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A B S T R A C T 

Small-scale dynamos play important roles in modern astrophysics, especially on galactic and extragalactic scales. Owing to 

dynamo action, purely hydrodynamic Kolmogorov turbulence hardly exists and is often replaced by hydromagnetic turbulence. 
Understanding the size of dissipative magnetic structures is important in estimating the time-scale of galactic scintillation and 

other observational and theoretical aspects of interstellar and intergalactic small-scale dynamos. Here we show that, during the 
kinematic phase of the small-scale dynamo, the cutoff wavenumber of the magnetic energy spectra scales as expected for large 
magnetic Prandtl numbers, but continues in the same way also for moderately small values – contrary to what is e xpected. F or a 
critical magnetic Prandtl number of about 0.3, the dissipative and resistive cutoffs are found to occur at the same wavenumber. 
In the non-linearly saturated regime, the critical magnetic Prandtl number becomes unity. The cutoff scale now has a shallower 
scaling with magnetic Prandtl number below a value of about three, and a steeper one otherwise compared to the kinematic 
regime. 
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 I N T RO D U C T I O N  

ince the early 1990s, we know that dissipative structures in 
ydrodynamic turbulence are vortex tubes (She, Jackson & Orszag 
990 ; Vincent & Meneguzzi 1991 ). Their typical size is of the order
f the Kolmogorov length. In magnetohydrodynamics (MHD), the 
issipative structures are magnetic flux tubes (Nordlund et al. 1992 ; 
randenburg et al. 1996 ; Moffatt, Kida & Ohkitani 1994 ; Politano &
ouquet 1998 ). Their thickness has been estimated to scale with the
agnetic Prandtl number Pr M 

= ν/ η, i.e. the ratio of the kinematic
iscosity ν to the magnetic dif fusi vity η. Brandenburg, Procaccia & 

egel ( 1995 ), hereafter BPS , estimated the typical coherence scale
f magnetic field vectors in terms of the gradient matrix ∇ ̂

 B of
he unit vector ˆ B = B / | B | of the magnetic field B and found that
t scales like Pr −1 / 2 

M 

relative to the Kolmogorov length scale. The 
nverse length scale of the magnetic structures can be calculated as
he rms value of ∇ ̂

 B , i.e. k B = 〈| ∇ ̂

 B | 2 〉 1 / 2 . The simulations of BPS
ere for the case of a conv ection-driv en dynamo in the presence
f rotation and compressibility, but similar results were later also 
btained by Schekochihin et al. ( 2004 ) for a small-scale dynamo
n homogeneous incompressible turbulence for Pr M 

≤ 1. They also 
mphasized that a steeper dependence on Pr M 

is expected for Pr M 

�
. 
The mechanisms of the small-scale dynamo action are different 

epending on the magnetic Prandtl number. For Pr M 

� 1, self- 
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xcitation of magnetic fluctuations is caused by the random stretching 
f the magnetic field by a smooth velocity field; see the analytical
tudies by Kazantsev ( 1968 ), Zeldovich, Ruzmaikin & Sokoloff 
 1990 ), Kulsrud & Anderson ( 1992 , hereafter KA ), and Schober et al.
 2012 ). For Pr M 

� 1, the small-scale dynamo is driven by velocity
uctuations at the resistive scale, which is located in the inertial
ange (Kazantse v 1968 ; Rogache vskii & Kleeorin 1997 ; Boldyre v &
attaneo 2004 ; Arponen & Horvai 2007 ; Kleeorin & Rogachevskii
012 ; Martins Afonso, Mitra & Vincenzi 2019 ). In particular, KA
ound that, for large values of Pr M 

, the magnetic energy spectrum is
xpected to be of the form 

 M 

( k, t) ∝ e 2 γ t k 3 / 2 K 0 

(
k/k KA 

η

)
, (1) 

here K 0 is the Macdonald function of order zero (or the modified
essel function of the second kind), and k KA 

η is 

 

KA 
η = (4 γ / 15 η) 1 / 2 , (2) 

here γ is the growth rate of the magnetic field. 1 This provides
nother very different method for calculating a relevant wavenumber 
haracterizing the scale of structures than k B . 

The question of characteristic length scales in a small-scale 
ynamo continued attracting attention and has been investigated 
n more detail by Cho & Ryu ( 2009 ) with applications to the
ntergalactic medium. Much of this work concerns the saturated 
 Note that the symbol γ used in KA is 3/8th of the growth rate, whereas the 
used here is the actual growth rate. 
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2 We correct herewith a typo in Haugen et al. ( 2022 ), where the u 
′ 

factor in 
λTay was dropped in their definition, but it was included in their calculations. 
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hase of the dynamo, but equation ( 1 ) is then not applicable. More
ecently, Kriel et al. ( 2022 ) confirmed the Pr −1 / 2 

