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ABSTRACT

Combined action of helical motions of plasma (the kinetic « effect) and non-uniform (differential) rotation is a key dynamo
mechanism of solar and galactic large-scale magnetic fields. Dynamics of magnetic helicity of small-scale fields is a crucial
mechanism in a non-linear dynamo saturation where turbulent magnetic helicity fluxes allow to avoid catastrophic quenching
of the « effect. The convective zone of the Sun and solar-like stars, as well as galactic discs, are the source for production of
turbulent magnetic helicity fluxes. In the framework of the mean-field approach and the spectral T approximation, we derive
turbulent magnetic helicity fluxes using the Coulomb gauge in a density-stratified turbulence. The turbulent magnetic helicity
fluxes include non-gradient and gradient contributions. The non-gradient magnetic helicity flux is proportional to a non-linear
effective velocity (which vanishes in the absence of the density stratification) multiplied by small-scale magnetic helicity, while
the gradient contributions describe turbulent magnetic diffusion of the small-scale magnetic helicity. In addition, the turbulent
magnetic helicity fluxes contain source terms proportional to the kinetic « effect or its gradients, and also contributions caused
by the large-scale shear (solar differential rotation). We have demonstrated that the turbulent magnetic helicity fluxes due to
the kinetic « effect and its radial derivative in combination with the non-linear magnetic diffusion of the small-scale magnetic

helicity are dominant in the solar convective zone.
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1 INTRODUCTION

The large-scale solar and galactic magnetic fields are generated by a
combined action of helical turbulent motions and large-scale differ-
ential rotation due to the €2 dynamo (see e.g. Moffatt 1978; Parker
1979; Krause & Rédler 1980; Zeldovich, Ruzmaikin & Sokoloff
1983; Moffatt & Dormy 2019). A non-zero kinetic helicity produced
by a rotating density stratified convective turbulence, causes the
kinetic « effect. The dynamo instability is saturated by non-linear
effects. One of the important non-linear effects is the feedback of the
growing large-scale magnetic field on the plasma turbulent motions,
so that the turbulent transport coefficients (the « effect, the eftective
pumping velocity, and the turbulent magnetic diffusion) depend
on the mean magnetic field B. The simplest non-linear saturation
mechanism of the dynamo instability is related to the o quenching

that prescribes the kinetic « effect to be a decreasing function of
—_ NP
the mean magnetic field strength, e.g. «(B) = o (1 + B 2/B:q) ,

where o, o< —7¢ H, is the kinetic « effect that is proportional to the
kinetic helicity H, = (u-(V xu)), E:q =47 p <u2> is the squared
equipartition mean magnetic field, u is the turbulent velocity field,
7 is the turbulent time, and p is the mean density. This implies
that the mean magnetic field strength, at which quenching becomes
significant, is estimated from the equipartition between the energy
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density of the mean magnetic field and the turbulent kinetic energy
density. When applied to galactic dynamos, this picture results in
robust magnetic field models that are compatible with observations
(see e.g. Ruzmaikin, Shukurov & Sokoloff 1988; Shukurov &
Subramanian 2021). The above-mention non-linearity is referred as
algebraic non-linearity.

However, this picture is obviously oversimplified and various
attempts to suggest a more advanced version of non-linear dynamo
theory have been undertaken (see e.g. reviews and books by Bran-
denburg & Subramanian 2005b; Riidiger, Hollerbach & Kitchatinov
2013; Rincon 2019; Rogachevskii 2021, and references therein).
The quantitative theories of the algebraic non-linearities of the «
effect, the turbulent magnetic diffusion, and the effective pumping
velocity have been developed using the quasi-linear approach for
small fluid and magnetic Reynolds numbers (Riidiger & Kichatinov
1993; Kitchatinov, Pipin & Riidiger 1994; Riidiger et al. 2013) and
the tau approach for large fluid and magnetic Reynolds numbers
(Field, Blackman & Chou 1999; Rogachevskii & Kleeorin 2000,
2001, 2004, 2006).

In addition to the algebraic non-linearity, there is also a dy-
namic non-linearity caused by an evolution of magnetic helicity
density of small-scale fields during the non-linear stage of the
mean-field dynamo. In particular, the o effect is the sum of the
kinetic and magnetic parts, o = o, + oy, Where the magnetic o
effect, oy, ox t9 He /(127 p), is proportional to the current helicity
H. = (b-(Vxb)) of the small-scale magnetic field b (Pouquet,
Frisch & Léorat 1976). The dynamics of the current helicity, H.,
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is determined by the evolution of the small-scale magnetic helicity
density H,, = (a-b), where magnetic fluctuations b = V xa and a
are fluctuations of magnetic vector potential.

Magnetic helicity is a fundamental quantity in magnetohydrody-
namics and plasma physics (see e.g. Berger 1999). In particular,
the total magnetic helicity, i.e. the sum of the magnetic helicity
densities of the large-scale and small-scale magnetic fields, Hy +
H,,, integrated over the volume, [(Hwy + Hy)dr?, is conserved for
very small microscopic magnetic diffusivity n. Here, Hy = A-B is
the magnetic helicity density of the large-scale field B = V x A.
Signature of magnetic helicity has been detected in many solar
features, including solar active regions (see e.g. Zhang et al. 2006,
2012; Pevtsov et al. 2014, and references therein).

The governing equation for small-scale magnetic helicity density,
H,,, has been derived for an isotropic turbulence by Kleeorin &
Ruzmaikin (1982) and for an arbitrary anisotropic turbulence by
Kleeorin & Rogachevskii (1999). This equation has been used for
the analytical study of solar dynamos (Kleeorin, Rogachevskii &
Ruzmaikin 1994, 1995) as well as for mean-field numerical mod-
elling of solar and galactic dynamos (see e.g. Covas et al. 1997,
1998; Kleeorin et al. 2000, 2002, 2003b,a, 2016; Brandenburg &
Subramanian 2005b; Sokoloff et al. 2006; Zhang et al. 2006, 2012;
Del Sordo, Guerrero & Brandenburg 2013; Safiullin et al. 2018).

As the dynamo amplifies the large-scale magnetic field, the
magnetic helicity density Hy of the large-scale field grows in time. In
particular, the evolution of the large-scale magnetic helicity density,
Hy, is determined by the following equation:
%WLV-F(M):zs-E—anC, 6
where £ = (uxb) is the turbulent electromotive force that deter-
mines generation and dissipation of the large-scale magnetic field,
2£ - B is the source of Hy due to the dynamo generated large-scale
magnetic field, F™ is the flux of magnetic helicity density of the
large-scale field that determines its transport, and He = B-(VxB)
is the current helicity of large-scale field.

Since the total magnetic helicity [(Hw + Hp)dr?® is conserved,
the magnetic helicity density H,, of the small-scale field changes
during the dynamo action, and its evolution is determined by the
dynamic equation (Kleeorin & Ruzmaikin 1982; Zeldovich et al.
1983; Kleeorin et al. 1995; Kleeorin & Rogachevskii 1999):

dHy,
ot

+V.F™=_2£.B-2yH,, )

where —2& - B is the source of Hy, due to the dynamo generated
large-scale magnetic field, F™ is the flux of magnetic helicity
density of the small-scale field that determines its transport, and
—2nH, is the dissipation rate of Hy,. The source of the small-scale
and large-scale magnetic helicity densities is only located in turbulent
region.

