magnetic helicities. In particular,
the dynamic equation for the small-scale current helicity (which
determines the evolution of the magnetic « effect) in a steady state
yields the estimate for the total « effect in the limit of a strong mean
field as o (B) o —divF,, J/B’, where F,, is the magnetic helicity
flux of the small-scale magnetic field. This implies that the total «
effect for strong magnetic fields behaves as

2

@o((f)7 . (47)

(0)
aK B eq
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Note that the algebraic and dynamic quenching of the alpha effect
yield similar behaviour for a strong large-scale magnetic field [see
equations (17)—(18) and (47) and paper by Chamandy et al. (2014)].
Therefore, the ratio Dy (E) /Dy, of the non-linear and linear
dynamo numbers in a shear-produced turbulence for strong mean
magnetic fields is estimated as [see equations (41) and (45)—(47)]:

. — -1 (B) -2 — —1
DN(B)~2(£> T o<<£> . (48)

Dy Beg e Beg
Equation (48) implies that the non-linear dynamo number decreases
with the increase of the mean magnetic field for any strong values of
the field for a shear-produced turbulence. This results in saturation
of the mean-field dynamo instability.

In a convective turbulence, the largest contributions to the pro-
duction rate of TTE for a strong mean magnetic fields is due to the
buoyancy term p g F, and the term n(TB) (E) (V x B)?/uy [see equa-
tion (35)]. This implies that the leading-order contribution to the TKE
density E, (E) in a convective turbulence for strong mean magnetic
fields is given by equation (44), where El((o) = (p/2) 2g F. £y)*/3.
Therefore, equations for the ratios n® (B) /n'”, n'™ (B) /0¥ (B),
and Dy (B) /Dy inaconvective turbulence for strong mean magnetic
fields are similar to equations (45)—(48), respectively. The difference
is only in equation for E'” that for a convective turbulence is given
by EO = (5/2) (2g F. £y)** and for a shear-produced turbulence
is E](( = (2/3)ﬁ£3 S2. The similar situation is also for a forced
turbulence except for the expression for E{” for a forced turbulence
reads E? =p 1 (u- f).

This implies that for the ¢ dynamo, the non-linear dynamo
number decreases with increase of the mean magnetic field for a
forced turbulence, and a shear-produced turbulence and a convective
turbulence. This causes saturation of the mean-field «2 dynamo
instability for a strong mean magnetic field.

5 MEAN-FIELD «®> AND o’Q DYNAMOS

First, we start with the non-linear axisymmetric mean-field a?
dynamo, so that non-linear mean-field induction equation reads

0 /A of A
ala)-"(5) @

where the mean magnetic field is B = B,(t,x,2)e, +
rot[A(t, x, z)e, ], the operator N is given by

n® (B) A o (B)
N = B B , (50)
—RVa (B)V; Vi'®(B)V;

and the total & effectis givenby o (B) = o, (B) + , (B).Now we
introduce the effective dynamo number D’ (B) in the non-linear
o? dynamo defined as DY’ (B) = o? (B) L*/[n'® (B) '™ (B)1.
Similarly, the effective dynamo number for a linear o> dynamo is
defined as D = R;, where R, = a,L/n", a, is the maximum
value of the kinetic « effect and L is the stellar radius or the thickness
of the galactic disc.

The poloidal and toroidal components of the mean magnetic field
in the non-linear o> mean-field dynamo are of the same order of
magnitude. Equations (44)—(47) obtained in Section 4 can be used
for the non-linear o> mean-field dynamo as well. Therefore, the ratio
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DY’ (B) /D for strong mean magnetic fields is given by

() N3
D?L) ~ <£) ) (51)
Dy Beg
These equations take into account the feedback of the mean mag-
netic field on the background turbulence by means of the budget
equation for the TTE. Thus, equation (51) implies that for the o
dynamo, the non-linear dynamo number decreases with increase of
the mean magnetic field. This causes a saturation of the mean-field o2
dynamo instability for a strong mean magnetic field. The discussion
on the possibility of an oscillatory &> dynamo is given in Appendix C.
Next, we consider the axisymmetric mean-field &> dynamo, so
that and non-linear mean-field induction equation reads