M 

scaling for 1 ≤ Pr M 

260 for the kinematic phase of the dynamo. The small-scale prop-
rties of interstellar turbulence can be assessed through interstellar
cintillation measurements of pulsars (Cordes, Weisberg & Boriakoff
985 ; Rickett 1990 ; Armstrong, Rickett & Spangler 1995 ; Bhat et al.
004 ; Scalo & Elmegreen 2004 ). A particular difficulty is to explain
hat is known as extreme scattering events (ESEs), which would

equire unrealistically large pressures if the scattering structures
ere spherical (Cle gg, Fe y & Lazio 1998 ). This fa v ours the presence
f sheet- or tube-like structures that could explain ESEs of those
tructures which are oriented along the line-of-sight (Pen & King
012 ; Bannister et al. 2016 ). Scintillation measurements suggest that
he dissipative structures of MHD turbulence are sheet-like with
n inner scale down to 300 km (Bhat et al. 2004 ). Ho we ver, more
etailed measurements would be needed to determine the precise
ature of the smallest dissipative structures (Xu & Zhang 2017 ). 
The goal of the present paper is to compare the relations between

ifferent length scales in small-scale dynamos. We mainly focus
ere on the kinematic growth phase of the dynamo, but we also
onsider some non-linear models in Sections 3.1 and 3.6 . In addition
o the values of k KA 

η and k B discussed abo v e, we also determine a
avenumber k η that describes the resistive cutoff of the spectrum

nd is analogous to the wavenumber k ν based on the Kolmogorov
viscous) scale. Kriel et al. ( 2022 ) used a similar prescription, but did
ot compare with other magnetic scales. Note that, contrary to k KA 

η ,
 η is not calculated from the dynamo growth rate. Following earlier
ork (Brandenburg et al. 2018 ), we consider weakly compressible

urbulence with an isothermal equation of state and a constant sound
peed c s , where the pressure is proportional to the density ρ, i.e.
 = ρc 2 s . 

 T H E  M O D E L  

.1 Basic equations 

n this work, we are primarily interested in weak magnetic fields and
gnore therefore the Lorentz force in most simulations. The magnetic
eld is given as B = ∇ × A , where A is the magnetic vector
otential. We thus solve the evolution equations for the magnetic
 ector potential A , the v elocity u , and the logarithmic density ln ρ
n the form 

∂ A 

∂t 
= u × B + η∇ 

2 A , (3) 

D u 

D t 
= f − c 2 s ∇ ln ρ + 

1 

ρ
∇ · (2 ρνS ) , (4) 

D ln ρ

D t 
= −∇ · u , (5) 

here D / D t = ∂/∂t + u · ∇ is the adv ectiv e derivativ e, f is a non-
elical forcing function consisting of plane waves with wav ev ector

k , and S ij = ( ∂ i u j + ∂ j u i ) / 2 − δij ∇ · u / 3 are the components of
he rate-of-strain tensor S . For the forcing, we select a k vector
t each time step randomly from a finite shell around k f / k 1 = 1.5
ith 1 ≤ | k | /k 1 < 2. The components of k are taken to be integer
ultiples of k 1 ≡ 2 π / L , where L is the side length of our Cartesian

omain of volume L 

3 . This forcing function has been used in many
arlier papers (e.g. Haugen, Brandenburg & Dobler 2004 ). We solve
quations ( 3 )–( 5 ) using the PENCIL CODE (Pencil Code Collaboration
t al. 2021 ). 
NRAS 518, 6367–6375 (2023) 
.2 Spectra and characteristic parameters 

e normalize our kinetic and magnetic energy spectra such that
 

E K ( k) d k = 〈 u 

2 〉 / 2 and 
∫ 

E M 

( k) d k = 〈 B 

2 〉 / 2 μ0 ρ0 ≡ E M 

, respec-
ively, where ρ0 is the mean density. Here, angle brackets without
ubscript denote v olume a verages. We al w ays present time-averaged
pectra. Since E M 

( k , t ) increases exponentially at the rate 2 γ ,
here γ is the growth rate of the magnetic field, we average the

ompensated spectra, 〈 e −2 γ t E M 

( k , t ) 〉 
 t , o v er a suitable time interval
 t where the function e −2 γ t E M 

( k , t ) is statistically stationary; see
lso Subramanian & Brandenburg ( 2014 ). Our averaged magnetic
nergy spectra are normalized by E M 

, so that their integral is unity. 
Our go v erning parameters are the Mach number, and the fluid and
agnetic Reynolds numbers, defined here as 

a = u rms /c s , Re = u rms /νk f , Re M 

= u rms /ηk f , (6) 

espectively, where u rms is the time-averaged rms velocity. Thus,
he magnetic Prandtl number is Pr M 

= Re M 

/Re. The value of γ is
omputed as the average of dln B rms / dt during the exponential growth
hase. We also give the kinetic dissipation wavenumber 

 ν = 

(
εK /ρ0 ν

3 
)1 / 4 

, (7) 

here εK = 〈 2 ρνS 

2 〉 
t is the time-averaged kinetic energy dissi-
ation rate. It obeys the expected Re 3/4 scaling, here with k ν/k f ≈
 . 48 Re 3 / 4 ; see Appendix A . 
In fluid dynamics, to a v oid discussions about different defini-

ions of the Reynolds number, one commonly quotes the Taylor
icroscale Reynolds number (Tennekes & Lumley 1972 ), which

s universally defined as Re λ = u 
′ 
λTay / ν. Here, u 

′ = u rms / 
√ 

3 is
he one-dimensional rms velocity and λTay = 

√ 

15 νρ0 /εK u 

′ is the
aylor microscale. 2 The values of Re λ are given in Table 1 . They
re expected to be proportional to Re 1/2 , but the actual scaling
s slightly steeper; see the Supplemental Material (Brandenburg,
ogachevskii & Schober 2022a ). 
A tilde on the growth rate denotes normalization with the turno v er

ate and tildes on various wavenumbers denote normalization with
espect to k 1 , i.e. 