The characteristic decay time of the magnetic helicity density
H,, of the small-scale field is of the order T, = ty Rm, while the
characteristic time for the decay of kinetic helicity is of the order
of the turn-over time 7o = €y/ug of turbulent eddies in the integral
turbulence scale ¢, where Rm = ¢; u(/n is the magnetic Reynolds
number. The current helicity H. of the small-scale field is not a
conserved quantity, and the characteristic decay time of H. varies
from a short time-scale 7 to much larger time-scales. On the other
hand, the characteristic decay times of the current helicity of large-
scale field, Hc, and of the large-scale magnetic helicity Hy are of
the order of the turbulent diffusion time. For weakly inhomogeneous
turbulence, the current helicity density H. of the small-scale field
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is proportional to the small-scale magnetic helicity density H,
(Kleeorin & Rogachevskii 1999).

Using the steady-state solution of equation (2) with a zero turbulent
flux F™ = 0 of magnetic helicity density of small-scale field and a
zero current helicity of large-scale field, Hc, it has been concluded
that the critical mean magnetic field strength, EC,, at which the
dynamic « quenching becomes significant, in fact is much lower
than the equipartition value, e.g. B, = Beq Rm™'/? (Vainshtein &
Cattaneo 1992; Gruzinov & Diamond 1994). In astrophysics, e.g.
in galactic discs and in the convective zone of the sun, magnetic
Reynolds numbers are very large. Therefore, for large magnetic
Reynolds numbers, the dynamo action should saturate at a magnetic
field strength that is much lower than the equipartition value.
This effect is referred to a catastrophic quenching of the o effect
(Vainshtein & Cattaneo 1992; Gruzinov & Diamond 1994). On the
other hand, the observed large-scale field strengths in spiral galaxies
is the order of the equipartition value (see e.g. Ruzmaikin et al. 1988;
Shukurov & Subramanian 2021), and the observed solar and stellar
magnetic fields are much larger than B (see e.g. Moffatt 1978;
Parker 1979; Krause & Rédler 1980; Zeldovich et al. 1983).

The evolution of magnetic helicity appears, however, to be a more
complicated process than can simply be described by a balance of
magnetic helicity in a given volume. It is necessary to take into
account fluxes of magnetic helicity (Kleeorin et al. 2000). This
implies that the turbulent transport of magnetic helicity through the
boundaries (the open boundary conditions in simulations) should
be taken into account (Blackman & Field 2000). Different forms
of magnetic helicity fluxes have been suggested in various studies
(Covas et al. 1997, 1998; Kleeorin & Rogachevskii 1999; Kleeorin
et al. 2000, 2002; Vishniac & Cho 2001; Subramanian & Branden-
burg 2004; Brandenburg & Subramanian 2005b). Turbulent fluxes
of small-scale magnetic helicity have been measured in numerical
simulations (Hubbard & Brandenburg 2010, 2011, 2012; Képyla,
Korpi & Brandenburg 2010; Mitra et al. 2010; Del Sordo et al. 2013),
and in solar observations (Chae et al. 2001; Pariat, Démoulin &
Berger 2005; Pevtsov et al. 2014; Hawkes & Berger 2018).

Taking into account turbulent fluxes of the small-scale magnetic
helicity, it has been shown by numerical simulations that a non-
linear galactic dynamo governed by a dynamic equation for the
magnetic helicity density H,, of small-scale field saturates at a mean
magnetic field comparable with the equipartition magnetic field (see
e.g. Kleeorin et al. 2000, 2002, 2003b,a; Blackman & Brandenburg
2002; Brandenburg & Subramanian 2005b; Shukurov et al. 2006;
Del Sordo et al. 2013). Numerical simulations demonstrate that
the dynamics of the small-scale magnetic helicity in the presence
of the turbulent magnetic helicity fluxes play a crucial role in the
solar dynamo as well (see e.g. Kleeorin et al. 2003b, 2016, 2020;
Sokoloff et al. 2006; Zhang et al. 2006, 2012; Guerrero, Chatterjee &
Brandenburg 2010; Kipyld et al. 2010; Hubbard & Brandenburg
2012; Del Sordo et al. 2013; Safiullin et al. 2018; Rincon 2021)

Due to very important role of the turbulent magnetic helicity
fluxes in non-linear dynamos, in the present study, we perform a
rigorous derivation of these fluxes applying the mean-field theory,
adopting the Coulomb gauge and considering a strongly density-
stratified turbulence. We show that the turbulent magnetic helicity
fluxes contain non-gradient and gradient contributions. The non-
gradient magnetic helicity fluxes are product of a non-linear effective
velocity and small-scale magnetic helicity. The gradient contribu-
tions determine a non-linear magnetic diffusion of the small-scale
magnetic helicity. We also demonstrate that the turbulent magnetic
helicity fluxes include source terms proportional to the kinetic «
effect or its gradients. In the present study, we do not consider an
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algebraic quenching of the turbulent magnetic helicity fluxes that is
a subject of a separate study.

This paper is organized as follows. In Section 2, we derive
equation for the magnetic helicity of small-scale fields that includes
divergence of the turbulent magnetic helicity flux. In Section 3, we
discuss the results of calculations of the turbulent flux of magnetic
helicity of the small-scale fields. In addition, we obtain a general
form of turbulent flux of the magnetic helicity using symmetry
arguments. In Section 4, we consider the turbulent magnetic helicity
flux in the solar convective zone. Finally, in Section 5, we discuss our
results and draw conclusions. In Appendixes A and B, we discuss
approximations and procedure of the derivation of turbulent flux
of magnetic helicity. In Appendix C, we determine the effect of
large-scale shear on turbulent flux of the magnetic helicity. Applying
the method described in Appendixes A-C, we determine various
contributions to the turbulent flux of the small-scale magnetic helicity
in Appendix D. In particular, we present the general form of turbulent
transport coefficients entering in the turbulent flux of the small-scale
magnetic helicity. For better understanding of the physics related to
various contributions to the turbulent flux of the small-scale magnetic
helicity, in Appendix E, we consider a more simple case with a large-
scale linear velocity shear and present turbulent transport coefficients
in the Cartesian coordinates.

2 EQUATION FOR THE MAGNETIC HELICITY

In this section, we derive an equation for the small-scale magnetic
helicity. The induction equation for fluctuations of magnetic field b
reads
b — —
EZVX [Uxb—i—uxB—i—uxb—(uxb)

— 9V x b], 3)

where in the framework of the mean-field approach, we separate
magnetic and velocity fields into mean and fluctuations, B = B + b
and B = (B) is the mean magnetic field, U = U + u, and U = (U)
is the mean fluid velocity describing, e.g. the differential rotation,
n is the magnetic diffusion due to electrical conductivity of fluid.
The equation for magnetic fluctuations is obtained by subtracting
induction equation for the mean magnetic field B from that for
the total field B(z, x). The equation for fluctuations of the vector
potential a follows from induction equation (3)
Ja — _
gzUxb—{—uxB—{—uxb—(uxb)