0 (A of A
26)-+6)

whe&e the mean magnetic field is §:§y(t,x,z)ey+
rot[A(z, x, z)e, ], the operator N is

i (B) & « (B)
N = ,
Rat [wal - RanCl (E) Vj] VJU(TB) (E) Vj
(53)

and R, = ot*L/n(TO) and R, = (6Q2) Lz/n(TO). The kinematic and
weakly non-linear > 2 dynamos have been studied using asymptotic
analysis (Meunier, Nesme-Ribes & Sokoloft 1996; Griffiths et al.
2001; Bassom et al. 2005).

We consider a kinematic dynamo problem, assuming for simplicity
that the kinetic « effect is a constant, and the mean velocity U =
(0, Sz, 0), where S = Q2. We seek a solution for the linearized
equation (52) as a real part of the following functions:

A = Agexplpt —i(kex + k.2)], (54)

B, = Boexp[yt —i(kyx + k;2)], (55)

where 7 = y + iw. Equations (52)—(55) yield the growth rate of the
dynamo instability and the frequency of the dynamo waves as

R,RS TR )
y = < 1+< ) +1 —(RY)", (56)
ﬁ RaRglr ( )
o R 27172 1/2
o= —sgn(R,) —= | |1+ tRo —1 , (57)
V2 Ry R

where ¢?=1— (k./ R;‘)Z. Here, we took into account that (x
+ iy = £(X + iY), where X = 2712 [(x? 4+ y*)/2 4 x]/? and
Y = sgn(y) 2712 [(x2 + y%)!/2 — x]"/2. Here the threshold R for
the mean-field dynamo instability, defined by the conditions y = 0
and R, =0, is given by R = (k2 + k2)'/2. Equations (52)—(55) also
yield the squared ratio of amplitudes |A¢/By|?,

1172
(R,
1 , 58
+ ( RuRS (58)
and the phase shift § between the toroidal field B, and the magnetic
vector potential A is given by

2

Aol _ (R,R) ™

By

| ) -2
sin(28) = —CR, [(RaRf;) +;2Ri] . (59)
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_Equation (58) yields the energy ratio of poloidal B and toroidal
B, mean magnetic field components as

—1/2
tR, \*
1+ (RQR;J ] ; (60)

where Eiol = Ei + Eﬁ = (Ry R A)%.

Asymptotic formulas for the growth rate of the dynamo instability
and the frequency of the dynamo waves for a weak differential
rotation, ¢ R, < Ry R, are given by

=2

B pol
72 -
B‘ﬂ

_ cr l ng ? er)2
vy =RaRY |14+ (RO,R;f> ] (RS)”, (61)
{R, ©2)
w = — .
V2

In this case, the mean-field o> dynamo is slightly modified by a
weak differential rotation, and the phase shift between the fields B,,
and B, vanishes, while Bpoi/B, ~ 1 [see equations (59)-(60)]. In
the opposite case, for a strong differential rotation, ¢ R, > R, R,
the growth rate of the dynamo instability and the frequency of the
dynamo waves are given by

1 12 s

y = {5 ¢RY Rot|Rw|:| - (RY)", (63)
1 12

w = —Sgl’l(Rw) |:§ { R;r RalRaJl] . (64)

In this case, the mean-field «2 dynamo is slightly modified by a
weak o effect, and the phase shift between the fields B, and Bpo
tends to —n/4, while B, /B, < 1 [see equations (59)—(60)]. The
necessary condition for the dynamo (y > 0) in this case reads:

(i) when R, /R < \/Z the mean-field o? Q dynamo is excited
when

Dy > ? (R%)?; (65)

(ii) when R, /R > /2, the mean-field 2 dynamo is excited
for any differential rotation, R,,. Here Di, = R, R,,.