˜ = γ τ, ˜ k ν = k ν/k 1 , ˜ k f = k f /k 1 , etc , (8) 

here τ = 1/ u rms k f is the turno v er time. These parameters are listed in
able 1 for our runs. For Runs A–K, we used a resolution of N 

3 = 512 3 

esh points, whereas we used 1024 3 mesh points for Runs L and M,
nd 2048 3 mesh points for Run M’. The value of εK in units of ρ0 k 1 c 

3 
s 

s obtained from the table entries as εK /ρ0 k 1 c 
3 
s = 

˜ k 4 ν ( Ma / Re ̃  k f ) 3 .
he calculation of the values of ˜ k η is discussed below. Error bars are
omputed from time series as the largest departure of any one third
ompared to the total. 

In some cases, we examine the effects of non-linear saturation. We
hen include the Lorentz force and replace equation ( 4 ) by 

D u 

D t 
= f − c 2 s ∇ ln ρ + 

1 

ρ

[ 
∇ · (2 ρνS ) + J × B 

] 
. (9) 

nce the Lorentz force is included, the magnetic field is expected
o saturate near the equipartition magnetic field strength, B eq =
 

μ0 ρ0 u rms . 
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Table 1. Summary of the kinematic simulations presented in this paper. 

Run Ma Re λ Re Re M 

Pr M 

˜ γ ˜ k ν ˜ k B ˜ k KA 
η

˜ k η 
 t / τ N 

A 0.096 13 12 1240 100 0.076 ± 0.014 5.9 ± 0.1 127 ± 2 7.7 ± 0.7 109 ± 4 31 512 
B 0.113 30 36 1460 40 0.090 ± 0.006 11.7 ± 0.1 128 ± 4 9.1 ± 0.3 129 ± 4 62 512 
C 0.120 50 78 1560 20 0.110 ± 0.002 19.7 ± 0.2 139 ± 3 10.4 ± 0.2 156 ± 6 87 512 
D 0.127 70 165 1650 10 0.135 ± 0.006 34.1 ± 0.2 156 ± 3 11.8 ± 0.2 187 ± 8 98 512 
E 0.130 120 420 1680 4 0.159 ± 0.007 68 ± 2 185 ± 3 13.0 ± 0.3 248 ± 10 75 512 
F 0.128 170 830 1660 2 0.172 ± 0.014 113 ± 5 209 ± 6 13.4 ± 0.5 293 ± 15 62 512 
G 0.129 250 1670 1670 1 0.157 ± 0.016 185 ± 7 237 ± 4 12.9 ± 0.6 358 ± 15 43 512 
G’ 0.131 250 1700 1700 1 0.144 ± 0.020 188 ± 10 ... 12.5 ± 0.6 358 ± 15 54 1024 
H 0.132 260 1710 850 0.5 0.079 ± 0.006 187 ± 6 147 ± 4 6.5 ± 0.3 260 ± 15 101 512 
I 0.134 260 1740 580 0.33 0.042 ± 0.010 189 ± 5 114 ± 3 3.9 ± 0.5 216 ± 15 78 512 
J 0.130 260 1680 420 0.25 0.029 ± 0.001 185 ± 3 92 ± 1 2.8 ± 0.3 189 ± 20 712 512 
K 0.130 250 1680 340 0.20 0.019 ± 0.004 186 ± 5 82 ± 4 2.0 ± 0.2 168 ± 20 99 512 
L 0.132 420 4270 427 0.10 0.020 ± 0.003 368 ± 10 107 ± 2 2.3 ± 0.3 249 ± 18 193 1024 
M 0.132 650 8300 430 0.05 0.013 ± 0.008 575 ± 17 103 ± 4 1.8 ± 0.4 332 ± 15 61 1024 
M’ 0.131 590 8500 430 0.05 0.020 ± 0.009 616 ± 30 104 ± 5 2.3 ± 0.4 332 ± 15 26 2048 

Figure 1. Non-linear saturation (Run j of Section 3.6 below) compared with 
the kinematic evolution for Run J (see Table 1 ). The red, orange, green, and 
blue dots mark the times when B rms / B eq ≈ 0.07, 0.2, 0.3, and 0.4. The inset 
shows scaled magnetic energy spectra, s E E M 

( k ), where s E = 16, 0.45, 0.11, 
and 0.06, so as to make the spectra o v erlap near the smallest wavenumber. 
The dashed and dotted lines give the time-averaged spectra E K ( k ) and E M 

( k ), 
respectively, in the kinematic regime without the Lorentz force. 
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 RESULTS  

.1 Growth phase of the dynamo 

n most of this work, we analyze kinematic dynamo action, i.e. 
he Lorentz force is weak and can be neglected. This means that the

agnetic field of a supercritical dynamo grows exponentially beyond 
ny bound. 