—nV xb+ Vo, 4)

where B=V x Aand A = A + a, and A = (A) is the mean vector
potential, b = V x a, and ¢ are fluctuations of the scalar potential.
We multiply equation (3) by @ and equation (4) by b, add them and
average over an ensemble of turbulent fields. This yields an equation
for the magnetic helicity H,, = (a(x) - b(x)) of the small-scale fields

as
3 Hp _
7:—25.3—2n<b-(vxb))—V-F“‘“, (5)

where € = (u x b) is the turbulent electromotive force, and the

turbulent flux of magnetic helicity F™ of the small-scale fields

is given by

F™ =UH,—(b(a-U))+(u(a-B))—B(a-u)
—n{ax(Vxb)+(axuxb)—(be). (0)
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Using the Coulomb gauge V - @ = 0, we obtain that V x b = —Aa
and @ = —A~'V x b. The Coulomb gauge also allows us to find
fluctuations of the scalar potential ¢. Indeed, equation for V - a,
which follows from equation (4), yields expression for fluctuations
of the scalar potential ¢, so that the correlation function (b; ¢) reads

(bi§) = (biaj) Uj — (bi A7 (V xw);) B;
— (b A" b)) Wi+ (b A7 uy) (V x B);
— (b ATV - (ux b)). (M

where W=V xU is the mean vorticity and <b,— a j> =
—(b; A7'(V x b);). Equations (6-7) yield the turbulent flux of
magnetic helicity F'™ of the small-scale fields as

Fi(m) =U; Hn+W; <bi Aflbj> + B; <uiaj>
— B (uja;)+B; (b A7 (V xw);) + F”
(VB (b A u,—>+F,-(“”, (8)

where (u; a;) = — (u; A7 (V x b);), F = —n(a x (V x b)) is
the flux caused by the microscopic magnetic diffusion 7, and F™
is the flux that is determined by the third-order moments, and it is
given by

F™ = (hbA™'V - (u x b)) + (a x (u x b)). )

Equations (5-9) are exact equations. Note that only in the Coulomb
gauge, the scalar potential ¢ is described by the stationary equation.
For all other gauge conditions, the scalar potential ¢ is determined by
a non-stationary equation. Also, for the Coulomb gauge, the relation
between the magnetic o effect and small-scale magnetic helicity is
the most simple.

3 GENERAL FORM OF TURBULENT FLUX OF
THE MAGNETIC HELICITY

In this section, we discuss the results of calculations of the turbulent
flux of magnetic helicity of the small-scale fields. General form of
turbulent flux F™ of the magnetic helicity can be obtained from
symmetry reasoning. Indeed, the turbulent flux F™ is the pseudo-
vector that should contain two pseudo-scalars: the magnetic helicity,
H,,, and the kinetic « effect, «,, and their first spatial derivatives.
In addition, the contributions Ffso) to the turbulent magnetic helicity
flux caused by the large-scale shear (differential rotation) should
contain the pseudo-vector W = V x U, where U = §Q2 x r is the
large-scale velocity describing the differential rotation §€2.

All turbulent transport coefficients entering in the turbulent flux
F™ of magnetic helicity of the small-scale fields should be quadratic
in the large-scale magnetic field B, i.e. they should be proportional to
B or Vi -5 /(47p), where 7 is the mean plasma density and V 5
is the mean Alfvén speed. On the other hand, the turbulent flux F™
of the magnetic helicity should vanish in the absence of turbulence.
This implies that all turbulent transport coefficients entering in the
turbulent flux F™ should be proportional to turbulent correlation
time 7 or turbulent integral scale £,. Some of the turbulent transport
coefficients are caused by the plasma density stratification, i.e. they
are proportional to A = —V In'p.

Using the theoretical approach based on the spectral T approxima-
tion, which is valid for large fluid and magnetic Reynolds numbers,
and the multiscale approach, we obtain the turbulent flux of the
small-scale magnetic helicity as

F™ = (Ui 4+ V™) Hy = DV Hy + N a

+MO Vi + FS, (10)

i JYK
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where o, = —7y H, /3 is the kinetic « effect. Details of the derivation
of equation (10) are described in Appendixes A—C. The general
form of the turbulent transport coefficients entering in the turbulent
flux (10) of magnetic helicity of the small-scale fields is given
by equations (D2-D6) in Appendix D. These turbulent transport
coefficients of the turbulent magnetic helicity flux in spherical
coordinates are given in the next section and in the Cartesian
coordinates are discussed in Appendix E.

The turbulent flux of the small-scale magnetic helicity includes
the non-gradient and gradient contributions. The non-gradient con-
tribution to the turbulent flux of magnetic helicity is proportional
to the sum of the mean velocity U = §Q2 x r and the turbulent
pumping velocity V| which is multiplied by small-scale magnetic
helicity Hy,, while the gradient contribution —Di(jH) V; H,, describes
the turbulent magnetic diffusion of the small-scale magnetic helicity.
The effective pumping velocity of the small-scale magnetic helicity
V® vanishes in the absence of the density stratification. In addition,
the turbulent magnetic helicity flux contains the source term N® «
proportional to the kinetic « effect, and the source term —Miga) Vo
proportional to the gradient V;«, of the kinetic o effect. The
turbulent magnetic helicity flux also have contributions caused by
the large-scale shear (differential rotation) in the turbulent flow.

We assume that the turbulent flux of the magnetic helicity F™
containing the third-order moments [see equation (9)], is determined
using the turbulent diffusion approximation as F™ = -DVH,.
The contribution to the turbulent magnetic helicity flux, — DTH) VH,,
caused by the turbulent diffusion, has been used in mean-field
numerical simulations by Covas et al. (1997, 1998) and Kleeorin
et al. (2002, 2003a).

The turbulent diffusion of the small-scale magnetic helicity can be
interpreted as follows. The random flows existing in the interstellar
medium consist of a combination of small-scale motions, which
are affected by magnetic forces (tangling fluctuations) resulting in
a steady-state of the dynamo, and a background micro-turbulence
which is supported by a strong random driver (e.g. supernovae
explosions which can be considered as independent of the galactic
magnetic field). The large-scale magnetic field is smoothed over both
kinds of turbulent fluctuations, while the small-scale magnetic field is
smoothed over microturbulent fluctuations only. It is the smoothing
over the microturbulent fluctuations that give the coefficient D(TH) =
Cpn, with a free dimensionless constant Cp ~ 0.1. Here, 1, is the
turbulent diffusion coefficient of the mean magnetic field.

The magnetic helicity flux F™ = —5(a x (V x b)) due to the
microscopic magnetic diffusion 7 is given by F™ = — %nVHm. This
flux in astrophysical systems is very small and neglectéd here.

4 TURBULENT MAGNETIC HELICITY FLUX IN
THE SOLAR CONVECTIVE ZONE

In this section we discuss the results of calculations of the turbulent
magnetic helicity flux in the solar convective zone, where we use
spherical coordinates (r, 9, ¢). The radial turbulent flux of the small-
scale magnetic helicity is given by
H (H)

F™ = VW Hy — D ViHy 4+ N o

+ MY Vo, + FS. (11)
The general forms of the turbulent transport coefficients entering
in the turbulent flux F™ of magnetic helicity of the small-scale

fields are given by equations (D2-D6) in Appendix D. In view of
applications to the solar convective zone, the turbulent transport
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coefficients of the turbulent magnetic helicity flux in spherical
coordinates are specified below:

" 1 , 173
VI = - — VA [14+78% — — sin® 106Q 8,8, |, (12)
15 14
1
DI = DY+ r Vi (5—487). 3
280 + 17
p@ = 280 170) a2 56 0 4 cos v, (14)
105
1, T -2
N =~ (3B 2 {1 + 4t
216(q
L 808, » 15
6q 1) T B By sin } (15)
Mf(j) _ 2q B IZZEZ M ,Brz
20g 2g —1
32¢(q — 1
_ 32— 7082 B, B, sin 19], (16)
g —1)(3q—1)
M = 8g -1 1) 0B OSQﬁ,ﬂ cos I, a7

2 v 3
PO = -3 50 0030{4623 +[ A (1 —ﬁf)

wy
3g-=D] 5 /0
o) 6 o) ()

where 8 = B/ B is the unit vector along the mean magnetic field and
U = 8Qr sin® e, is the mean velocity caused by the differential
rotation §Q = Q(r, 9) — Q(r = Ry, 9). Here, Q(r = Rg, 9) = Qo(1
— (»c0829 — C4c08*9) with Qo = 2.83 x 107% 57!, C, = 0.121
and C4 = 0.173 (LaBonte & Howard 1982), R, is the solar radius,
A = Ae,, £, is the energy containing scale of magnetic fluctuations
with a zero mean magnetic field, and ¢ is the exponent in the spectrum
of the turbulent kinetic energy (the exponent ¢ = 5/3 corresponds to
the Kolmogorov spectrum of the turbulent kinetic energy).

