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ABSTRACT
A turbulent transport of radiation in the solar convective zone is investigated. The mean-field equation for the irradiation intensity
is derived. It is shown that due to the turbulent effects, the effective penetration length of radiation can be increased several
times in comparison with the mean penetration length of radiation (defined as an inverse mean absorption coefficient). Using
the model of the solar convective zone based on mixing length theory, where the mean penetration length of radiation is usually
much smaller than the turbulent correlation length, it is demonstrated that the ratio of the effective penetration length to the
mean penetration length of radiation increases 2.5 times in the vicinity of the solar surface. The main reasons for this are the
compressibility effects that become important in the vicinity of the solar surface where temperature and density fluctuations
increase towards the solar surface, enhancing fluctuations of the radiation absorption coefficient and increasing the effective
penetration length of radiation.
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1 IN T RO D U C T I O N

The turbulent transport of temperature, particles and magnetic fields
has been studied analytically, in laboratory and field experiments and
in numerical simulations, for more than a century (see, e.g. Monin &
Yaglom 1971, 1975; McComb 1990; Frisch 1995; Lesieur 2008;
Davidson 2013; Rogachevskii 2021). However, some fundamental
questions remain. This is particularly true in applications to astro-
physics, where the governing parameter values are too extreme to be
modelled, either experimentally or numerically.

In astrophysical turbulent flows, radiative transport can be affected
by turbulence. This effect is different for optically thick and optically
thin regimes of the radiative transport. For an optically thick regime,
the mean free path of photons is much smaller in comparison with
the typical scales of the flow. In contrast, for an optically thin regime,
the mean free path of photons is much larger than the fluid motion
scales, so the photons propagate over large distances before they
are absorbed and re-emitted again (see, e.g. Chandrasekhar 1960;
Mihalas & Mihalas 1984; Apresyan & Kravtsov 1996; Liou 2002;
Howell, Menguc & Siegel 2010).

The relaxation time of small temperature perturbations by radiative
diffusion has been determined by Spiegel (1957), where a time-
dependent equation for the temperature field of a medium with
deviations from radiative equilibrium has been derived, assuming
that the medium is grey-like and there are no internal motions or
compressional effects, and heat is exchanged only radiatively. It has
been shown that perturbations of small amplitude imposed on a
homogeneous medium decay exponentially in time, and the decay
time depends on a characteristic length of the perturbations (Spiegel
1957).

� E-mail: gary@bgu.ac.il (IR); nat@bgu.ac.il (NK)

Turbulent diffusion can be increased by radiative diffusion (i.e.
by a photon diffusion). For instance, the decay rates of sinusoidal
large-scale temperature perturbations in the optically thick and
thin regimes have been determined by Brandenburg & Das (2021)
using radiative hydrodynamic direct numerical simulations of forced
turbulence. They have shown that the rate of decay increases with
the wavenumber. However, this effect is much weaker in comparison
with the effect of the standard turbulent diffusion (Brandenburg &
Das 2021).

In the present study, we investigate the turbulent transport of
radiation in the solar convective zone. We derive a mean-field
equation for the irradiation intensity, and show that the effective
penetration length of radiation can be increased by turbulence several
times in comparison with the mean penetration length of radiation,
which is defined as an inverse mean absorption coefficient. This effect
has been tested using a model of the solar convective zone (Spruit
1974) based on mixing length theory. According to this model, the
mean penetration length of radiation is much less than the turbulent
correlation length. We show that the ratio of the effective penetration
length to the mean penetration length of radiation increases 2.5 times
in the vicinity of the solar surface.

This paper is organized as follows. In Section 2, we discuss
a general concept of the turbulent transport of radiation, and in
Section 3 we derive the mean-field radiation transport equation.
In Section 4, we derive an expression for the effective penetration
length of radiation in turbulent flows, which depends on the ratio
of fluctuations of the radiation absorption coefficient to the mean
penetration length of radiation. To calculate the effective penetration
length of radiation, in Section 4 we determine fluctuations of the radi-
ation absorption coefficient, which are caused by fluctuations of fluid
temperature and density, and the temperature–density correlations. In
Section 5, we apply the results we obtain to the solar convective zone.
Finally, in Section 6, we discuss our results and draw conclusions.
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In Appendix A, we derive expressions for the level of temperature
and density fluctuations as well as temperature–density correlations,
which allow us to determine fluctuations of the radiation absorption
coefficient.

2 G E N E R A L C O N C E P T O F T U R BU L E N T
T R A N S P O RT O F R A D I AT I O N

In solar and stellar convective zones, the convective transport of en-
ergy is more effective than the radiative transfer. The Schwarzschild
criterion for the onset of convection does not take into account the
effect of turbulence on radiative transfer. However, the absorption
coefficient of radiation depends on temperature and density, and there
are strong fluctuations of the fluid temperature and density in solar
and stellar convective zones. These fluctuations affect the absorption
coefficient of radiation, and therefore they affect the turbulent transfer
of radiation.

In solar and stellar convective zones, the characteristic times of
turbulent motions are much larger than the radiation time, and the
integral turbulent scales are much larger than the mean penetration
length of radiation, which is defined as the inverse absorption
coefficient of radiation. The latter implies that turbulent eddies are
optically thick, and inhomogeneities in the fluid temperature and
density can strongly affect the radiation transfer.