To quantify the point until when the Lorentz force can indeed be
eglected, we present in this section simulations with the Lorentz 
orce included; see equation ( 9 ). We then expect the magnetic field
o saturate near B eq . In Fig. 1 , we show the evolution of B rms / B eq 

or cases with and without Lorentz force included. We also mark 
our particular times for which we also show the magnetic energy 
pectra in the nonlinear regime. We see that, when B rms / B eq ≈ 0.05,
he magnetic energy spectrum (red line) is still close to the time-
veraged kinematic spectrum (dotted line). At the time when B rms / B eq 

0.2, we begin to see clear departures from the kinematic spectrum 

 M 

( k ). To see this more clearly, we have scaled the amplitude of
he spectra such that they agree with the kinematic one (dotted line)
ear the smallest wavenumber. Finally, when B rms / B eq ≈ 0.3, a slow
hase of nonlinear saturation commences where the value of B rms / B eq 

ardly changes, but the spectrum still changes in such a way that its
eak mo v es into the inertial range. This is an important difference to
he kinematic stage and was first report by Haugen, Brandenburg &
obler ( 2003 ). The final value of B rms / B eq is about 0.4. 

.2 Scalings of the Kazantsev and flux tube wavenumbers 

ooking at Table 1 , it is clear 3 that the inverse flux tube thickness
˜ 
 B does not change monotonically with Pr M 

. The same is also true
or ˜ k KA 

η . This is mostly because Re M 

was not kept constant for all
uns. For Pr M 

≥ 1, ho we ver, Re M 

v aried only little and was in the
ange from 1200 to 1700. In that range, ˜ k B showed a steady increase
ith Pr M 

. For smaller Pr M 

, we decrease Re M 

so that Re did not
ecome too large. For Runs L and M, we used a resolution of 1024 3 

nd were thus able to increase Re, which led to a slight increase
f ˜ k B . For Run M’, we used 2048 3 mesh points and find results
omparable to those of Run M, except for the larger statistical error.
n most of the plots, we normalize the characteristic wavenumbers 
y k ν , which resulted in a monotonic increase of the ratios k B / k ν
nd k KA 

η /k ν . 
In Fig. 2 , we plot k KA 

η /k ν and k B / k ν versus Pr M 

. Both show a Pr 0 . 6 M 

caling for Pr M 

≥ 2, but the y hav e a linear dependence for Pr M 

< 1.
hus, the expected Pr 1 / 2 M 

scaling is only approximately confirmed. 

.3 Resisti v e cutoff wavenumbers 

mportant characteristics of MHD turbulence are the kinetic and 
agnetic energy spectra. Focussing on the viscous and resistive 

issipation subranges, it makes sense to normalize k by k ν , as
iscussed abo v e. We recall that the quantity k ν is usually defined
s in equation ( 7 ), i.e. without any pre-factors. The point when the
pectrum drops significantly is typically at k / k ν ≈ 0.1 rather than
t unity, as one might hav e e xpected. This should be kept in mind
hen discussing values of cutoff wavenumbers in other definitions. 
e return to this at the end of the paper. 
The functional forms of E M 

( k ) and E K ( k ) are rather different at
mall values of k , but near the viscous cutoff wav enumber the y are
ore similar to each other. In Fig. 3 , we compare E K ( k ) and E M 

( k )
MNRAS 518, 6367–6375 (2023) 
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M

Figure 2. Dependence of k KA 
η /k ν (closed symbols) and k B / k ν (open symbols) 

on Pr M 

. The dotted line shows the Pr 1 / 2 M 

scaling for comparison. 

Figur e 3. Magnetic ener gy spectra (solid lines) for Pr M 

= 1/5 (Run K, red), 
1/4 (Run J, orange), 1/3 (Run I, black), and 1/2 (Run H, blue) along with the 
corresponding kinetic energy spectra (dashed lines). 

f
K  

s  

P  

c  

f  

a  

j  

s  

0  

c
 

w

k

w  

h  

v  

o
 

t  

i  

Figure 4. Magnetic energy spectra collapsed on top of each other by 
choosing suitable values of k η for each value of Pr M 

. The dotted line shows 
equation ( 10 ) with k fit 

η = 0 . 13 k η . 

Figure 5. Similar to Fig. 4 , but for Pr M 

= 0.05 (black line), 0.1 (red line), 
and 0.2 (blue line). 
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or a few values of Pr M 

. We clearly recognize the E K ( k ) ∝ k −5/3 

olmogorov scaling and the E M 

( k ) ∝ k 3/2 spectrum of the small-
cale dynamo (Kazantsev 1968 ); see also KA . For dif ferent v alues of
r M 

, ho we ver, the slopes of E M 

( k ) are quite different near the resistive
utoff wavenumber: steeper for small values of Pr M 

and shallower
or larger values of Pr M 

. For Pr M 

= 1/4 = 0.25, the shapes of E M 

( k )
nd E K ( k ) are most similar to each other at large k , although E M 

( k ) is
ust slightly too steep, whereas for Pr M 

≥ 1/3, it is already clearly too
hallow. Thus, we expect there to be a critical value, Pr crit 

M 

of about
.3, where E M 

( k ) and E K ( k ) are most similar to each other near the
utoff wavenumber. 

