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ABSTRACT
A theory of the mean tilt of sunspot bipolar regions (the angle between a line connecting the
leading and following sunspots and the solar equator) is developed. A mechanism of formation
of the mean tilt is related to the effect of the Coriolis force on meso-scale motions of super-
granular convection and large-scale meridional circulation. The balance between the Coriolis
force and the Lorentz force (the magnetic tension) determines an additional contribution
caused by the large-scale magnetic field to the mean tilt of the sunspot bipolar regions at low
latitudes. The latitudinal dependence of the solar differential rotation affects the mean tilt,
which can explain deviations from Joy’s law for the sunspot bipolar regions at high latitudes.
The theoretical results obtained and the results from numerical simulations based on the non-
linear mean-field dynamo theory, which takes into account conservation of the total magnetic
helicity and the budget equation for the evolution of the Wolf number density, are in agreement
with observational data of the mean tilt of sunspot bipolar regions over individual solar
cycles 15–24.
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1 IN T RO D U C T I O N

The origin of the solar magnetic field and the dynamics of solar
activity are the subjects of many studies and discussions (Moffatt
1978; Parker 1979; Krause & Rädler 1980; Zeldovich, Ruzmaikin
& Sokoloff 1983; Rüdiger & Hollerbach 2004; Ossendrijver 2003;
Brandenburg & Subramanian 2005). Solar magnetic fields are
observed in the form of sunspots and active regions. One of the
characteristics of the solar bipolar region is the mean tilt. The tilt
is defined as the angle between a line connecting the leading and
following sunspots and the solar equator.

According to Joy’s law, the mean tilt of sunspot bipolar regions
increases with latitude (Hale et al. 1919; Howard 1991; Sivaraman,
Gupta & Howard 1999; Pevtsov et al. 2014; McClintock, Norton
& Li 2014; McClintock & Norton 2016). The mean tilt of these
regions is caused by the effect of the Coriolis force on large-scale
motions in super-granular turbulent convection (Fisher et al. 2000;
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Pevtsov et al. 2014). The Coriolis force is proportional to sin φ,
where φ is the latitude, so that the main dependence of the mean tilt
on latitude is expected to be proportional to sin φ. The mean tilt of
sunspot bipolar regions has also been explained by the onset of the
kink instability (Leighton 1969; Longcope et al. 1999; Holder et al.
2004). It can also be affected by the large-scale solar magnetic field
(Babcock 1961; Norton & Gilman 2005).

In spite of various theoretical, numerical and observational stud-
ies related to the mean tilt (D’Silva & Choudhuri 1993; Kosovichev
& Stenflo 2008; Dasi-Espuig et al. 2010; McClintock & Norton
2013; Tlatov et al. 2013; Illarionov, Tlatov & Sokoloff 2015;
Tlatov 2015; Tlatova, Vasileva & Pevtsov 2015), some observational
features related to the mean tilt of sunspot bipolar regions remain
unexplained. From observations (Tlatova et al. 2018), it is known
that the latitudinal dependence of the mean tilt of sunspot bipolar re-
gions can deviate from sin φ. There is a non-zero mean tilt of sunspot
bipolar regions at the equator, where the Coriolis force vanishes. In
particular, there is a systematic non-zero tilt at the equator, with a
negative offset for odd cycles and a positive offset for even cycles.
Tlatova et al. (2018) also found that the latitudinal dependence of
the tilt varies from one solar cycle to another. In order to investigate
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the latitudinal dependence of the mean tilt of sunspot bipolar regions
and its variations in different solar cycles, Tlatova et al. (2018) used
data from a series of magnetic field observations of sunspots from
Mount Wilson Observatory that is nearly one century long.

In the present study, we develop a theory of the mean tilt of
sunspot bipolar regions, taking into account the effects of the solar
large-scale magnetic field and the solar differential rotation on the
mean tilt. We perform mean-field simulations using the non-linear
mean-field dynamo model, which takes into account conservation of
the total magnetic helicity and the budget equation for the evolution
of the Wolf number density. We demonstrate that the balance
between the Coriolis force and the magnetic tension determines an
additional contribution of the large-scale magnetic field to the mean
tilt of sunspot bipolar regions at low latitudes. We also show that
the latitudinal dependence of the solar differential rotation affects
the mean tilt, explaining the observed deviations from Joy’s law for
the mean tilt for sunspot bipolar regions at higher latitudes. Our
theoretical and numerical results are compared with the latitudinal
dependence of the mean tilt found in observations during the last
nine solar cycles.