To describe the radiation transfer, we use the radiation transport
equation. This equation represents a steady-state version of the
equation for electromagnetic energy transfer, because the time of
photon propagation (the radiation time) is very short. This equation
is characterized by the absorption coefficient of radiation and the
black-body radiation intensity of the gas. The radiative transport
equation for the intensity I (r, ŝ, ω) is (see, e.g. Chandrasekhar 1960;
Mihalas & Mihalas 1984; Apresyan & Kravtsov 1996; Liou 2002;
Howell et al. 2010)

(ŝ·∇) I (r, ŝ, ω) = −κ(r, ω) [I − Ib(T , ω)] , (1)

where r is the position vector, ŝ = k/k is the unit vector in the
direction of radiation, k is the wave vector, κ(r, ω) = ρ κop is the
absorption coefficient of gas, κop = κ0 ρa T b is the opacity of the
gas, T and ρ are the gas temperature and density, Ib(T, ω) is the
black-body radiation intensity of the gas, and ω is the radiation
frequency. Here we take into account the radiation absorption in
gases and neglect the radiation scattering in gases. The function Ib(T,
ω) in a local thermodynamic equilibrium is given by

Ib(T , ω) = �ω3

π2c3

[
exp

(
�ω

kBT

)
− 1

]−1

, (2)

where � is Planck’s constant, c is the speed of light and kB is the
Boltzmann constant. The integral

∫
Ib(T , ω) dω ∝ σT 4 yields the

Stefan–Boltzmann law.
Our goal is to derive the effective radiation transport equation with

effective transport coefficients: the effective absorption coefficient of
radiation and the effective source of the radiation intensity. To take
into account the turbulence effects, we apply a mean-field approach
and average the radiation transport equation (1) over an ensemble
of fluctuations. In the framework of the mean-field approach, all
quantities are decomposed into the mean and fluctuating parts:
I = I + I ′, Ib = I b + I ′

b and κ = κ + κ ′. We adopt the Reynolds
averaging, where I = 〈I 〉, I b = 〈Ib〉 and κ = 〈κ〉 are the mean fields,
I ′, I ′

b and κ ′ are the fluctuating fields with zero mean, and the
angular brackets denote ensemble averaging. To derive the mean-
field radiation transport equation, we adopt a method applied by
Kliorin et al. (1989) and Liberman et al. (2017, 2018).

The obtained mean-field equation contains the correlation function
for fluctuations of the absorption coefficient of radiation κ ′ and
the radiation intensity I′, i.e. 〈κ ′ I ′〉. This correlation is due to
fluctuations of temperature and density. This equation also contains
the correlation function for fluctuations of the absorption coefficient
of radiation κ ′ and the black-body radiation intensity of the gas 〈κ ′ I ′

b〉
due to fluctuations of temperature.

To determine the correlation functions, 〈κ ′ I ′〉 and 〈κ ′ I ′
b〉, we

derive the equation for fluctuations of the radiation intensity I′ by sub-
tracting the obtained mean-field equation from the radiation transport
equation (1). As the equation for fluctuations of the radiation intensity
I′ is a linear equation, we solve this equation exactly. However, the
solution of this equation is non-linear in fluctuations of κ ′. This
causes the appearance of the high-order moments in the expression
for the correlation function 〈κ ′ I ′〉. We assume that fluctuations of κ ′

are essentially less than the mean absorption coefficient of radiation.
This allows us to obtain the closed results.

The main expected result of this study is that the derived mean-
field equation for the radiation transfer with the effective transport
coefficients yields the effective penetration length of radiation. When
the effective penetration length of radiation is larger than the mean
penetration length of radiation, the absorbtion coefficient decreases
and an observer can see more deeper layers inside the stars. The
reasons for this increase of the effective penetration length of
radiation in turbulent flows are the correlation between fluctuations
of the radiation absorption coefficient κ ′ and fluctuations of the
irradiation intensity I′. We show below that this correlation function
should be negative, because an increase of the absorption of radiation
decreases the radiation intensity, and vice versa. We also demonstrate
in this study that this effect is essential in the vicinity of the solar
surface.

3 MEAN-FI ELD RADI ATI ON TRANSPORT
EQUATI ON

In this section, we derive the mean-field radiation transport equation.
Ensemble averaging of equation (1) yields the equation for the mean
radiation intensity I :

(ŝ·∇) Ī = −κ̄
(
Ī − Īb

) − 〈κ ′ I ′〉 + 〈κ ′ I ′
b〉. (3)

This equation contains unknown correlation functions, 〈κ ′ I ′〉 and
〈κ ′ I ′

b〉. To determine these correlation functions, we derive the
equation for fluctuations of the radiation intensity I′. To this end,
we subtract the mean-field radiation transport equation (3) from
equation (1), so that the equation for fluctuations of I′ is(

ŝ·∇ + κ + κ ′) I ′(r, ŝ) = Isource, (4)

where the source term Isource is given by

Isource = −κ ′ (
I − I b

) + 〈κ ′ I ′〉 + (
κ + κ ′) I ′

b − 〈κ ′ I ′
b〉.

(5)

The solution of equation (4) is

I ′(r, ŝ) =
∫ ∞

−∞
exp

[
−

∣∣∣∣
∫ s

s′

[
κ + κ ′(s ′′)

]
ds ′′

∣∣∣∣
]

×Isource(s ′) ds ′, (6)

where s = r·ŝ. This solution is non-linear in fluctuations of κ ′.
The latter causes the appearance of the high-order moments in
the expression for the correlation function 〈κ ′ I ′〉. The high-order
moments are much less than the lower-order moments, because
κ ′ � κ . This allows us to expand the function, exp

[− ∫ s

s′ κ
′(s ′′) ds ′′],
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1298 I. Rogachevskii and N. Kleeorin

in equation (6) in the Taylor series:

exp

[
−

∫ s

s′
κ ′(s ′′) ds ′′

]
= 1 −

∫ s

s′
κ ′(s ′′) ds ′′ + O

(
κ ′2) .