In derivation of equations (12)—(18), we take into account that
for weakly inhomogeneous turbulence H. ~ H,,/ E%, and we neglect
small terms ~ O[€3/L2 ] with L, being characteristic scale of spatial
variations of Hy,. We also neglect small contributions proportional to
spatial derivatives of the mean magnetic field, and spatial derivatives
of (u?) and 6.

Let us discuss the obtained results. For illustration, in Fig. 1,
we show the radial profile of the total angular velocity Q(r)/Q2 in
the solar convective zone that includes the uniform and differential
rotation specified for the latitude ¢, = 30°. The theoretical profile
(solid line) of the total angular velocity (Rogachevskii & Kleeorin
2018) is compared with the radial profile of the solar angular
velocity (stars) obtained from the helioseismology observational
data (Kosovichev et al. 1997) specified for the latitude ¢ = 30° and
normalized by the solar rotation frequency Q¢ (¢, = 0) at the equator,
where 2/Qg is given by equation (3.14) derived by Rogachevskii &
Kleeorin (2018). In Figs 1-2, we also show the radial profile of the
kinetic « effect, o, /ama Which is specified for the latitude ¢ =
30° and given by equation (22) derived by Kleeorin & Rogachevskii
(2003).

In the upper part of the solar convective zone for the latitude
¢, > 0 (the Northern Hemisphere), the kinetic o effect is pos-
itive, o, > 0 (see Fig. 2). On the other hand, the magnetic o
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Figure 1. The theoretical radial profiles of the total angular velocity Q(r)/Q2
(solid) that includes the uniform and differential rotation specified for the
latitude ¢, = 30° and the normalized kinetic « effect, oy /ormax (dashed).
The theoretical profile of the total angular velocity is compared with the
radial profile of the solar angular velocity obtained from the helioseismology
observational data (stars) specified for the latitude ¢, = 30° and normalized
by the solar rotation frequency Q¢ (¢, = 0) at the equator (Kosovichev et al.
1997), where R is the solar radius. The profile o (r) = a((;)) is given by
equation (22) derived by Kleeorin & Rogachevskii (2003), and Q(r)/Q2¢ is
given by equation (3.14) derived by Rogachevskii & Kleeorin (2018).
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Figure 2. The radial profile of the normalized kinetic « effect, @, =
oy /emax, specified for the latitude ¢, = 30° and given by equation (22)
derived by Kleeorin & Rogachevskii (2003).
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Figure 3. The radial profile of the effective pumping velocity V,(H) of the
1

small-scale magnetic helicity given by equation (12) and measured inm s™".

effect in this region is negative, i.e. o, = 79 H./(4mp) < 0. This
implies that the current helicity H. < 0, as well as the magnetic
helicity H,, < 0, are negative for the Northern Hemisphere. Here,
for simplicity, we choose the radial profile of the poloidal and
toroidal field as B, = B, sin[w(r — 0.73R)/(0.6Rs)] and B, =
Epo cos[m(r —0.73R5)/(0.6R)], where B, is the surface mean
magnetic field measured in Gauss. To avoid catastrophic quenching,
the radial component of the turbulent flux of the small-scale magnetic
helicity F™ < 0 should be negative for the Northern Hemisphere.
In Figs 3 and 4, we show the radial profiles of the effective pumping
velocity V™ (r) and turbulent diffusion D(r) of the small-scale
magnetic helicity. In Figs 5 and 6, we plot the radial profiles of
the turbulent magnetic helicity fluxes caused by the source terms
Fr) = N® a, and Fy* (r) = M V,a,, which are proportional
to the kinetic « effect and its radial derivative, as well as their
sum F®r) = N9 o, + M® V,a,. In Fig. 6, we also show the
contribution FS?(r) to the turbulent magnetic helicity flux caused
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Figure 4. The radial profile of turbulent diffusion Dﬁlj) (r) of the small-scale

magnetic helicity given by equation (13) and measured in cm? s~
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Figure 5. The radial profile of the turbulent magnetic helicity fluxes caused
by the source terms F’ I(Dl) = N,(d) ay (dashed) and Fz(m) = M,(‘;l) V,ay (dashed-
dotted), which are proportional to the kinetic « effect and its radial derivative,
as well as their sum F,(d) = N,(a) ay + M,g'f) Vyay (solid), where N,(a) and
Mf‘f) are given by equations (15) and (16), respectively. The fluxes are
specified for the latitude ¢, = 30° and measured in G> cm? s~
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Figure 6. The radial profiles of the turbulent magnetic helicity fluxes caused
by the source terms Fl(“) =N® oy (solid), Fz(a) =M@ V,a, (dashed) and

the contribution F,°” (dashed-dotted) to the turbulent magnetic helicity flux
caused by the large-scale shear (differential rotation), where N,(d), M;;'-), and
FfSO) are given by equations (15), (16), and (18), respectively. The fluxes are

specified for the latitude ¢, = 30° and measured in G> cm? s~

25F Fia /10"
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Figure 7. The radial profile of the total source flux Fio = N,(O‘)ozK +
Mf‘,") Vyoy + F,(SO) of the magnetic helicity that is independent of the
magnetic helicity and its radial derivative. Here, the flux is measured in
G?em?s™!.

by the large-scale shear (differential rotation). Finally, in Fig. 7,
we plot the radial profile of the total source flux of the magnetic
helicity F(r) = N9 o, + M@ V, o, + FSY that is independent
of the magnetic helicity and its radial derivative.
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Figure 8. Turbulent diffusion flux r2 Fr(D) (solid line) and the flux
r2 [Fr(D) (r) + Fioi(r)] (dashed-dotted line) of magnetic helicity per unit solid
angle, which are measured in Mx> h~.
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Figure 9. Comparison of the theoretical predictions for ®p = Fr(D) (r=
Ro) Ré 8¢ with the observational values of ®p (slanting crosses), which
are taken from fig. 8(a) of Chae et al. (2001), where time variations of the rates
of magnetic helicity change by photospheric motions (which do not include
differential rotation) are shown. Here, the flux ®p is measured in Mx2 h~!
and 8¢, = 2m sin(r/4) is the solid angle corresponding to the thickness of
the Royal sunspot region. The theoretical values for ®p are given for different
values of the mean magnetic field, Bpot and Etop, at the bottom and top of the
solar convective zone (i.e. thick solid line is for Byo; = 10° G and Ewp =38
G; dashed line is for Byor = 1.4 x 103 G and Byop = 11 G and dashed-dotted
line is for Bpot = 2 x 10° G and Byop = 16 G).