2 TH E O RY FO R T H E ME A N T I LT O F
SUNSP OT BIP OLAR REGIONS

The mean tilt of sunspot bipolar regions is determined mainly by
the effect of the Coriolis force on meso-scale motions of super-
granular convection and large-scale meridional circulation. We
use the momentum, induction and entropy equations, applying the
anelastic approximation and neglecting dissipation at the boundary
between the solar convective zone and the photosphere:

∂U
∂t

= −∇
(

Ptot

ρ0

)
− g S + 1

4πρ0
(B · ∇)B

+ �ρ

8πρ0
B2 + U × (2� + W ) , (1)

∂B
∂t

= (B · ∇)U − (U · ∇)B − B (∇ · U), (2)

∂S

∂t
= −(U · ∇)S − �2

b

g
U · r̂, (3)

∇ · U = �ρ · U, (4)

where U and B are the velocity and magnetic fields, W = ∇ × U is
the vorticity, Ptot = P + B2/8π + U2/2 is the total pressure, S and
P are the entropy and pressure of the plasma, and �2

b = −(g · ∇)S0.
Here, ρ0 and S0 are the plasma density and entropy in the basic
reference state, �ρ = −∇ ln ρ0, g is the acceleration due to gravity,
r̂ = r/|r| is the unit vector in the radial direction, and � is the
angular velocity.

2.1 Effect of the large-scale magnetic field on the mean tilt

We decompose the solution of equations (1)–(4) into the sum of
the equilibrium fields (denoted with the superscript ’eq’), related
to both the meridional circulation and the differential rotation, and
perturbations (with a tilde), related to both super-granular motions
in the convective zone and rotational motions of sunspots in the
photosphere, which contribute to the mean tilt of sunspot bipolar
regions; that is, U = U eq + ũ, B = Beq + b̃, S = Seq + s̃ and P =
P eq + p̃, where ũ = ∂ξ/∂t + v(c) and v(c) is the convective velocity
related to the super-granular motions. The equilibrium magnetic
field Beq includes the mean magnetic field caused by the dynamo

and the magnetic field of bipolar active regions. The magnetic field
of the sunspots is much stronger than the mean magnetic field
caused by the solar dynamo. Equations (1)–(4) allow us to obtain an
equation for small perturbations ξ related to the rotational motions
of sunspots at the boundary between the solar convective zone and
the photosphere as

∂2ξ

∂t2
= −∇

(
p̃tot

ρ0

)
− r̂(ξ · r̂)

(
�

′2
b + �2

ρ U 2
A

)
+ 2

(
U eq + v(c)

) × � + (UA · ∇)2 ξ

+�ρ (UA · ∇) [r̂ (UA · ξ ) − UA(ξ · r̂)] , (5)

where p̃tot are the perturbations of the total pressure, �
′2
b =

�2
b + g(ξ̂ · ∇)Seq/(ξ̂ · r̂), the Alfvén speed is UA = Beq/(4πρ0)1/2,

and ξ̂ = ξ/|ξ | is the unit vector. To derive equation (5), we
rewrite equations (2) and (3) for small perturbations b̃ and s̃ (see
equations A1 and A2 in Appendix A), and substitute them into
equation (1) rewritten for small perturbations ξ . We also assume
that

|∂ξ/∂t | � |v(c)|, |∂ξ/∂t | � |U eq|,
� � τ−1

A
, � � τ−1

c ,

L̃B � Hρ, L̃B � Lξ , (6)

where τA = LB/UA is the maximum Alfvén time, LB is the length
of the magnetic field line, τc = Hρ/v

(c)
r is the characteristic time

associated with convective super-granular motions, L̃B is the
characteristic spatial scale of the magnetic field Beq variations, Lξ

is the characteristic scale of variations of ξ , and Hρ = |∇ ln ρ0|−1

is the density stratification height. We also consider an equilibrium
in the absence of rotation.

Let us discuss the physical meaning of the various terms in
equation (5). The term r̂(ξ · r̂)�

′2
b describes the internal gravity

waves, while the term r̂(ξ · r̂)�2
ρ U 2

A contributes to the slow
magneto-acoustic waves. The term (UA · ∇)2 ξ describes the Alfvén
waves, and the last two terms (∝�ρ) in equation (5) are the magnetic
tension in the density-stratified medium, which contribute to the fast
magneto-acoustic waves. Other terms are the Coriolis force and the
gradient of the total pressure.