Analysis which is similar to that performed in Section 4 [see
equations (44)—(47)] yields the ratio of the non-linear and linear
dynamo numbers Dy (E) /Dy, in the non-linear &> dynamo for
strong mean magnetic fields that is coincided with equation (51).
The latter implies that for the @>$2 dynamo, the non-linear dynamo
number decreases with increase of the mean magnetic field, so that
the non-linear mean-field dynamo instability is always saturated for
strong mean magnetic fields.

6 DISCUSSION AND CONCLUSIONS

In the sun, stars and galaxies, the large-scale magnetic fields are
originated due to the mean-field dynamo instabilities. The saturation
of the dynamo generated large-scale magnetic fields is caused by
algebraic and dynamic non-linearities. A key parameter that controls
the saturation of the «€2 dynamo instability is the non-linear dynamo
number Dy (E) =« (E) sQL3) n? (E) When the total o effect
and the turbulent magnetic diffusion are quenched as (B/Beq)™>
for strong mean magnetic fields, the non-linear dynamo number
Dy (E) increases with the increase of the large-scale magnetic field.
The latter implies that the mean-field dynamo instability cannot be
saturated for a strong field.
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In the present study, we have shown that the dissipation of the
generated strong large-scale magnetic field increases both, the TKE
of the background turbulence and the turbulent magnetic diffusion
coefficient. This non-linear effect is taken into account by means of
the budget equation (25) for the TTE. As the result for a strong mean
magnetic field, the product of the turbulent diffusion coefficients of
the poloidal and toroidal fields behaves as n'* n{® o¢ (B/Beq )71.
This additional non-linear effect decreases the non-linear dynamo
number for a strong field and causes a saturation of the dynamo
growth of large-scale magnetic field.

Using this approach and considering various origins of turbu-
lence (e.g. a forced turbulence, a shear-produced turbulence and
a convective turbulence), we have demonstrated that the mean-
field @, o2, and o?Q dynamo instabilities can be always sat-
urated for any strong mean magnetic field. Indeed, the ratio of
the non-linear and linear dynamo numbers for the «2 dynamo is
Dn (B) /DL o a/[n'® n'®] oc (B/Beg )71, i.e. it decreases with
the growth of the mean magnetic field. On the other hand, for the
a? dynamo, the ratio of the non-linear and linear dynamo numbers
Dy (B) /DL az/[n(TA) n(TB)] o (B/Beg )73. Here we took into ac-
count that the scaling for the « effect for a strong mean magnetic field
is a o (B/Beg )72. These results have very important applications
for astrophysical magnetic fields.

For validation of these results in direct numerical simulations, the
test-field method (Karak et al. 2014) can be applied to determine
the quenching of the turbulent magnetic diffusion coefficients of
toroidal and poloidal components of the mean magnetic field as well
as the quenching of the total « effect. Note that various mean-field
numerical simulations (Elstner, Riidiger & Schultz 1996; Kleeorin
et al. 2003a), which took into account simultaneously both, the
algebraic quenching of the o effect and the turbulent magnetic
diffusion coefficients, were unable to find steady solutions of the
non-linear mean-field dynamo equations. To obtain such solutions in
mean-field numerical simulations, the budget equation (25) for the
TTE should be used.
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APPENDIX A: QUENCHING FUNCTIONS
The quenching functions ¢, (8) and ¢,,(B) are

08y = A (V28) + 4 (V2p) = 1 {3]1 -4

+8,841n(1 +(2ﬂ2)‘1)} +4¢, («/Eﬂ)} (A1)
bu(B) = 4— (A, (B) + 4, (B%)]

3 arctanﬂ)