As follows from Figs 3-7 as well as equations (11-18), the
negative contribution to the turbulent magnetic helicity flux F™
in the range of the generation of the mean magnetic field is due to the
source flux £ = N® o, + M@ V,a,, and the contribution F©?
to the turbulent magnetic helicity flux caused by the large-scale shear
(differential rotation). Here, we take into account that §2 > 0 at 0.8
< rlRg < 1 (see Fig. 1), where the differential rotation §Q2 = Q(r)
— Q(r =Rp).

The small-scale magnetic helicity is not accumulated inside the
solar convective zone due to turbulent magnetic diffusion flux, F(?.
In Fig. 8, we show the turbulent diffusion flux r>F® (solid line)
of magnetic helicity per unit solid angle and the flux [F™(r) +
Fio(r)]7? (dashed-dotted line) of magnetic helicity per unit solid
angle, which are measured in Mx?> h™=!. As follows from Fig. 8, the
flux [FP)(r) 4+ Fior(r)] 7* (the sum of the turbulent diffusion flux and
total source flux of magnetic helicity) of small-scale field per unit
solid angle is independent of r, i.e.

[FPN(r) + Fiu(r)]1? & Fii(r = 0.73R5) (0.73Rg)*. (19)

Here, we take into account that the turbulent diffusion flux FP)(r =
0.73Rs) — 0 vanishes at the bottom of the convective zone, r =
0.73 Rp, where the turbulence intensity vanishes (see Fig. 8).
Equation (19) implies that there is no accumulation of small-scale
magnetic helicity inside the solar convective zone.

In Fig. 9, we compare the theoretical predictions for flux &, =
FP)(r = Ro) R 8¢, with the observational values of @, which are
taken from fig. 8(a) of Chae et al. (2001), where time variations
of the rates of magnetic helicity change by photospheric motions
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(which do not include differential rotation) are shown. Here, the
flux ®; is measured in Mx*> h™' and 8¢, = 27 sin(r/4) is the
solid angle corresponding to the thickness of the Royal sunspot
region. The theoretical values for @, are given for different values
of the mean magnetic field, Byo and By, at the bottom and top
of the solar convective zone (see the caption of Fig. 9). Note that
the measurements of the magnetic helicity flux are based on the
equation 0 H,, /ot = —2 f(u -ap) b, dS (Chae et al. 2001; Pevtsov
et al. 2014), where we use the lower-case letters for the small-scale
fields. This implies that the measurements by Chae et al. (2001) are
based on the calculation of the third-order moment, ((u -a,)b.),
which we describe using the turbulent diffusion approximation,
FP = DWWV H,.. As follows from Fig. 9, the theoretical pre-
dictions for flux ®p are in agreement with the observational values
of ® D-

5 DISCUSSION AND CONCLUSIONS

In the present study, turbulent magnetic helicity fluxes of small-scale
field are derived applying the mean-field approach and the spectral t
approximation using the Coulomb gauge in a density-stratified tur-
bulence. The turbulent magnetic helicity fluxes contain non-gradient
contribution that is proportional to the effective pumping velocity
multiplied by the small-scale magnetic helicity. There is the gradient
contribution to the turbulent magnetic helicity flux describing the
turbulent magnetic diffusion of the small-scale magnetic helicity.
The turbulent magnetic helicity flux also includes the source term
proportional to the kinetic « effect or its radial gradient. Finally,
there is a contribution to the turbulent magnetic helicity flux due to
the solar differential rotation.

The convective zone of the Sun and solar-like stars, as well as
galactic discs, are the source for production of turbulent magnetic
helicity fluxes. The turbulent magnetic helicity flux due to the kinetic
« effect and its radial derivative in combination with the turbulent
magnetic diffusion of the small-scale magnetic helicity are dominant
in the solar convective zone. The turbulent magnetic helicity fluxes
result in evacuation of small-scale magnetic helicity from the regions
of generation of the solar magnetic field, which allows to avoid the
catastrophic quenching of the o effect. The small-scale magnetic
helicity is not accumulated inside the solar convective zone due to
the turbulent magnetic diffusion flux.

The magnetic helicity fluxes are measured in the solar surface.
Most of the measurements of the magnetic helicity fluxes are
performed in active regions. The contributions to the measured
magnetic helicity flux are from both, the solar surface and solar
interiors.
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APPENDIX A: DERIVATION OF TURBULENT
FLUX OF MAGNETIC HELICITY

In this section, we derive turbulent flux of the magnetic helicity.
We consider developed turbulence with large fluid and magnetic
Reynolds numbers, so that the Strouhal number (the ratio of turbulent
time 7 to turn-over time fo/up) is of the order of unity, and the
turbulent correlation time is scale-dependent, like in Kolmogorov-
type turbulence. In this case, we perform the Fourier transformation
only in k space but not in w space, as is usually done in studies of
turbulent transport in a fully developed Kolmogorov-type turbulence.
We take into account the non-linear terms in equations for velocity
and magnetic fluctuations and apply the t approach.

The 7 approach is a universal tool in turbulent transport for strongly
non-linear systems that allows us to obtain closed results and compare
them with the results of laboratory experiments, observations, and
numerical simulations. The t approximation reproduces many well-
known phenomena found by other methods in turbulent transport
of particles and magnetic fields, in turbulent convection and stably
stratified turbulent flows for large fluid and magnetic Reynolds and
Péclet numbers.

To derive equations for the turbulent fluxes of the magnetic
helicity, we need expressions in a Fourier space for the cross-
helicity tensor gij(k) = (u;(t, k) b;(t, —k)) and the tensor h;j(k) =
(bi(t,k)bj(t, —k)) for magnetic fluctuations. Indeed, as follows
from equation (8), the turbulent fluxes of the magnetic helicity depend
only on the second moments g;; and A;; (except for the last two terms,
1 {a x (V x b)) and F™ which are considered separately). Using
induction equation (3) for magnetic fluctuations b and the Navier—
Stokes equation for velocity fluctuations u written in a Fourier space,
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we derive equations for the cross-helicity tensor g;;(k) and the tensor
hij(k) for magnetic fluctuations as

agi(k) oom 1= - .
20— [iem - 15| [0 - o)
o (””(k) (A1)
hy(k) _ L5
U5 =i (kB [g300 - gu—h)] + 5 (B
x4 + 5| + MO, (a2)

where in equations (A1)—(A2) we neglect terms proportional to spa-
tial derivatives of the mean magnetic field [i.e. terms o O(V,-E j)].
Here, fi(k) = (u;(t, k)u;(t, —k)), and M®g{!""" and M@ p{"D
are the third-order moment terms appearing due to the non-linear
terms:

MO ) = = (wite T 0, k)

dui(t, k)
<T bj(t, —k)>, (A3)

OB = = (bite 0 T, k) )

+

TV bt k) ), (A4)
where

T/ = [Vx (uxb — (uxb))]; . (AS)

Equations (A1 and A2) for the second moment includes the first-
order spatial differential operators applied to the third-order moments
M(b)gi(j””(k) and M(b)hgj””(k). A problem arises how to close the
system, i.e. how to express the third-order moments through the
lower moments, g;i and h;; denoted as FV. We use the spectral t
approximation that postulates that the deviations of the third-order
moments, denoted as M FD(k), from the contributions to these
terms afforded by a background turbulence, MF!19(k), can be
expressed through the similar deviations of the second moments,
FUD(k) — FUO9(k) as
MEID(k) —