We define the tilt of the sunspot bipolar regions using the vector
δtw = ∇ × ξ , which is related to the perturbations of vorticity, w̃ ≡
(∂/∂t)(∇ × ξ ) ≡ ∂δtw/∂t . The absolute value |δtw| ≈ |w̃| δt of this
vector characterizes the twist of the magnetic field lines that connect
the sunspots of opposite magnetic polarity in the bipolar region.
During the twist time δt, the perturbations of the vorticity w̃ do not
vanish. The direction of the vector δtw coincides with that of the
vorticity w̃, and is perpendicular to the plane of the twist. Therefore,
the radial component of the vector δtw at the boundary between the
convective zone and the photosphere can characterize the tilt of the
sunspot bipolar regions. At this boundary, the magnetic field inside
the sunspots is preferably directed in the radial direction. The mean
tilt γ ≡ 〈δtw · eB〉time of sunspot bipolar regions at the surface of
the Sun is defined by averaging the scalar product δtw · eB over
a time that is longer than the maximum Alfvén time τA , where
eB = Beq/Beq is the unit vector along the large-scale magnetic
field Beq.

The details of the derivation of the equation for the mean tilt
at the solar surface γ are given in Appendix A. Here we give the
derived expression for the mean tilt of the sunspot bipolar regions
at the surface as

γ = τ 2
A

2π

〈
∇ × ((

U eq + v(c)
) × �

) 〉
time

· eB, (7)
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where the angular brackets 〈...〉time denote averaging over a time that
is longer than the maximum Alfvén time τA . We also assume that
the source of the tilt of the sunspot bipolar regions, Iγ = 2[∇ ×
[(U eq + v(c)) × �]] · eB , is localized at the vicinity of the boundary
between the solar convective zone and the photosphere. Calculating
the source Iγ and averaging it over a time longer than the maximum
Alfvén time, we arrive at the expression for the mean tilt of sunspot
bipolar regions as

γ = −δ0

[
sin φ − cos φ

τc

R�

∂Ur

∂φ

]
, (8)

where δ0 = (1 + C̃) τ 2
A

�/(2π τc), R� is the solar radius, and φ is the
latitude. Here we also took into account that∂v(c)

r /∂r ≈ −C̃ v(c)
r /Hρ

and 〈∂v(c)
r /∂φ〉 = 0. The radial mean velocity, Ur is estimated as

Ur = Cu

κ

(

2

top

R�

) (
ρbot

ρtop

) (
u2

bot

ν
top
T

) (
∂2

∂φ2

B
2

B
2
eqp

)
bot

(9)

(see Appendix B), where 
top is the integral scale of turbulent
motions in the upper part of the convective zone, ρbot and ρ top are
the plasma densities in the bottom and upper parts of the convective
zone, respectively, ubot is the characteristic turbulent velocity at
the bottom of the convective zone and ν top

T
is the characteristic

turbulent viscosity in the upper part of the convective zone, and
Beqp = u

√
4πρ is the equipartition magnetic field. The parameter

κ ≈ 0.3–0.4 characterizes the fraction of the large-scale radial
momentum of plasma that is lost as the plasma crosses the boundary
between the convective zone and the photosphere. The constant Cu

in equation (9) varies from 0.7 to 1 depending on the radial profile of
the mean magnetic field. Substituting equation (9) into equation (8),
we obtain the expression for the mean tilt of the sunspot bipolar
regions as

γ = −δ0

[
sin φ − δ

M
cos φ

]
, (10)

where

δM = CM

(

top

R�

)2 (
ρbot

ρtop

) (
ηbot

T

η
top
T

) (
τc

τbot

)

×
(

∂3

∂φ3

B
2

B
2
eqp

)
bot

, (11)

and τ bot = 
bot/ubot is the characteristic turbulent time at the bottom
of the convective zone, CM = 3Cu/(κ PrT ) ≈ 10, PrT = νT/ηT is the
turbulent Prandtl number, and ηT is the turbulent magnetic diffusion
coefficient.

The parameter δM describes the magnetic contribution to the
mean tilt of the sunspot bipolar regions. The mechanism related
to the magnetic contribution to the mean tilt is as follows. The
Coriolis force results in the twist of sunspots in the photosphere,
and the balance between the Coriolis force and the magnetic tension
determines the magnetic contribution δM to the mean tilt of the
sunspot bipolar regions. The magnetic contribution δ

M
to the mean

tilt is important in the vicinity of the equator, where the main
contribution caused by the Coriolis force ∝ sin φ vanishes. Note also

that because δM ∝ [(∂3/∂φ3) (B
2
/B

2
eqp)]bot, the combination of the

dipole and quadrupole dynamo modes has a non-zero contribution
to δM in the vicinity of the equator.