(7)

Therefore, equation (6) can be rewritten as

I ′(r, ŝ) =
∫ ∞

−∞
Isource(s ′) exp

(−κ|s − s ′|)
×

[
1 −

∫ s

s′
κ ′(s ′′) ds ′′

]
ds ′ + O

(
κ ′2) . (8)

Multiplying equation (8) by κ ′ and averaging over the ensemble, we
obtain the expression for the one-point correlation function 〈κ ′ I ′〉:

〈
κ ′ I ′〉 {

1 +
∫ ∞

−∞

[∫ s

s′
〈κ ′(s)κ ′(s ′′)〉 ds ′′

]

× exp
(−κ|s − s ′|) ds ′

}
= −

[∫ ∞

−∞
〈κ ′(s)κ ′(s ′)〉

× exp
(−κ|s − s ′|) ds ′

] (
I − I b

)
. (9)

Here, we neglect the third-order and higher-order moments in
fluctuations of κ ′. Equation (9) can be rewritten as

〈
κ ′ I ′〉 = −κ

(
I − I b

) 2κJ1

1 + 2κJ2
, (10)

where the integrals J1 and J2 in equation (10) are defined as

J1 =
∫ ∞

0
�(Z) exp(−κZ) dZ, (11)

J2 = κ

∫ ∞

0

[∫ Z

0
�(Z′) dZ′

]
exp(−κZ) dZ, (12)

the function �(Z) is defined as �(Z) = 〈κ ′(s)κ ′(s′)〉 and Z = |s − s′|.
Substituting equation (10) into the mean-field equation (3), we

arrive at the mean-field radiation transport equation:

(ŝ·∇) I = −κeff

(
I − I eff

b

)
. (13)

Here, the effective absorption coefficient κeff is given by

κeff = κ

(
1 − 2κJ1

1 + 2κJ2

)
, (14)

and the effective radiation intensity is

I eff
b = I b + 〈κ ′ I ′

b〉
κeff

. (15)

The function Īb is expanded in the Taylor series as

Īb =
[
Ib + 〈θ2〉

2

∂2Ib

∂T 2

]
T =T̄

, (16)

where the fluid temperature is decomposed into the mean T and
fluctuating θ parts: T = T + θ . Solution of the mean-field radiation
transport equation (13) for the mean irradiation intensity I (r, ŝ, ω)
is given by

Ī (r, ŝ, ω) =
∫ ∞

−∞
I eff

b (r ′, ω) exp
[− ∣∣τ (r, r ′, ŝ)

∣∣] ŝ· dr ′,

(17)

where τ (r, r ′, ŝ) = ∫ r ′
r κeff (r ′′) ŝ· dr ′′ is the optical depth.

4 EFFECTI VE PENETRATI ON LENGTH O F
R A D I AT I O N A N D F L U C T UAT I O N S O F
ABSORPTI ON C OEFFI CI ENT

In this section, we determine the effective penetration length of
radiation in turbulent flows, defined as Leff = κ−1

eff . As the main
contribution to the second moment 〈κ ′(s)κ ′(s′)〉 of fluctuations of
the absorption coefficient is from the integral scale of turbulence 
0,
we assume that this correlation function has the form:

〈κ ′(s)κ ′(s ′)〉 = 〈
κ ′ 2

〉
exp

(
−|s − s ′|


0

)
. (18)

Using equations (11), (12) and (18), we calculate the integrals J1 and
J2 as

J1 = J2 =
〈
κ ′ 2

〉
κ3

(
1 + Lr


0

)−1

, (19)

where Lr = κ −1 characterizes the mean penetration length of radia-
tion in a turbulent flow. Therefore, equations (14) and (19) allow us
to determine the effective penetration length Leff = κ−1

eff of radiation
in a turbulent flow as

Leff = Lr

[
1 + 2

〈
κ ′ 2

〉
κ2

(
1 + Lr


0

)−1
]

. (20)

We consider two limiting cases:
(i) 
0 � Lr, the effective penetration length Leff is

Leff = Lr

(
1 + 2

〈
κ ′ 2

〉
κ2


0

Lr

)
; (21)

(ii) 
0 	 Lr, the effective penetration length Leff is

Leff = Lr

(
1 + 2

〈
κ ′ 2

〉
κ2

)
. (22)

Equation (22) implies that for 
0 	 Lr, the effective penetration
length Leff can increase three times in comparison with the mean
penetration length Lr of radiation due to the turbulence effects when〈
κ ′ 2

〉 ∼ κ2.
The mechanism of increase of the effective penetration length Leff

in turbulent flows is related to the correlation between fluctuations
of the radiation absorption coefficient κ ′ and fluctuations of the
irradiation intensity I′. The correlation 〈κ ′ I ′〉 is negative because
an increase of the absorption of radiation decreases the radiation
intensity, and vice versa. Fluctuations of the radiation absorption
coefficient are caused by fluctuations of fluid temperature and density
in the turbulent flow.

Now we determine fluctuations of the radiation absorption coef-
ficient. For simplicity, we assume that the opacity of gas is κop =
κ0 ρa T b, so that the absorption coefficient of gas is κ = ρ κop =
κ0 ρa+1 T b. According to the Schwarzschild stability criterion, the
case a = 1 and b = 0 corresponds to the marginally stable regime,
while the case a = 1 and b = 1 corresponds to the unstable regime
(Barekat & Brandenburg 2014). The equation κ = κ0 ρa+1 T b allows
us to determine the ratio of fluctuations of the absorption coefficient
κ ′ to the mean value of κ as

κ ′

κ
= (a + 1)

ρ ′

ρ
+ b

θ

T
, (23)

where ρ ′ are density fluctuations and ρ is the mean fluid density.
Using equation (23), we determine the correlation function 〈κ ′ I ′

b〉
as

〈κ ′ I ′
b〉 = κ

[
(a + 1)

〈ρ ′θ〉
ρ

+ b
〈θ2〉
T

] (
∂Ib

∂T

)
T =T

, (24)
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where we take into account that I ′
b = θ (∂Ib/∂T )T =T . To find the

effective penetration length of radiation, we determine the level of
fluctuations

〈
κ ′ 2

〉
of the absorption coefficient as〈

κ ′ 2
〉

κ2 = (a + 1)2

〈
ρ ′ 2

〉
ρ2 + b2

〈
θ2

〉
T

2 + 2b (a + 1)

〈
θ ρ ′〉
ρ T

.