The spectral behaviour near the resistive cutoff can be compared
ith equation ( 1 ) using an empirical fit parameter through 

 1 E M 

( k ) / E M 

= A 0 

(
k /k fit 

η

)3 / 2 
K 0 

(
k /k fit 

η

)
, (10) 

here k fit 
η is now treated as an adjustable parameter. In Fig. 3 , we

ave already compared with equation ( 10 ), although the match is not
ery good. This is mostly because the model applies to large values
f Pr M 

, and then the fit impro v es, as we will see below. 
By choosing suitable values of k η for Pr M 

�= Pr crit 
M 

, we can now try
o collapse the curves E M 

( k / k η) on top of each other. This is done
n Fig. 4 , where we use Run I with Pr M 

= 0.33 as references run,
NRAS 518, 6367–6375 (2023) 
ecause this value is close to Pr crit 
M 

. The collapse is good near and
bo v e the peak of the spectra, but there are departures for small
alues of k , where the spectra become shallower than the classical
azantsev slope for smaller values of Pr M 

. In the opposite limit of
r M 

� 1, the spectral slope may be smaller. For Pr M 

= 0.1, a k 7/6 

caling was previously discussed by Subramanian & Brandenburg
 2014 ) and confirmed by Brandenburg et al. ( 2018 ). For Pr M 

≤ 0.2,
he quality of the collapse onto equation ( 1 ) becomes rather poor,
hich is why we plot the results for smaller values separately; see
ig. 5 . 
The collapse for each value of Pr M 

results in a value of k η, which
e have listed in Table 1 . A plot of k η/ k ν versus Pr M 

is given in
ig. 6 . We see that the ratio k η/ k ν does obey the expected Pr 1 / 2 M 

caling rather well. In this figure, we have also highlighted the value
f Pr M 

= Pr crit 
M 

≈ 0 . 3 where k η/ k ν = 1, so 

 η/k ν = 

(
Pr M 

/ Pr crit 
M 

)1 / 2 
. (11) 

or Pr M 

� 1, a steeper scaling is numerically obtained at very high
esolution simulations (Warnecke et al. 2022 ), but in our simulations,
uch a trend cannot yet be seen for Pr M 

≥ 0.05. 

art/stac3555_f2.eps
art/stac3555_f3.eps
art/stac3555_f4.eps
art/stac3555_f5.eps
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Figure 6. Dependence of k η/ k ν (closed symbols) on Pr M 

. 

Figur e 7. Magnetic ener gy spectra versus k /k KA 
η for Pr M 

= 100 (black solid 
line) and collapsed on top of it the result for Pr M 

= 40 (blue line), as well as 
Pr M 

= 20 (orange line, having scaled k KA 
η by a factor 1.05), and Pr M 

= 10 (red 

line, having scaled k KA 
η by a factor 1.1). The dotted line shows equation ( 10 ) 

with k fit 
η = 1 . 32 sk KA 

η . 

3

W
t  

K
t  

c  

l
T
t  

s
 

P  

a  

s  

P  

a  

P  

m
 

e  

T  

Table 2. Values of k KA 
η and adjustment factors to the KA values for Pr M 

≤
20. 

Pr M 

100 40 20 10 4 

˜ k KA 
η 7.7 9.1 10.4 11.9 13.0 

s 1 1.00 1.05 1.1 1.3 
1 . 3 s ̃ k KA 
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k fit 
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.4 Comparison with the Kazantsev cutoff wavenumber 

e have already discussed the differences in the Pr M 

scaling between 
he measured k η and the theoretically expected k KA 

η from the work of
A based on the numerically determined growth rate. Here, however, 

he scales are rather different in an absolute sense. This is primarily
aused by the large departure between the values of k KA 

η and the
ocation where the magnetic energy spectrum begins to drop rapidly. 
he apparent discrepancy can be alleviated by redefining k ν such that 

he drop occurs closer to unity. Thus, there is otherwise no physical
ignificance in the difference of the absolute wavenumbers. 

To clarify this point, we now plot k 1 E M 

( k ) / E M 

versus k /k KA 
η for

r M 

= 100 and 40. For smaller values of Pr M 

, we have scaled k KA 
η by

 factor s = 1.05 for Pr M 

= 20 and by a factor s = 1.1 for Pr M 

= 10;
ee Fig. 7 . Those coefficients are also listed in Table 2 . The result for
r M 

= 4 is not plotted because of a poor collapse at small k . Here, the
djustment factor is 1.3, as listed in Table 2 . This lack of collapse for
r M 

≤ 4 illustrates that only for large values of Pr M 

, the Kazantsev
odel reproduces the numerical data related to k KA 

η sufficiently well. 
In absolute terms, the value of k KA 

η given by equation ( 2 ) under-
stimates the position of the peak by a factor of about 1.3 = 1/0.77.
his f actor w as obtained empirically by having o v erplotted in Fig. 7
he graph of equation ( 10 ) with 

 

fit 
η ≈ 0 . 093 k η ≈ 1 . 32 sk KA 

η . (12) 

he agreement with the numerical solutions is generally good, but 
eteriorates for Pr M 

< 10, especially for small k , where the simulation
esults predict less power than the Kazantsev model. On the contrary,
he discrepancy with the estimate of k KA 

η decreases owing to the
ncrease of the correction factor s , which is caused by the Pr 0 . 6 M 

scaling
ound in Fig. 6 for Pr M 

� 0 . 2, instead of the expected Pr 1 / 2 M 

scaling
f equation ( 11 ). This is illustrated in the third line of Table 2 , where
e have listed the values of 1 . 3 s ̃  k KA 

η . As before, the tilde denotes
ormalization by k 1 . Finally, we also list in Table 2 the ratios k fit 

η /k ν .