KR (1) = [F“”(k) F(“-O)(k)],

k)
(A6)

where 7,(k) is the scale-dependent relaxation time, which can be
identified with the correlation time t(k) of the turbulent velocity
field for large fluid and magnetic Reynolds numbers. The functions
with the superscript (0) correspond to the background turbulence with
a zero mean-magnetic field. Validation of the t approximation for
different situations has been performed in various numerical simula-
tions (Brandenburg, Képyld & Mohammed 2004; Brandenburg &
Subramanian 2005b,c,a; Brandenburg et al. 2008; Brandenburg,
Rédler & Kemel 2012; Rédler et al. 2011; Rogachevskii et al.
2011, 2012; Haugen et al. 2012; Elperin et al. 2017; Rogachevskii,
Kleeorin & Brandenburg 2018). When the mean magnetic field is
zero the turbulent electromotive force vanishes, which implies that
8ij O (k) = 0. We also take into account magnetic fluctuations caused
by a small-scale dynamo (the dynamo with a zero mean-magnetic
field). Consequently, equation (A6) reduces to M(b)gi(j””(k) =
—gij(k)/T(k) and MOV (k) = —[hij(k) — b )1/ (k).

We assume that the characteristic time of variation of the second
moments g;;(k) and h;;(k) are substantially larger than the correlation
time t(k) for all turbulence scales. Therefore, in a steady state,
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equations (Al and A2) yield the following formulae for the cross-
helicity tensor g;j(k) = (u;(k) b;(—k)), and the function h;(k) =
(bi(k) bj(—k)):

gi(k) = —t(k) { [i (k-§) - %(E-V)] [ﬁj(k)

~hy@0)] = B (ikn 5v,,)fm(k>} (A7)
hij(k) = h(o)(k)—f—t(k) kB [ kB fJ(k)

~ky (B fullo) + B; fn«,-<k))} : (A8)

In equations (A7 & A8), we neglect small contributions proportional
to spatial derivatives of the mean magnetic field. Since we consider
a one-way coupling (i.e. we do not consider the algebraic quenching
of the turbulent fluxes of the magnetic helicity), the correlation
functions f;; and h; in the right-hand sides of equations (A7 and
A8) should be replaced by fl(o) and h,(J ), respectively.

We use the following model for the second moment, f(o)(k, R) =
<u,- (k)u j(—k)>(0) of velocity fluctuations in density stratified and he-
lical turbulence in a Fourier space (Ridler, Kleeorin & Rogachevskii
2003):

E, (k) L Gk — 3
5= g k2 {[(‘Su—ku”é (ks = 20) | ()

_P |:i€ijp kp +(8jpm k[p +‘91pm kjp)xm] Hu}a (A9)
where §;; is the Kronecker tensor, ki = k; k; /k? and Tom = A —
Vu/2. The energy spectrum function E,(k) of velocity fluctu-
ations in the inertial range of turbulence is given by E, (k) =
(q — D ky" (k/ko)~9, where the exponent ¢ = 5/3 corresponds to the
Kolmogorov spectrum, ky < k < k,, the wavenumber ky = 1/¢, the
length £, is the maximum scale of random motions, the wavenumber
k, = ¢3!, and the length ¢, = £;Re~** is the Kolmogorov (viscous)
scale. The expression for the turbulent correlation time is given by
(k) = 219 (k/ko)' =9, where T = £o/uy is the characteristic turbulent
time. In equation (A9), we take into account inhomogeneity of the
kinetic helicity.

The model for the hfjo)(k, R) =
<b,-(k) b j(_k)>(0), of magnetic fluctuations in a Fourier space
is analogous to equation (A9)

second moment,

! 1
[ ]
1
— 75 Espm Kip + Eipm k,,,)vm} He 8k — ko)}v (A10)

where H. = (b-(Vx b)) is the current helicity, E,(k) = (g, —
D)k, Y(k/ky)=9 is the magnetic energy spectrum function in the
range k, < k < k,, the wavenumber k, = 1/¢,, the length ¢, is the
maximum scale of magnetic fluctuations caused by the small-scale
dynamo, and the exponent g,, = 5/3 corresponds to the Kolmogorov
spectrum for the magnetic energy. In equation (A10), we take into
account inhomogeneity of the current helicity. We also take into
account that due to the realizability condition, the current helicity
of the small-scale field is located at the integral turbulence scale
(Kleeorin & Rogachevskii 1999).

For the integration over angles in k-space, we use the following
integrals:
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2 b4 ) A7
dp [ sindd9k; = — &, (AID)
0 0 3
2 b4 ) 47
do sin® A kijmn = —= Aijmns (Al12)
0 0 15
2 b4 ) 47
/ d§0 / sin ¥ d k[jmnpq = Tz Aijmnpq 5 (Al3)
A A 105
where
Aijmn = ‘Sijamn + 8im8jn + 5in8jms (A14)
Aijmnpq = Amnpq 8ij + Ajmnq Sip + Aimnq 8]17 + Ajmnp Siq
+Aimnp 8jq + Aijmn 6pq - Aiqu 8mna (AIS)
and  kyj =k; kj/kz, kijmn = ki kj ky, k./k*  and Kijmnpg =

ki kj ky, ky kp kg /k®. We also take into account that Njjm =
551‘]* and A,jmnp], = 7Aijmn~

For the integration over k, we use the following integrals for large
Reynolds numbers, Re=uyly/v > 1:

ky
/ (k) E, (k) dk = 10, (A16)
ko
b (k) E, (k) qg—1
Lo dk = 7002, (A17)
/k0 kz q 0to
* 12(k) E, (k) 4g—1)
L dk = 2 02, (A18)
/ko k2 3g—1 °7°
ky 4
/ 2(k) E, (k) dk = gfg. (A19)
ko

Using equations (A7-A19), and integrating in k space, we de-
termine various contributions to the turbulent flux of the small-scale
magnetic helicity, see equations (12—17) and Appendix D. The details
of the derivations of the effect of large-scale shear on turbulent fluxes
of the magnetic helicity are discussed in Appendix C.

APPENDIX B: DERIVATION OF EQUATIONS
FOR THE SECOND MOMENTS

In this appendix, we derive equations (Al and A2) for the cross
helicity tensor gi;j(k) = (u;(t, k) b;(t, —k)) and the tensor hj(k) =
(bi(t, k) bj(t, —k)) for magnetic fluctuations. To this end, we perform
several calculations that are similar to the following. We use the equa-
tion for magnetic fluctuations obtained by subtracting equation for
the mean magnetic field from the equation for the total field:

b _ —
E—V X(Wuxb—(uxb)—nAb=(B-V)Yu— (u-V)B. (Bl)
The source term, (B-V)u, in the right-hand side of equation (B1) in
a Fourier space reads:

[(B-V)u;], =ik, /EP(Q)uj(k - 0)do, (B2)
so that the induction equation for b;(k,) in k space is given by:

% =ik /E(ij(kz - 0)dQ

— uy(k2) V, B + N (k2), (B3)
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where k% = k, = —k + K /2. We use the identity:
3 du;(ky, 1)
5 (ki Dbk, 1) = <37z1 b;(ks, t)>
+ <u,~(k1, ) 731”(81;2’ t)> . (B4)

First, we derive equation for the second term in the right-hand side
of equation (B4). To this end, we multiply equation (B3) by u;(k;)
and averaging over ensemble of turbulent velocity field, where k; =
k + K /2. This yields:

abj(k _
<u,~(k1) ’a(t 2)> =i (k) +K,/2) /dQ B,(Q)
X <ui(k1)uj(k2 - Q)> — (u; (k1) uy(k2))
x VB, + (uitk) N (k) (BS)

where for brevity of notations we omit the argument ¢ in the
velocity and magnetic fields. Next, we perform in equation (BS)
the Fourier transformation in the large-scale variable K, i.e. we use
the transformation

F(R):/F(K)exp(iK-R)dK.
The first term S;(k, R) in the right-hand side of the obtained

equation [which originates from the first term in the right-hand side
of equation (B3)], is given by:

Sk, B) =i //Ep(Q) (—=k, + K,/2) exp(i K-R)
x(ui(k+ K/2uij(—k + K/2 - Q))dKdQ.