(25)

The intensity of temperature fluctuations in a developed compressible
turbulence for large Péclet and Reynolds numbers is given by〈
θ2

〉
T

2 = 8 fc (γ − 1)2

(
σc

1 + σc

)3 [
1 − (λ 
0)2

9

]

+8

9

2

0

[∇T

T
+ (γ − 1) λ

]2

, (26)

(see Appendix A), where γ = cp/cv is the ratio of specific heats, λ =
−∇ ln ρ characterizes the inhomogeneity of the mean fluid density,
the parameter

σc =
〈
(∇ · u)2

〉〈
(∇ × u)2

〉 (27)

is the degree of compressibility of the turbulent velocity field u and 
0

is the integral scale of turbulence. The function fc(q, qc, σ c) depends
on the degree of compressibility and the exponents of spectra q and qc

for the incompressible and compressible parts of velocity fluctuations
(see Appendix A):

fc = qc − 1

3qc − 5
+ 2(qc − 1)

σc(q + 2qc − 5)
+ qc − 1

σ 2
c (2q + qc − 5)

.

(28)

Equation (26) is different from that derived by Rogachevskii &
Kleeorin (2021). In this study, we take into account a strong density
stratification. The latter is important in view of applications to the
solar convective zone, where the fluid density in the radial direction is
changed by seven orders of magnitude. We also neglect the gradient
of the turbulent diffusion that is changed very slowly in the solar
convective zone. The first term on the right-hand side of equation (26)
determines a compressibility contribution of velocity fluctuations to
temperature fluctuations, while the second term in equation (26) is
proportional to the squared gradient of the mean entropy.

The level of fluid density fluctuations in a developed compressible
turbulence for large Péclet and Reynolds numbers is given by〈
ρ ′ 2

〉
ρ2 = 8 fc

(
σc

1 + σc

)3 [
1 − (λ 
0)2

9

]
, (29)

and the cross-correlation
〈
θ ρ ′〉 is〈

θ ρ ′〉
ρ T

= 8 fc (γ − 1)

(
σc

1 + σc

)3 [
1 − (λ 
0)2

9

]
. (30)

Equations (26), (29) and (30) are valid for small σ c < 1. The
latter condition is typical for developed turbulence and turbulent
convection. Derivation of equations (26), (29) and (30) is given in
Appendix A.

Therefore, the level of fluctuations
〈
κ ′ 2

〉
of the absorption coeffi-

cient is〈
κ ′ 2

〉
κ2 = 8 fc

(
σc

1 + σc

)3 [
1 − (λ 
0)2

9

] [
a + 1 + b (γ − 1)

]2

+8

9

2

0 b2

[∇T

T
+ (γ − 1) λ

]2

. (31)

Figure 1. The radial profile of the ratio Lr/
0 for the solar convective zone.

Figure 2. The profile of the ratio 
m/Hρ of the mixing length 
m to the
density stratification length Hρ versus r/R� that is based on the model of the
solar convective zone.

Figure 3. The radial profile of the Reynolds number Re(r) = u0 
0/ν for the
solar convective zone.

For a = 1 and b = 1, the level of fluctuations
〈
κ ′ 2

〉
of the absorption

coefficient is given by〈
κ ′ 2

〉
κ2 = 8 fc

(
σc

1 + σc

)3 [
1 − (λ 
0)2

9

]
(γ + 1)2

+8

9

2

0 b2

[∇T

T
+ (γ − 1) λ

]2

. (32)

Note that for nearly isentropic flows where ∇ ln T ≈ (γ − 1) ∇ ln ρ,
the last term in equations (31) and (32) is small. This term is
proportional to the gradient of the mean entropy ∇S = cv[∇ ln T −
(γ − 1) ∇ ln ρ].

5 A PPLI CATI ON TO THE SOLAR
C O N V E C T I V E ZO N E

In this section, we apply the obtained results to the solar convective
zone. We use the model of the solar convective zone by Spruit
(1974) based on mixing length theory. According to this model, the
mean penetration length of radiation is much less than the turbulent
correlation length. Indeed, in Figs 1–3 we show the radial profiles of
the ratio of the mean penetration length of radiation to the integral
scale of turbulence Lr(r)/
0, the ratio 
m/Hρ of the mixing length

m to the density stratification length Hρ = λ−1 and the Reynolds
number Re(r) = u0 
0/ν for the solar convective zone based on the
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1300 I. Rogachevskii and N. Kleeorin

Figure 4. The radial profile of the Mach number Ma(r) = u0/cs for the solar
convective zone.

Figure 5. The radial profile of the degree of compressibility σ c for the solar
convective zone.

model by Spruit (1974). The radius r is measured in units of the
solar radius R�. The mixing length 
m is identified by the size
of the solar granulations, while the ratio 
m/
0 = 5−7 is justified
by the results of analytical study (Elperin et al. 2002, 2006) and
laboratory experiments (Bukai et al. 2009), which show that the
integral scale 
0 of the turbulent convection is five to seven times
smaller in comparison with the size of the large-scale circulations.
These turbulent parameters increase towards the solar surface.

To determine the effective penetration length of radiation, we
estimate the degree of compressibility of the turbulent fluid flow
for small Mach numbers as (Rogachevskii & Kleeorin 2021)

σc ∼ Ma5 Re1/4, (33)

where Ma = u0/cs is the Mach number, u0 = 〈
u2

〉1/2
, cs =

(γP/ρ)1/2 is the sound speed, Re = u0 
0/ν is the Reynolds number
and ν is the kinematic viscosity. The estimate (33) is obtained
assuming that the effect of compressibility on the viscous heating

J
(c)
ν is of the order of the radiative wave energy density Ew. In

particular, turbulence can generate acoustic waves, and the rate of
the energy radiated by the acoustic waves per unit mass for small
Mach numbers is given by (Lighthill 1952, 1954; Proudman 1952)

Ew =
〈

u2
〉

τ0
Ma5, (34)

where τ 0 = 
0/u0 is the turbulent correlation time. The com-
pressibility contribution J

(c)
ν to the rate of the viscous heating is

(Rogachevskii & Kleeorin 2021)

J
(c)
ν =

〈
u2

〉
τ0

σc

1 + σc
Re−1/4. (35)

Equations (34) and (35) yield the estimate (33) for the degree of
compressibility σ c for small Mach numbers.