.5 Different viscous cutoff wavenumbers 

he absolute scale of characteristic and cutoff wavenumbers is a 
atter of convention. The value of k ν , as defined in equation ( 7 ),

lays an important role in that it is needed to collapse the kinetic
nergy spectra on top of each other; see Appendix B . For k η, one could
etermine empirically the ef fecti v e wav enumber k KA 

η in equations ( 1 )
nd ( 10 ), as we have done. This value turned out to be 1.3 times
maller than that proposed by KA . One would then define 1 . 3 k KA 

η as
 new resistive cutoff wav enumber. Giv en that the 1/2 scaling in equa-
ion ( 11 ) is well obeyed, one could even redefine k ν correspondingly.
ooking at Table 1 , we see that for Pr M 

= Pr crit 
M 

, we have k ν / k 1 ≈ 200.
urthermore, we see that 1 . 3 sk KA 

η = 10. Thus, since 10/200 = 0.05,
e could define a magnetically moti v ated v alue as k mag 

ν = 0 . 05 k ν .
he moti v ation for defining k mag 

ν in terms of the magnetic energy
pectrum was because E M 

( k ) had a well defined peak, which is not
he case for E K ( k ). Ho we ver, one could compare with 

 K ( k) ∝ k −5 / 3 exp 
(−k/k fit 

ν

)
. (13) 

his is the approach chosen by Kriel et al. ( 2022 ), who found
 

fit 
ν ≈ 0 . 025 k f Re 3 / 4 KBSF ≈ 0 . 1 k f Re 3 / 4 , where Re KBSF = 2 πRe is the
eynolds number based on the characteristic length scale rather 

han the characteristic wavenumber k f . Here, we find 

 

fit 
ν ≈ 0 . 5 k ν ≈ 0 . 24 k f Re 3 / 4 ; (14) 

ee Appendix A . This is about twice as large as their value. 
A problem with equation ( 13 ) is that it lacks a description of the

ottleneck. She & Jackson ( 1993 ) showed that experimental data
an best be fit with an additional k −1 piece, whereas Qian ( 1984 )
roposed a formula based on a closure model of the form 

 K ( k) ∝ k −5 / 3 
[
1 + 

(
k/k bot 

ν

)n bot 
]

exp 
[−(

k/k dis 
ν

)n dis 
]
, (15) 

ith adjustable coefficients k bot 
ν and k dis 

ν , and exponents n bot = 2/3
nd n dis = 4/3, which implies a k −1 scaling of the bottleneck. His
ormula was also confirmed by Dobler et al. ( 2003 ) using the PENCIL

ODE . A better fit is shown in Appendix B , were n bot = 1.8 and
 dis = 0.86 with k bot 

ν ≈ 0 . 056 k ν and k dis 
ν ≈ 0 . 073 k ν were found,

hich would moti v ate another definition; see Table 3 for a summary
f the different cutoff wavenumbers discussed in this paper. 
MNRAS 518, 6367–6375 (2023) 
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M

Table 3. Summary of the different characteristic wavenumbers used in the 
paper. 

Quantity Definition Equation 

k ν ( εK / ρ0 ν
3 ) 1/4 Equation ( 7 ) 

k NL 
η ( εM 

/ ρ0 η
3 ) 1/4 Equation ( 18 ) 

k KA 
η (4 γ /15 η) 1/2 Equation ( 2 ) 

k fit 
η collapse in Fig. 4 Equation ( 10 ) 

k fit 
ν E K ( k) ∝ k −5 / 3 exp ( −k/k fit 

ν ) Equation ( 13 ) 
k dis 
η fit in Fig. B1 (b) Equation ( 15 ) 

k NLfit 
ν/η E K/ M 

( k) ∝ k −1 exp ( −k/k NLfit 
ν/η ) Equation ( 19 ) 

k B 〈| ∇ ̂

 B | 2 〉 1 / 2 BPS 
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Figure 8. Magnetic energy spectra (solid lines) for non-linearly saturated 
runs with Pr M 

= 0.25 (Run K, red), 0.5 (Run J, orange), 1 (Run I, black), and 
2 (Run H, blue) along with the corresponding kinetic energy spectra (dashed 
lines). 

Figure 9. Similar to Fig. 4 , but for the non-linearly saturated case. 
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In a recent paper, Kriel et al. ( 2022 ) determined both k fit 
η and k fit 

ν

nd found their ratio to obey 

 

fit 
η /k fit 

ν = C Pr 1 / 2 M 

, (16) 

here C ≈ 0.88 ± 0.23; see their equation ( 16 ). Using our scaling
elations equations ( 11 ) and ( 12 ), we find 

 

fit 
η ≈ 0 . 093 k ν

(
Pr M 

/ Pr crit 
M 

)1 / 2 ≈ 0 . 17 k ν Pr 1 / 2 M 

, (17) 

nd, using equation ( 14 ), we have C = 0.17/0.5 = 0.34, which is
maller than their value. 