(B6)
Next, we introduce new variables:
k= —k)/2=k+ Q/2,
K=k +k=K-0, (B7)
where
ki =k+K/2, ky=—k+K/2—- Q. (B8)
Therefore, equation (B6) in the new variables reads
S B =i [ [ fytk+ 02K - 0 B0
x (—kp, + K,/2) exp(iK-R)dK d Q. (B9)
Since | Q] < |k|, we use the Taylor expansion
fitk+ Q/2, K — Q) =~ fik, K — Q)
10 fik, K — Q) 2
+2 ox. O, + 0(0), (B10)
and the following identity:
V,Lfy(k R, (R = i [ O K, Lk, B, (Rl
x exp(iK-R), (B11)
where
[ ik, RYB ,(R)]x = / fitk, K = Q)B,(0)d Q. (B12)
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Therefore, equations (B9-B11) yield
. 1
Sk, R) ~ |—i(k - B) + E(B V)| fij(k, R)

_1k a fij(k)
277 Bk,

V,B,. (B13)

We take into account that the terms in gj(k, R) with symmetric
tensors with respect to the indexes ‘i’ and ‘j” do not contribute to
the turbulent electromotive force because &,, = &,.i; [ gij(k, R)dk.
In g;i(k, R), we also neglect the second and higher derivatives over
R. This procedure yields equation (Al). Similar calculations are
performed to derive equation (A2).

To determine various contributions to the turbulent flux of small-
scale magnetic helicity, we use the following identities:

kv
(A7), = k7 [1 + 1(ka )} : (B14)
(A7), =—k7 [1 - i(kk'zv)} . (B15)

APPENDIX C: EFFECT OF LARGE-SCALE
SHEAR

In this appendix, we determine the effect of large-scale shear on
turbulent fluxes of the magnetic helicity. The cross-helicity tensor
gi(js)(k) = (v;(k) bj(—k)) in turbulence with large-scale shear is given
by (Rogachevskii & Kleeorin 2004):

_ Sk
gy'(k) = it (k- B) {ﬁ;%) e l
P
(0)
+7 Jijmn(O) (f,;?:(k) - h'"—(f)ﬂ : (&)
’ 4p

where the effect of large-scale shear on the tensors fijs)(k) =
(v; (k) v;(—k)) and 1 (k) = (b; (k) b;(—k)) is determined by

fljs)(k) =T Iijmn(U) frf’t(:'l)(k)’ (C2)

WO ) = © Ejjun(T) RO (K), €3

mn

and the tensors i, (U), Eijma(U), and J;j,,(U) are given by

Iijmn(U) = {Zk,-q(ﬁmpajn + ijqS,-mSpn - 6,—,,18”5,,1,

a
- Siqun(smp + 4kpq8im§jn + (Simgjnkqﬁ
P

i
- (k,a I kjsimapn) (2k,q - a,q)

+ kq (Sip(sjnarm - Bim(sjp(srn) - 2kpq (ki(sjn(srm

- kjsimarn)] }vpﬁq’ (C4)

Eijmn(U) = |:8im8jq8pn + Biqajn‘spm

0 _
+ 8im8jnk } V,Uy,, (C5)

9k,

MNRAS 515, 5437-5448 (2022)

Jijmn(U) = {2kiq8jn8pm - 8iq8jn8pr71 + simsjqapl
a iA,

+ 2kpq8im5jn + Sim(sjnkqm - 2k2

X |:ki8jn5pm (an] - Srq) + Sjn(srm

x (ky 8ip — 2k kpq)} }v,,Uq. (C6)

Using equations (A9—-A19, B14—-B15 and C1-C6), and integrating in
k space, we determine various contributions to the turbulent flux of
the small-scale magnetic helicity caused by the differential rotation,
see equation (18) and Appendix D.

APPENDIX D: GENERAL FORM OF
TURBULENT TRANSPORT COEFFICIENTS

Applying the method described in Appendixes A-C, we have
determined various contributions to the turbulent flux of the small-
scale magnetic helicity. In particular, the general form of turbulent
flux of the small-scale magnetic helicity is given by

E(m) — ‘/I(H) Hm _ DI(JH) Vj Hm + Ni(Dl) aK
+M Vo + F, (DD

where the turbulent transport coefficients are given below. The
turbulent pumping velocity V™ of the small-scale magnetic helicity
is

v — —%rﬁi {).+7ﬂ(ﬂ )+ ;ro {28(W X A)
+ %(ﬂ.x)(Wx B) —20% +/3(17W-(/3 X X)
+58%- %) =31 07 (8-2) ~ 308 0)
—7(ﬁ><)~)(ﬂ'W)}}- (D2)

Here B = B/B is the unit vector along the mean magnetic field,

V= B/(@np)"/? is the mean Alfvén speed, W =V x U is the

mean vorticity, the vectors @ and Q™ are defined as Q?ﬁ ) =
B (0U)i and QY = A, (3U),;, and the gradient of the mean
velocity V,—Uj is decomposed into symmetric, (Bﬁ)ij =WV,U i+
V;U;)/2, and antisymmetric, &;;, W /2 parts, i.e. V;U; = (3U);j +
Eijp w P / 2.

The total diffusion tensor Di(jH) that describes the turbulent mag-
netic diffusion of the small-scale magnetic helicity, reads:

. )
Di(jH) = D(TH) 8 + %1—0 Vi {SSU —4B; B; + 1 |:88,‘jp
x(W - B) B, +8Bi (B x W)j +148; (B x W),
— 1 —
+4 8iqm E_jpn :Bm .Bn (aU)]lq + ? (8(q + 1) (aU)lJ

+2(41 4 349) B 0V + 21 — 6g) B; 07 + (1 + 89)8;

T [ — _

x(B - Q(ﬂ))ﬂ } + [n + 5w vi} eip Wy (D3)
In derivation of equations (D2)-(D3), we take into account that
H. = Hy,/¢3, and we neglect small terms ~ O[¢3/L2] with Ly,
being characteristic scale of spatial variations of H,,. The turbulent
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magnetic helicity flux also includes the source term N® «, caused
by the kinetic « effect with N being

Tq

-2 (g -1
A
q BWE Gg -1

x {10(ﬂ x W) (B-1) —37(W-B)(B x 1) —4Q%

1 —
N =~ 0 B’ {x+

—4(B x Q<"’“)+§ (wﬂ [(Bx W) A]—40QP
x(ﬂ-x>—24/3(x~Q<">>+4x(ﬂ~Q“’)))”, (D4)

where Ql(-/5 » = (B x L), (3U),i. The contribution to the turbulent
magnetic helicity flux, oc — 3 B Aoy [see the first term in equa-
tion (D4)], caused by the kinetic o effect, has been suggested by
Kleeorin et al. (2000, 2002, 2003a).