In Figs 4 and 5, we show the radial profiles of the Mach number
Ma(r) = u0/cs and the degree of compressibility σ c of the fluid
velocity field for the solar convective zone based on the model by
Spruit (1974). The degree of compressibility σ c increases to the
surface because the decrease of the sound speed in the vicinity

Figure 6. The radial profile of the rms of temperature fluctuations θ rms

measured in the units of mean temperature T for the solar convective zone.

Figure 7. The radial profile of the ratio Leff/Lr for a = b = 1 for the solar
convective zone.

of the solar surface. In Fig. 6, we plot the radial profile of the
rms of temperature fluctuations θ rms measured in units of the mean
temperature T using the above parameters for the solar convective
zone. Temperature fluctuations increase towards to the solar surface
due to the compressibility effects.

Similar behaviour is observed for fluid density fluctuations
〈
ρ ′ 2

〉
and the temperature–density correlations

〈
θ ρ ′〉 (see equations 29

and 30). In particular, these second moments enhance towards to
the solar surface, resulting in an increase of fluctuations of the
radiation absorption coefficient and the effective penetration length
of radiation. This is seen in Fig. 7, where we show the radial profile
of the ratio of the turbulence-induced effective penetration length
of radiation to the mean radiation penetration length Leff/Lr for the
solar convective zone based on the model by Spruit (1974). The ratio
Leff/Lr increases 2.5 times in the vicinity of the solar surface.

6 C O N C L U S I O N S

We study a turbulent transport of radiation in the solar convective
zone. To this end, we derive a mean-field equation for the irradiation
intensity and show that, due to the turbulent effects, the effective pen-
etration length of radiation is increased several times in comparison
with the mean penetration length of radiation, which is defined as an
inverse mean absorption coefficient. To demonstrate this effect, we
adopt a model of the solar convective zone based on mixing length
theory. The mean penetration length of radiation in this model is
much smaller than the turbulent integral scale. We have shown that
the ratio of the effective penetration length of radiation to the mean
penetration length of radiation is increased 2.5 times in the vicinity
of the solar surface.

This effect can be explained by the compressibility effects that
become important in the vicinity of the solar surface, so that the
level of temperature and density fluctuations is increased towards
the solar surface. This causes an increase of fluctuations of the
radiation absorption coefficient and the effective penetration length
of radiation. Because the effective penetration length of radiation
is changed only in the vicinity of the solar surface (at the depth
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∼2000 km), the effect of turbulence on the radiation transport is not
strong for solar-type stars. However, this effect can be essential for
cold stars (such as M3–M5 stars), for which the Mach number is
larger than that for the Sun.
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APPENDI X A : TEMPERATURE AND DENS ITY
F L U C T UAT I O N S

In this appendix, we derive the expression for the level of temperature
fluctuations 〈θ2〉, density fluctuations

〈
ρ ′ 2

〉
and temperature–density

correlations
〈
θ ρ ′〉 using the method described by Rogachevskii,

Kleeorin & Brandenburg (2018), Rogachevskii & Kleeorin (2021)
and Rogachevskii (2021). The temperature field T (t, r) in a com-
pressible fluid velocity field U(t, r) is described by (Landau &
Lifshits 1987)

∂T

∂t
+ (U · ∇)T + (γ − 1)T (∇ · U) = D�T + Jν, (A1)

where D is the molecular thermal conductivity, γ = cp/cv is the
ratio of specific heats and Jν is the heating source due to viscous
dissipation.

We study turbulent flows with large Reynolds (Re = u0 
0/ν 	 1)
and Péclet (Pe = u0 
0/D 	 1) numbers, where u0 is the characteris-
tic turbulent velocity in the integral scale 
0 of turbulence. Equations
for the intensity of temperature fluctuations are derived by means
of the mean-field approach, where the temperature T = T + θ ,
pressure P = P + p, density ρ = ρ + ρ ′ and velocity U = U + u
are decomposed into mean and fluctuating parts, where T = 〈T 〉
is the mean fluid temperature, P = 〈P 〉 is the mean fluid pressure,
ρ = 〈ρ〉 is the mean fluid density and U = 〈U〉 is the mean fluid
velocity. Here, θ , p, ρ ′ and u are fluctuations of temperature, pressure,
density and velocity, respectively, and the angular brackets denote an
ensemble averaging. Application of the mean-field approach implies
that there is a separation of spatial (
0 � HT) and temporal (τ 0 �
tT) scales, where HT and tT are the characteristic spatial and temporal
scales characterizing the variations of the mean temperature field,
and τ 0 = 
0/u0.

Ensemble averaging of equation (A1) yields the mean temperature
field,

∂T

∂t
+ ∇· 〈θ u〉 = −(γ − 2) 〈θ (∇ · u)〉 + D �T + J ν, (A2)

where 〈θ u〉 is the turbulent heat flux, and J ν is the mean heating
source caused by the viscous dissipation of the turbulent kinetic
energy. Here the case U = 0 is studied for simplicity. By means of
equations (A1) and (A2), we obtain the equation for temperature
fluctuations, θ (x, t) = T − T ,

∂θ

∂t
+ Q − D�θ = −(u · ∇)T − (γ − 1) T ∇ · u, (A3)
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where Q = ∇·(θu − 〈u θ〉) + (γ − 2) (θ ∇ · u − 〈θ ∇ · u〉) is the
non-linear term and temperature fluctuations are caused by the source
−(u · ∇)T − (γ − 1) T ∇ · u. For simplicity, we describe the effect
of turbulence on the temperature field, and neglect the feedback effect
of the temperature on the turbulence.