.6 Prandtl number dependence in the non-linear regime 

e repeat a sequence of runs similar to that presented in Fig. 3 ,
here we show that the shapes of E K ( k ) and E M 

( k ) are similar for
r M 

= Pr crit 
M 

≈ 0 . 3. In the non-linear regime, the situation is more
omplicated in that now also E K ( k ) changes near saturation. The
on-linear runs are denoted analogously to the kinematic case using,
o we ver, lo wercase letters. They are summarized in Table 4 , where
ll data are averaged over a statistically steady interval of length 
 t .
ere, we also define a magnetic dissipation wavenumber analogous

o equation ( 7 ), i.e. 

 

NL 
η = 

(
εM 

/ρ0 η
3 
)1 / 4 

, (18) 

here the superscript NL should remind us that this quantity can only
e defined in the non-linear regime (because otherwise εM 

→ 0) and
hat k NL 

η is different from the k η defined by collapsing the curves
 M 

( k / k η) on top of each other, as in Fig. 4 . In Fig. 8 , we compare
he shapes of E M 

( k ) and E K ( k ) after having scaled them such that
heir values agree near k = k ν . This scaling allows us to see more
eadily the relative change of slopes between E M 

( k ) and E K ( k ). We
ee that their profiles now agree with each other for Pr M 

= 1. For
NRAS 518, 6367–6375 (2023) 

Table 4. Summary of the non-linearly saturated runs presented in th

Run Ma Re λ Re Re M 

Pr M 

˜ k ν

a 0.068 9 9 900 100 5.2 ± 0.2 
b 0.075 19 24 960 40 9.8 ± 0.2 
c 0.080 32 52 1100 20 16 ± 1 
d 0.087 57 110 1100 10 26 ± 1 
e 0.093 110 300 1200 4 51 ± 1 
f 0.095 170 615 1230 2 113 ± 3 
g 0.095 260 1230 1230 1 132 ± 3 
g’ 0.101 270 1310 1310 1 139 ± 3 
h 0.103 330 1340 670 0.5 128 ± 1 
j 0.111 400 1440 360 0.25 126 ± 3 
l 0.125 460 4000 400 0.1 329 ± 24 
arger values of Pr M 

, the slope of the magnetic spectrum is smaller
han that of the kinetic energy spectrum, whereas for smaller values
f Pr M 

, the magnetic slopes are steeper. From this, we conclude that
here is a critical value of the magnetic Prandtl number in the non-
inear regime that is of the order of unity. This result agrees with that
f Kriel et al. ( 2022 ). 
The two green lines represent the fits with equation ( 19 ) using

he parameters in equation ( 20 ). In Fig. 9 , we show the results of
is paper. 

˜ k B ˜ k η ˜ k NL 
η 
 t / τ N 

70 ± 3 95 ± 10 150 ± 2 60 512 
75 ± 2 95 ± 10 157 ± 2 70 512 
77 ± 2 100 ± 10 162 ± 1 106 512 
80 ± 1 105 ± 10 163 ± 4 106 512 
80 ± 2 120 ± 10 165 ± 2 116 512 
83 ± 1 125 ± 5 167 ± 2 643 512 
77 ± 3 132 ± 5 168 ± 3 191 512 
78 ± 4 139 ± 5 174 ± 2 185 1024 
59 ± 4 105 ± 5 103 ± 1 700 512 
47 ± 2 85 ± 5 62 ± 1 493 512 
89 ± 6 210 ± 30 46 ± 2 33 1024 

er 2022
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Figure 10. Similar to Fig. 2 , showing the dependence of k η/ k ν (diamonds 
symbols), the dependence of k NL 

η /k ν (closed symbols), and k B / k ν (open 

symbols) on Pr M 

. The dashed-dotted lines show Pr 0 . 3 M 

and Pr 0 . 7 M 

scalings 
for comparison. 
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ollapsing the non-linearly saturated spectra on top of each other. 
ere, we use Run g with Pr M 

= 1 as reference run, because this
alue is close to the nonlinear value of Pr crit 

M 

. The resulting values
f k η are listed in Table 4 . In this nonlinear case, equation ( 10 ) no
onger provides a useful description of the magnetic energy spectrum. 
nstead, the dissipative subrange can well be described by a formula 
imilar to equation ( 13 ), but with a k −1 inertial range, i.e. 

 K/ M 

( k) ∝ k −1 exp 
(−k/k NLfit 

ν/η

)
, (19) 

here we find 

 

NLfit 
ν ≈ 0 . 22 k η, k NLfit 

η ≈ 0 . 20 k η (for Pr M 

= 1). (20) 

s in the kinematic case, k η depends on k ν and Pr M 

, as will be
iscussed next. 
In Fig. 10 , we plot the dependence of k η/ k ν , k NL 

η /k ν , and k B / k ν
n Pr M 

. We see that now the slopes are different from those in
he kinematic case. Specifically, we find k η/k ν ≈ 0 . 95 Pr 0 . 63 

M 

for Pr M 

 3 and k η/k ν ≈ 0 . 97 Pr 0 . 25 
M 

for Pr M 

< 3. Furthermore, we find
 

NL 
η /k ν ≈ 0 . 57 Pr 0 . 7 M 

for Pr M 

> 3 and k NL 
η /k ν ≈ 0 . 59 Pr 1 / 3 M 

for Pr M 

 3. The relations in equation ( 20 ) remain approximately valid
n the neighborhood of Pr M 

= 1, but deteriorate significantly for
r M 

� 1. This is because the functional form of equation ( 19 ) no
onger provides a good description. We refer here to earlier work 
Brandenburg 2009 , 2011 , 2014 ), where the Pr M 

dependence in the
on-linear regime has been studied in much more detail. 