R PPl A2

Nz ( 5 (A2
The quenching function ¢{*(8) is given by ¢\¥(8) = ¢,(B) + ¢(B)
and

3 _

0(8) =2 =304 (V2p) = - (1—0 L (26).  (A3)

where the functions A(ll)(ﬁ) and A(zl)(ﬂ) are given by

o) arctan 8 5 5
AV (B) = T 1+ 75 t1 L) — a3k (A4
AD () = _9 {arctanﬂ (1 4 E) _g L(p) — 15 ]

VT o5 B 72 7 7p2

(A5)

and L(B) = 1 — 282 +28*In(1 + B72). For B « 1, these functions
are given by

2 4
AV ~ 1= 2B AV~ =B

and for 8 > 1, they are given by

e s
s B2 S

The functions A;(x) and A,(x) are given by

AV(B) ~

. 2 arctan(y/x) 3

Ai(x) = P |:(x + ])7\/; 1:| s (A6)

Ay = - 2% [(x L gyreantyn) 3]. (A7)
x Jx

For x « 1, these functions are given by
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In the case of x >> 1, these functions are given by

A0 7?2 4 (o) 7t2+87'r
X))~ — — — X —_ t+ —
! N : Jx

APPENDIX B: DERIVATION OF EQUATIONS
(27)-(28)

In this appendix, we derive equations (27)—(28) [for more details
see paper by Rogachevskii & Kleeorin (2007)]. Using procedure
described in Section 2, we derive equations for the correlation
functions of the velocity fluctuations f;; = (u; u;), the magnetic
fluctuations h;; = (b; b;), and the cross-helicity g;; = (u; b;) in the
Fourier space:

afgz(k) —i (k-B) Dy (k) + M £V, B
ahgt(k) — i (k-B)y (k) —l—/\;lh,(»_;”)(k)v (B2)
W) _ i (eB) [0~ )] + Vg, B3

where ®;;(k) = g;;(k) — g;i(—k), and M f{"", Mhi'", and
Mg('”) are the third-order moment terms appearing due to the
non- lmear terms. We split the tensor (b; b;) of magnetic fluctua-
() parts. The helical part
hff{) depends on the magnetic hehclty, and it is determined by
the dynamic equation which follows from the magnetic helicity
conservation arguments. We also split the second-order correlation
functions into symmetric and antisymmetric parts with respect to
the wave vector k, e.g. fi; = flm + f,(a) where the tensors f; 6 =
[fij(k) + fij(—=k)]/2 describes the symmetric part of the tensor and
f,(“) [fij(k) — fij(=k)]/2 determines the antisymmetric part of
the tensor. We apply the spectral T approximation [see equation
(4)] for the non-helical parts of the tensors. We assume that the
characteristic time of variation of the mean magnetic field B is
substantially larger than the correlation time (k) for all turbulence
scales. This allows us to get a stationary solution for the equations for
the second-order moments

tions into non-helical &; and helical h

150 = [+ ) 00 + v PR (B4)

1/f

h (k) = [ ¥ 200 + (1 + t//)h,(-?”(k)] , (BS)

142y
where (k) = 2(f k-B)?. Next, we specify a model for the back-
ground turbulence (with zero mean magnetic field B = 0) [denoted
with the superscript (0)], see equations (5)—(6). The background
turbulence here is assumed to be homogeneous, isotropic, and
non-helical. Integration in k space in equations (B4)—(B5) yields
equations (27)—(28), where the non-linear functions ¢,(8) and g,(8)
are given by

= [P0 - AV W28 - AV W28)]

3 ﬂz (B6)
2 AVW3p),

ap(B) =

gs(B) = (B7)

38
and 8 = V3 E/Eeq, The functions A(lo)(ﬁ) and A(20) (B) are given by

AVB) = [2 zarC;anﬁ( 1587 — ﬂ— — %InRm
1+ 82 >]
28I ———— |, 8
B n(l PR (B8)
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For B < Beq/4Rm'/*, these functions are given by
AVB) ~2— %,32 InRm,
AV(B) ~ 2,3 {m Rm + 2 ]
15