We use two-point second-order correlation functions taking into
account small-scale properties of the turbulence, where the turbulent
correlation time and the turbulent kinetic energy spectrum are
related via the Kolmogorov scalings (Monin & Yaglom 1971, 1975;
McComb 1990; Frisch 1995). We adopt the multiscale approach
(Roberts & Soward 1975), and rewrite the two-point second-order
correlation functions as

〈θ (x, t) θ ( y, t)〉 =
∫

dk1 dk2 〈θ (k1, t)θ (k2, t)〉
× exp

[
i(k1·x + k2·y)

]
=

∫
�(II)(k, R, t) exp[ik·r] dk,

(A4)

where

�(II)(k, R, t) =
∫

〈θ (k1, t) θ (k2, t)〉 exp[iK ·R] dK .

(A5)

Also, we use large-scale variables, R = (x + y)/2, K = k1 + k2,
as well as small-scale variables, r = x − y, k = (k1 − k2)/2. Here
k1 = k + K/2 and k2 = −k + K/2. Mean fields depend on the
large-scale variables, while fluctuations depend on the small-scale
variables.

The procedure of the derivations of the expressions for the intensity
of temperature fluctuations implies the following steps:

(i) derivation of equations for the second-order moments in the
Fourier space using the multiscale approach;

(ii) application of the spectral τ approach (see below), which
relates the deviations of the third-order moments from those of
the background turbulence with the corresponding deviations of the
second-order moments;

(iii) solution of the obtained equations for the second-order
moments in the Fourier space;

(iv) inverse transformation to the physical space to derive expres-
sions for the intensity of temperature fluctuations.

Using equation (A3) for temperature fluctuations θ and the Navier–
Stokes equation for velocity fluctuations u rewritten in Fourier space,
we derive an equation for the second-order moment 〈θ (k1) θ (k2)〉 as

∂

∂t
〈θ (k1) θ (k2)〉 = −

[
〈ui(k1) θ (k2)〉 + 〈θ (k1) ui(k2)〉

]
∇iT

−(γ − 1)
[ 〈

(divu)k1 θ (k2)
〉 + 〈

θ (k1) (divu)k2

〉 ]
T + M̂�(III),

(A6)

where M̂�(III) are the third-order moment terms caused by the non-
linear terms in the equation for temperature fluctuations. Temperature
and velocity fluctuations θ (k1,2, t) and ui(k1,2, t) depend also on t,
and the mean temperature T (t, R) depends on t and R as well. For
brevity of notations, we do not show these dependences hereafter.

Equation (A6) for the second-order moments includes the third-
order moments M̂�(III), and the closure problem arises, that is,
how to express the third-order moments M̂�(III) through the lower-
order moments (Monin & Yaglom 1971, 1975; McComb 1990). We
adopt the spectral τ approach, which postulates that the deviations
of the third-moment terms, M̂�(III)(k), from those afforded by

the background turbulence, M̂�(III,0)(k), can be expressed through
similar deviations of the second-order moments, �(II)(k) − �(II,0)(k)
as (Orszag 1970; Pouquet, Frisch & Leorat 1976; Kleeorin, Ro-
gachevskii & Ruzmaikin 1990)

M̂�(III)(k) − M̂�(III,0)(k) = −�(II)(k) − �(II,0)(k)

τr (k)
. (A7)

Here τ r(k) is the scale-dependent relaxation time, which can be
identified with the correlation time τ (k) of the turbulent velocity
field for large Reynolds and Péclet numbers. Because the functions
with superscript (0) describe the background turbulence with a
zero turbulent heat flux, equation (A7) is reduced to M̂�(III) =
−〈θ (k1) θ (k2)〉 /τ (k). We apply the τ approximation only for the
deviations from the background turbulence, while the background
turbulence is assumed to be known (see below). Validation of the τ

approximation for different problems has been performed in various
numerical simulations (Brandenburg, Käpylä & Mohammed 2004;
Brandenburg & Subramanian 2005a, b, c; Brandenburg et al. 2008;
Rogachevskii et al. 2011, 2018; Rädler et al. 2011; Haugen et al.
2012; Elperin et al. 2017).

Because the characteristic times of variation of the second-order
moment �(II) are much larger than the correlation time τ (k) in all
turbulence scales, we use the steady-state solution of equation (A6)
as

〈θ (k1) θ (k2)〉 = −τ (k)

{[
〈ui(k1) θ (k2)〉

+ 〈θ (k1) ui(k2)〉
]
∇iT + (γ − 1)

[ 〈
(divu)k1 θ (k2)

〉
+ 〈

θ (k1) (divu)k2

〉 ]
T

}
. (A8)

Similarly, we derive expression for the second moments entering in
equation (A8), i.e. for 〈ui(k1) θ (k2)〉 and

〈
θ (k1) uj (k2)

〉
, as

〈ui(k1) θ (k2)〉 = −τ (k)

[〈
ui(k1) uj (k2)

〉 ∇j T

+(γ − 1)
〈
ui(k1) (divu)k2

〉
T

]
, (A9)

〈
θ (k1) uj (k2)

〉 = −τ (k)

[〈
ui(k1) uj (k2)

〉 ∇iT

+(γ − 1)
〈
(divu)k1 uj (k2)

〉
T

]
, (A10)

and for the second moments
〈
(divu)k1 θ (k2)

〉
and

〈
θ (k1) (divu)k2

〉
as〈

(divu)k1 θ (k2)
〉 = −τ (k)

[〈
(divu)k1 uj (k2)

〉 ∇j T

+(γ − 1)
〈
(divu)k1 (divu)k2

〉
T

]
, (A11)

〈
θ (k1) (divu)k2

〉 = −τ (k)