The turbulent magnetic helicity flux also contains the source term
Mi(j“) V;a, caused by the gradient V;a, of the kinetic « effect with

Mi(j“) being

a 2 Zq —1)é 204
15 1 T R —
- - @ - 23(q 3)0 |:B, (ﬂ X ” )] -(W -,B)Sij]? ‘ép }.

The additional contribution F©? to the turbulent magnetic helicity
flux caused by the large-scale shear (differential rotation) is given
by

2

_1 o s, e
FO = I p 3\ W4+ Z 2B [11eW
3@+ 1D b (0 Wt 5 [ ¢

+ (Be —10)(B- W) B + (B x QP)[8q + 35
+ €(8g — 20)] } . (D6)

Here, € = ¢} (b*) /(3 47p (u?)), and ¢, is the energy containing
scale of magnetic fluctuations with a zero mean-magnetic field. The
contribution to the turbulent magnetic helicity flux, oc €3 B (B x
0P [see the last term in equation (D6)], caused by the large-scale
shear, has been derived by Brandenburg & Subramanian (2005a),
using a general expression originally suggested by Vishniac & Cho
(2001).

To derive equations for the turbulent magnetic helicity flux due to
the differential rotation in spherical coordinates, we use the identities
given below. The large-scale shear velocity U = 8Q x r is caused
by the differential (non-uniform) rotation, which is in spherical
coordinates (r, 9, ¢) reads

3Q = 86Q(r, ) (cos ¥, —sin 19, 0), (D7)

and the stress tensor (BU)U reads
T r)l
(aU)l_] = E (8imnvj + Sjmnvi) 8Qm- (Dg)

The vectors Q(ﬂ) and QO‘) defined as Ql(.ﬂ) =B (0U),n; and QEM _
Am (U )i, are given by

0P = (r x B, (V8Q2,) — 1 x (B - V)§Q, (D9)

0% = —r x (A- V)82, (D10)
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where A = Le, and B = B/B = (B, Bs, B,)- We also use the
identity

— 1
Eiam € B Br 00y = 5 (- B) [(B x V), 6,

1
+ (ﬁ X V)] 59,] - E .Bm [ri (ﬂ X V)Z

+7; (B x V),-] 5. (D11)
We have taken into account that (ﬁ X Q(ﬂ’)r =0(VéQ), ie it
does not contain contributions o< €2, but it includes their spatial
derivatives, V3§<2. Using equations (D1-D11), we determine various
contributions to the turbulent flux of the small-scale magnetic helicity
in spherical coordinates, see equations (11-18).

APPENDIX E: TURBULENT TRANSPORT
COEFFICIENTS IN THE CARTESIAN
COORDINATES

For better understanding of the physics related to various contri-
butions to the turbulent flux of the small-scale magnetic helicity
[see equations (D1)—~(D11)], we consider a small-scale turbulence
with large-scale linear velocity shear U = (0, Sx, 0) in the Cartesian
coordinates. In this case, the large-scale vorticity is W = (0,0, ),
the stress tensor (3U ) = (S/2) (¢} €] + €} ¢;), the vector A that de-
scribes the non-uniform mean fluid density is A = A (sin @, 0, cos ¥),
the unit vector along the large-scale magnetic is § = (cos ,3 ,sin ﬁ, 0),
the vector Q) = B, (3U),ni = (5/2) (sin B, cos B, 0), and the vec-
tor Q% = A, (3T, = (A §/2) sin® e We also take into account
that

B x A =Ai(cos® sinfB, —cos ¥ cos B, —sin® sin f), (El)
(B x QP = (5/2) cos(2p) e, (E2)
(B x Q™) = (Sx/2) sin® cosfef, (E3)
B x W = S(sinf, —cos B, 0), (E4)
(W x L), =Sirsinde. (E5)

First, we determine various contributions to the turbulent flux of
the magnetic helicity inside the turbulent region where the toroidal
mean magnetic field is much larger than the poloidal mean magnetic
field, i.e. B = (0, 1, 0). In this case, the turbulent pumping velocity
V) of the small-scale magnetic helicity is

| — 3

VO = Vi (14 257 ) e +56Sme’|, (E6)
15 14

where e; = A/X. The turbulent magnetic helicity flux has the source

term N® o, caused by the kinetic & effect with N® being

1, 4(qg — 1

NO =L pFa o 2D g ) (E7)
10 73q — 1)

The total diffusion tensor ijH) that describes the microscopic and
turbulent magnetic diffusion of the small-scale magnetic helicity is
given by:

Di(jH) = D, 8 — Dye] e_’]-' + Dze; e}vf — Dye! e;, (E8)

where D, = (2/15) 7 V1.

Stol, (E9)
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Dy=Ls 41960 2 (E10)
==-Stu|n+———1 ,
S T T CR
1 34 +45 2

Dy=-S ———— 1V, Ell

4 =557 {nr 05 A} (E11)
Equation (E8) implies that D{Y = D¥ = D,, D{) = D, — D,,
Dg) = D;, Dgf) = — Dy, and other components of the total diffusion

tensor Di(jH) vanish. The turbulent magnetic helicity flux containing
the source term Miga) Vja, with M being
1 —=2 .
() 2 Y )
My" = m o B {(2q — 1) 8 + (20g — 23) el e}

16g(q—1)

301 Stoel e"} . (E12)

J

The additional contribution FS? to the turbulent magnetic helicity
flux caused by the large-scale shear is given by

F = —{g _ 2V }eg (B) Se. (E13)
3g+1) 45 (u?)

Now we determine various contributions to the turbulent flux of the
magnetic helicity at the surface (the upper boundary of the turbulent
region), where the toroidal mean magnetic field is much smaller than
the poloidal mean magnetic field, i.e. B = (1, 0, 0). In this case, the
turbulent pumping velocity V™ of the small-scale magnetic helicity
is

T (.81 ,
V(H):—BTOVA)L|:3}\+7 sin ¥ (e +ESroe’>]. (E14)

The turbulent magnetic helicity flux has the source term N a,
caused by the kinetic « effect with N being

1 7q —
N@‘):—E%Bzx{em 172 Ginw e
2g—1 44
20D g (e M Gnner )| (E15)
3g — 1 7
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The total diffusion tensor Di(jH> that describes the microscopic and

turbulent magnetic diffusion of the small-scale magnetic helicity is
given by:
D’ = D, 8; — Daef e} + Dse} ¢} — Dye] e, (E16)

where D, = (2/15) 10 Va,

aw Lo 1
Dy =D+ 20t cw Vi, (E17)
1 49+42
D; = ESTO {7)7 +TTO A:|v (E18)
145 -2
Di= =St {m + Tq % Vq. (E19)

Equation (E16) implies that D)) = DY = Dy, DY = D, — D,,
D) = D3, D} = — Dy, and other components of the total diffusion

tensor Di(jH) vanish. The turbulent magnetic helicity flux containing

the source term Miga) V,a, with Mi(j“)

being

1,
Miga) = 20q 6B [(Zq — 1) 8+ (20 —23) ¢} €]

16 -1
_leatg=1 Stef eé}. (E20)
The additiona%qcanl!ribution F®%to the turbulent magnetic helicity
flux caused by the large-scale shear is given by

18 +35 ,— -1
FOO = 7[7‘“ GB - (b (q

3 15 q+1
2
_ 20D Val g, (E21)
5 w))]te

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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