For Beq/4Rm'* « B < Bq/4, these functions are given by

0) ~ % _&
AT(B) 2+5,8 [2lnﬂ 15+ /3}

2
A(O) N7241 _7_327
2 (B) 55 npB 15 B
and for B 3> B.q/4, they are given by

A~ -T2

A : LA
&)~ /3 s TR

APPENDIX C: OSCILLATORY o> DYNAMO

In this appendix, we discuss a long-standing question: “When can
a one-dimensional kinematic o> dynamo be oscillatory?” The mean
magnetic field B(t,z) = V x A = (=V,A,, V.A,, 0) is determined
by the following equation

ow

=L, 1
En €h

where A is the mean magnetic vector potential in the Weyl gauge.
The linear operator L and the function W(¢, z) are given by

. Oy g0y, A
U (04 x
i= k), w= ,
( ”(vazz > (Ay)

a(O)V
where 79 is the turbulent magnetic diffusion coefficient, and af{o) is
the kinetic « effect caused by the helical turbulent motions in plasma.
If the linear operator L is not self-adjoint, it has complex eigenvalues.
This case corresponds to the oscillatory growing solution, i.e. the
dynamo is oscillatory. On the other hand, any self-adjoint operator,
M, defining by the following condition,

/w*M\idz: /\IJM*\U*dz,

has real eigenvalues, where the asterisk denotes complex conjugation.
Now we determine conditions when the linear operator L is not self-
adjoint, i.e. it has complex eigenvalues. To this end, we determine
the integrals [ W*L W dz and [ WL*W* dz as:

(C2)

(C3)

/\I—’*[:\ildz = /al((O) (A;VZAX—A;VZA},) dz
/ O [(V.AY) VA, + (V.A}) V.A,] dz

+ [’7;0) (Aj: V.A, + A; va}v)}FL“’P ’

z=Lpott

(C4
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/\Pi*\p*dz = /a<K°> (A3V.A, — A}V Ay) dz
- / 1O [(V.A?) VoA, + (VA7) V.4,] dz
+ [77(,0) <AX V. A*+ A, VZA;> + oy <A;‘Ay

Z=Llop
—A} AX)} , (C5)

z=Lpout
where 7 = Lyoq and z = Ly, are the bottom and upper boundaries,
respectively. When 7 and o”’ vanish at the boundaries where the

turbulence is very weak, the operator L satisfies condition (C3)
and the @? dynamo is not oscillatory. On the other hand, when

o vanishes only at one boundary, while it is non-zero at the
other boundary, the operator £ does not satisfy condition (C3), and
the o? dynamo is oscillatory. The latter case has been considered
in analytical study by Shukurov, Sokoloff & Ruzmaikin (1985),
Rédler & Briuer (1987), and in numerical study by Baryshnikova &
Shukurov (1987). Brandenburg (2017) has recently considered the
one-dimensional kinematic o> dynamo with different conditions at
two boundaries: A = 0 at z = Lyoy and V. A = 0 at z = Ly, so that
the operator £, may not satisfy condition (C3), and the > dynamo
may be oscillatory.

This paper has been typeset from a TEX/IATEX file prepared by the author.

© 2024 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 530, 382-392 (2024)

20z 1dy 9} uo sosn abpuquied Jo Ausioaun AQ 819€29./28€/1/0€SG/I0IME/SeIUW/ W0 dNo"d1WapED.//:SA)Y WOy PaPEojuMod


https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 NON-LINEAR TURBULENT EMF
	3 BUDGET EQUATIONS
	4 MEAN-FIELD DYNAMO
	5 MEAN-FIELD 2 AND 2 DYNAMOS
	6 DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: QUENCHING FUNCTIONS
	APPENDIX B: DERIVATION OF EQUATIONS (27)(28)
	APPENDIX C: Oscillatory 2 dynamo