[〈
ui(k1) (divu)k2

〉 ∇iT

+(γ − 1)
〈
(divu)k1 (divu)k2

〉
T

]
. (A12)

Substituting equations (A9)–(A12) into equation (A8), we obtain

〈θ (k1) θ (k2)〉 = 2τ 2(k)

{〈
ui(k1) uj (k2)

〉
(∇iT )(∇j T )

+(γ − 1)
[ 〈

(divu)k1 uj (k2)
〉 + 〈

uj (k1) (divu)k2

〉 ]
×T ∇j T + (γ − 1)2

〈
(divu)k1 (divu)k2

〉
T

2
}

. (A13)
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Because all terms in equations (A8) and (A13) are proportional to
either (∇T )2, or (∇ρ)2, or (∇T )(∇ρ) (see below), and we consider
homogeneous density stratified turbulence, we do not need to perform
additional Taylor expansions over small parameters 
0/HT and 
0/Hρ

in these terms (Rogachevskii & Kleeorin 2021; Rogachevskii 2021),
where HT and Hρ are the characteristic scales of variations of the
mean temperature and mean density, respectively. In particular,
hereafter we neglect small terms ∼O[(
0/HT)3, (
0/Hρ)3]. This
implies that we replace k1 by k and k2 by −k in all second moments
in equation (A13).

In equation (A13) we take into account a one-way coupling (i.e.
we neglect the feedback effect of the mean temperature gradi-
ents on the turbulent velocity field). This implies that we replace
the correlation function fij = 〈

ui(k) uj (−k)
〉

in equation (A13)

by f
(0)
ij = 〈

ui(k) uj (−k)
〉(0)

for the background turbulence with a
zero turbulent heat flux. Similarly, we replace

〈
(divu)k uj (−k)

〉
,〈

uj (k) (divu)−k
〉

and 〈(divu)k (divu)−k〉 in equation (A13) by the
corresponding correlation functions for the background turbulence
with a zero turbulent heat flux.

To find the intensity of temperature fluctuations 〈θ2〉 for large
Péclet numbers, we adopt a model for the background turbulence,
f

(0)
ij (k) = 〈

ui(k) uj (−k)
〉(0)

, that is a statistically stationary density-
stratified compressible turbulence given by (Elperin, Kleeorin &
Rogachevskii 1995; Amir et al. 2017; Rogachevskii 2021):

f
(0)
ij (k) = 1

8π k2 (1 + σc)

×
{

E(k)

[
(δij − kij )

(
1 − λ2

k2

)
+ λ2

k2

(
δij − λij

)]

+ i

k2
[E(k) + σc Ec(k)]

(
kjλi − kiλj

)
+2σc Ec(k) kij

} 〈
u2

〉
, (A14)

where kij = ki kj /k
2, λij = λi λj /λ

2 and λ = −∇ ln ρ characterizes
the fluid density stratification. This model is different from that
derived by Rogachevskii et al. (2018) and Rogachevskii & Kleeorin
(2021). In particular, this model takes into account a strong density
stratification. In addition, the turbulent flux 〈ρ ′u〉 is very small
[∼ O(λ 
0)3].

The background turbulence is of Kolmogorov type with a constant
energy flux over the spectrum, that is, the turbulent kinetic energy
spectrum for the incompressible part of turbulence in the inertial
range k0 < k < kν is E(k) = −dτ̃ (k)/dk. Here τ̃ (k) = (k/k0)1−q , with
1 < q < 3, is the exponent of the turbulent kinetic energy spectrum.
Similarly, the turbulent kinetic energy spectrum for the compressible
part of turbulence is Ec(k) = −dτ̃c(k)/dk, where τ̃c(k) = (k/k0)1−qc

with 1 < qc < 3. For example, the exponent of the incompressible part
of the spectrum, q = 5/3, corresponds to the Kolmogorov spectrum,
while the exponent of the compressible part of the spectrum, qc = 2,
describes the Burgers turbulence with shock waves. These exponents
of the spectra are observed in numerical simulations in compressible
turbulence (Kritsuk et al. 2007; Federrath 2013). The correlation time
for a compressible turbulence in the Fourier space is (Rogachevskii &
Kleeorin 2021)

τ (k) = 2τ0

1 + σc

[
τ̃ (k) + σc τ̃c(k)

]
. (A15)

To determine the level of temperature fluctuations
〈
θ2

〉 =∫
τ 2(k) 〈θ (k) θ (−k)〉 dk for large Péclet numbers, we use equa-

tions (A13)–(A15). To this end, we calculate the following integrals:

∫
τ 2(k)

〈
ui(k) uj (−k)

〉(0)
dk = 4

9

2

0 δij , (A16)∫
τ 2(k) 〈ui(k) (div u)−k〉(0) dk = 4

9

2

0 λi, (A17)∫
τ 2(k) 〈(div u)k (div u)−k〉(0) dk = 4

9
(
0 λ)2

+4fc

(
σc

1 + σc

)3 [
1 − 1

9
(
0 λ)2

]
. (A18)

For the integration in k space in equations (A16)–(A18), we use the
following identities:∫ kν

k0

τ 2(k) [E(k) + σc Ec(k)] dk = 4

3
τ 2

0 (1 + σc), (A19)

∫ kν

k0

τ 2(k) k2 Ec(k) dk = 4fc

(
τ0


0

)2 (
σc

1 + σc

)2

. (A20)

Therefore, equations (A13) and (A16)–(A18) yield the level of
temperature fluctuations 〈θ2〉 for large Péclet numbers given by
equation (26).