 C O N C L U S I O N S  

n this paper, we have determined the magnetic Prandtl number 
ependence for three rather different scales characterizing the dissi- 
ative magnetic structures in a kinematic small-scale dynamo: their 
iameter, their theoretical cutoff wavenumbers based on the growth 
ate, and the actual spectral cutoff. For a magnetic Prandtl number 
f about 0.3, viscous and resistive cutoff scales are found to be
pproximately equal. This is different from the results in the non- 
inear regime, where a critical value of unity is found. A scaling of
he cutoff wavenumber proportional to Pr 1 / 2 M 

is found for 0.05 ≤ Pr M 

100. A change of such a scaling is e xpected for v ery small values
f Pr M 

, but this cannot be confirmed for moderately small values. 
For the actual thickness of flux tubes, we do find a break in the
caling for Pr M 

≈ 1, but it is now steeper than expected both for small
nd large values of Pr M 

. For the scale based on the theoretically
xpected eigenfunction of the Kazantsev small-scale dynamo, we 
lso found a slightly steeper scaling, but no breakpoint for smaller
alues of Pr M 

close to Pr M 

= 0.05. 
For the large values of Pr M 

that are expected to occur in the
nterstellar medium and in galaxy clusters, the viscous scale is 
uch larger than the resistive one and it may be observationally

ccessibility through an excess of the parity-even E polarization over 
he party-odd B polarization in synchrotron emission (Brandenburg, 
hou & Sharma 2022b ). The resistive scale, on the contrary, may be
ccessible through interstellar scintillation measurements of pulsars 
Cordes et al. 1985 ; Rickett 1990 ; Bhat et al. 2004 ), as discussed in
he introduction. Thus, there may be ways of comparing theory with
bservations in the not too distant future. 
It would also be interesting to extend the present study to other
easures of magnetic structures. One such possibility is the use of
inkowski functionals (Sahni, Sathyaprakash & Shandarin 1998 ). 
ilkin, Barenghi & Shukurov ( 2007 ) have used this method to

how that the thickness, width, and length of magnetic structures 
rom a small-scale dynamo scale differently with magnetic Reynolds 
umber. In their case, ho we ver, the v alue of Re was held constant,
o Pr M 

and Re M 

did not vary independently. Furthermore, they did
ot actually solve the momentum equation and considered instead 
 prescribed flow with a given power spectrum. Subsequent work 
y Seta et al. ( 2020 ) demonstrated, ho we ver, that both the thickness
nd width of the structures show Re −1 / 2 

M 

scaling. Furthermore, the 
tructures are more space filling (Seta & Federrath 2021 ). 
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Figure A1. Dependence of k ν on Re with k ν/k f ≈ 0 . 48 Re 3 / 4 . For Re ≈ 10, 
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PPENDI X  A :  V I S C O U S  C U TO F F  SCALI NG  

n Section 2.2 we discussed the expected Re 3/4 scaling of the
iscous cutoff wavenumber. This scaling was also verified by Kriel
t al. ( 2022 ), but they did not actually compute εK , nor did they
se equation ( 7 ). To verify that k ν obeys this scaling, we show
n Fig. A1 the dependence of k ν on Re. Quantitatively, we have
 ν/k f ≈ 0 . 48 Re 3 / 4 . Small departures are seen for very small and
ery large values of Re. The latter could be related to insufficient
esolution for such a high value of Re, whereas the former could
ndicate that the 3/4 scaling is not yet applicable. 

Our coefficient in the relation between k ν / k f is larger than that
ound by Kriel et al. ( 2022 ). They found k ν/k f ≈ 0 . 025 Re 3 / 4 KBSF ,
here Re KBSF = 2 πRe. Thus, their relation corresponds to k ν/k f ≈
 . 10 Re 3 / 4 . Ho we ver, if their ef fecti ve k f was also 1 . 5 k 1 , as in our
ase, then the prefactor would be 0.07 instead of 0.1. 
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Figure B1. Kinetic energy spectra for Runs A, D, G, and M’. together with 
the fits given by equations ( 13 ) and ( 15 ). Panel (b) shows the compensated 
version of the spectrum shown in panel (a). No adjustable parameters are 
used, except for the fits with equations ( 13 ) and ( 15 ). 
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PPEN D IX  B:  V I S C O U S  C U TO F F  

AVENUMBER  

n Section 3.5 , we discussed dif ferent v ariants of k ν . In Fig. B1 (a), we
lot kinetic energy spectra for Runs A, D, G, and M’, together with
he fit given by equation ( 13 ) with k fit 

ν ≈ 0 . 5 k ν and equation ( 15 ) with
 bot = 1.8, n dis = 0.86, k bot 

ν ≈ 0 . 056 k ν , and k dis 
ν ≈ 0 . 073 k ν . The latter

orresponds to another definition of the viscous cutoff wavenumber 
s k dis 

ν . To demonstrate more clearly the existence of the bottleneck
ffect in our simulations, we show in Fig. B1 (b) compensated kinetic
nergy spectra, ε−2 / 3 

K k 5 / 3 E K ( k), and compare with the fit given by
quation ( 15 ). 
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