Derivation of equations (29) and (30) for
〈
ρ ′ 2

〉
and

〈
θ ρ ′〉 is

performed in a similar way. In particular, using the continuity
equation for the fluid density fluctuations ρ ′ written in the Fourier
space, we obtain the evolutionary equation for the second moment〈
ρ ′(k1) ρ ′(k2)

〉
as

∂

∂t

〈
ρ ′(k1) ρ ′(k2)

〉 = −
[ 〈

ui(k1) ρ ′(k2)
〉

+ 〈
ρ ′(k1) ui(k2)

〉 ]
∇iρ −

[ 〈
(div u)k1 ρ(k2)

〉
+ 〈

ρ(k1) (div u)k2

〉 ]
ρ + M̂ρ(III), (A21)

where M̂ρ(III) are the third-order moment terms related to non-linear
terms in the equation for density fluctuations.

Applying the spectral τ approach, we obtain the expression for the
second moment

〈
ρ ′(k1) ρ ′(k2)

〉
as

〈
ρ ′(k1) ρ ′(k2)

〉 = −τ (k)

{[ 〈
ui(k1) ρ ′(k2)

〉
+ 〈

ρ ′(k1) ui(k2)
〉 ]

∇iρ +
[ 〈

(divu)k1 ρ ′(k2)
〉

+ 〈
ρ ′(k1) (divu)k2

〉 ]
ρ

}
. (A22)

Similarly, we derive expression for the second moments〈
ui(k1) ρ ′(k2)

〉
and

〈
ρ ′(k1) uj (k2)

〉
as

〈
ui(k1) ρ ′(k2)

〉 = −τ (k)

[〈
ui(k1) uj (k2)

〉 ∇j ρ

+ 〈
ui(k1) (divu)k2

〉
ρ

]
, (A23)

〈
ρ ′(k1) uj (k2)

〉 = −τ (k)

[〈
ui(k1) uj (k2)

〉 ∇iρ

+ 〈
(divu)k1 uj (k2)

〉
ρ

]
, (A24)

and for
〈
(divu)k1 ρ ′(k2)

〉
and

〈
ρ ′(k1) (divu)k2

〉
as

〈
(divu)k1 ρ ′(k2)

〉 = −τ (k)

[〈
(divu)k1 uj (k2)

〉 ∇j ρ

+ 〈
(divu)k1 (divu)k2

〉
ρ

]
, (A25)
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〈
ρ ′(k1) (divu)k2

〉 = −τ (k)

[〈
ui(k1) (divu)k2

〉 ∇iρ

+ 〈
(divu)k1 (divu)k2

〉
ρ

]
. (A26)

Substituting equations (A23)–(A26) into equation (A22) we obtain

〈
ρ ′(k1) ρ ′(k2)

〉 = 2τ 2(k)

{〈
ui(k1) uj (k2)

〉
(∇iρ)(∇j ρ)

+
[ 〈

(divu)k1 uj (k2)
〉 + 〈

uj (k1) (divu)k2

〉 ]
ρ ∇j ρ

+ 〈
(divu)k1 (divu)k2

〉
ρ2

}
. (A27)

We do not take into account small terms ∼O[(
0/Hρ)3] in equa-
tions (A22) and (A27). As all terms in equations (A22) and (A27)
are proportional to (∇ρ)2 and we consider homogeneous density
stratified turbulence, we do not need to perform additional Taylor
expansions over the small parameter 
0/Hρ in these terms. Thus,
we replace k1 by k and k2 by −k in all second moments in equa-
tion (A27). Using equations (A16)–(A18) and (A27), we determine
the level of density fluctuations

〈
ρ ′ 2

〉 = ∫
τ 2(k)

〈
ρ ′(k) ρ ′(−k)

〉
dk

for large Péclet numbers given by equation (29).
Now we derive the evolutionary equation for the second moment〈

θ (k1) ρ ′(k2)
〉

using the continuity equation for the fluid density
fluctuations and the equation for the temperature fluctuations written
in the Fourier space:

∂

∂t

〈
θ (k1) ρ ′(k2)

〉 = − 〈
ui(k1) ρ ′(k2)

〉 ∇iT

− 〈
θ (k1) uj (k2)

〉 ∇j ρ − (γ − 1)
〈
(divu)k1 ρ ′(k2)

〉
T

− 〈
θ (k1) (divu)k2

〉
ρ + M̂�(III)

ρ , (A28)

where M̂�(III)
ρ are the third-order moment terms related to the non-

linear terms in the equations for temperature and density fluctuations.
Applying the spectral τ approach, we obtain the expression for the
second moment

〈
θ (k1) ρ ′(k2)

〉
as

〈
θ (k1) ρ ′(k2)

〉 = −τ (k)

[〈
ui(k1) ρ ′(k2)

〉 ∇iT

+ 〈
θ (k1) uj (k2)

〉 ∇j ρ + (γ − 1)
〈
(divu)k1 ρ ′(k2)

〉
T

+ 〈
θ (k1) (divu)k2

〉
ρ

]
. (A29)

Substituting equations (A10), (A12), (A23) and (A25) into equa-
tion (A29), we obtain

〈
θ (k1) ρ ′(k2)

〉 = 2τ 2(k)

{〈
ui(k1) uj (k2)

〉
(∇iT ) (∇j ρ)

+(γ − 1)
[ 〈

(divu)k1 (divu)k2

〉
ρ + 〈

(divu)k1 uj (k2)
〉

×(∇j ρ)
]
T + 〈

ui(k1) (divu)k2

〉
ρ (∇iT )

}
. (A30)

We neglect small terms ∼O[(
0/HT)3, (
0/Hρ)3] in equations (A29)
and (A30). Because all terms in equations (A29) and (A30) are
proportional to either (∇ρ)2 or (∇T )(∇ρ), and we consider homo-
geneous density stratified turbulence, we do not need to perform
additional Taylor expansions over small parameters 
0/HT and 
0/Hρ

in these terms. Therefore, we replace k1 by k and k2 by −k in
all second moments in equation (A30). Using equations (A16)–
(A18) and (A30), we determine

〈
θ ρ ′〉 = ∫

τ 2(k)
〈
θ (k) ρ ′(−k)

〉
dk

for large Péclet numbers given by equation (30).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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