To estimate the mean tilt of the sunspot bipolar regions, we
use the values of the governing parameters taken from models
of the solar convective zone (see e.g. Baker & Temesvary 1966;
Spruit 1974; more modern treatments make little difference to

these estimates). In particular, at depth H ∼ 2 × 1010 cm (i.e.
at the bottom of the convective zone), the magnetic Reynolds
number Rmbot = ubot 
bot/η = 2 × 109 (where η is the magnetic
diffusion coefficient due to the electrical conductivity of plasma),
the turbulent velocity ubot ∼ 2 × 103 cm s−1, the integral scale of
turbulence 
bot = 8 × 109 cm, the plasma density ρbot = 2 × 10−1

g cm−3, and the turbulent diffusion coefficient ηbot
T

= 5.3 × 1012

cm2 s−1. The density stratification scale is estimated here as H bot
ρ =

ρ/|∇ρ| = 6.5 × 109 cm, and the equipartition mean magnetic field

B
bot
eqp = 3000 G. In the upper part of the convective zone, say at depth

H ∼ 2 × 107 cm, these parameters are Rmtop = utop 
top/η = 105,
utop = 9.4 × 104 cm s−1, 
top = 2.6 × 107 cm, ρ top = 4.5 × 10−7

g cm−3, ηtop
T

= 0.8 × 1012 cm2 s−1, H top
ρ = 3.6 × 107 cm, and the

equipartition mean magnetic field is B
top
eqp = 220 G.

Using these estimates, we calculate the parameters δ0 and δM ,
which determine the mean tilt of the sunspot bipolar region. Taking
the Alfvén speed UA = 5 × 104 cm s−1, and the length of the
magnetic field line LB = 4Hρ = 4 × 109 cm, we obtain the Alfvén
time τA = LB/UA = 105 s. Taking the convective velocity uc =
(3–5) × 104 cm s−1, we obtain the convective time as τ c = (2–3)
× 104 s. This yields δ0 = 0.3–0.5 (in radians) and δM = 0.05–0.2.
This implies that the magnetic contribution δM to the mean tilt γ is
essential in the low-latitude region, where sin φ is small.

The main uncertainty in the estimate of the parameter δM is related
to the estimation of the third derivative of the mean magnetic field
with respect to latitude (see equation 11). This is the reason why
we use the numerical dynamo model for the estimation of this
quantity (see Section 3). The additional uncertainty is related to
the parameters of turbulence at the bottom of the solar convective
zone, where the Coriolis number Co ≡ 2�τ � 1, where τ is the
characteristic turbulent time. This effect is not taken into account in
the standard models of the solar convective zone based on mixing-
length theory.

2.2 Effect of the latitudinal dependence of the solar rotation
on the mean tilt

In this section, we take into account the effect of the latitudinal
dependence of the solar differential rotation on the tilt of the sunspot
bipolar regions. In particular, the latitudinal dependence of the solar
rotation at the surface of the Sun can be approximated by

� = �0

(
1 − C2 sin2 φ − C4 sin4 φ

)
(12)

(see LaBonte & Howard 1982), where �0 = 2.83 × 10−6 s−1, C2 =
0.121 and C4 = 0.173. Substituting equation (12) into equation (10)
with δ0 = (1 + C̃) τ 2

A
�/(2π τ,c), we obtain

γ = −δ̃0

[
sin φ + δ3 sin 3φ − δ5 sin 5φ

− δ̃M

(
cos φ + δ̃3 cos 3φ − δ̃5 cos 5φ

)]
, (13)

where δ̃0 = CD δ0, δ̃M = δM C̃D/16CD, CD = 1 − (3C2 + 5C4)/4 ≈
0.693, C̃D = 1 − 4C2 − 2C4 ≈ 0.17, and δ3 = (4C2 + 5C4)/16CD

≈ 0.122, δ5 = C4/16CD ≈ 1.56 × 10−2, δ̃3 = (4C2 + 3C4)/C̃D ≈
4.48, δ̃5 = C4/C̃D ≈ 1.02. For the derivation of equation (13), we
take into account that �/Hρ � |∂�/∂r| and �/Hρ � r−1|∂�/∂θ |,
and we also use identities (A9)–(A12) given in Appendix A.

In Fig. 1, we show the mean tilt −γ (solid line) versus latitude φ

given by equation (13) of our theory, where γ and φ are measured
in degrees, and we use the following values for the parameters:
δ̃0 = 0.35, δ3 = 0.12, δ5 = 1.6 × 10−2, δ̃3 = 4.48, δ̃5 = 1.02
and δ̃

M
= 0 (i.e. the magnetic contribution to the mean tilt of
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Figure 1. The mean tilt −γ (in degrees) versus the latitude φ (in degrees):
equation (13) of our theory with δ̃0 = 0.35, δ3 = 0.12, δ5 = 1.6 × 10−2,
δ̃3 = 4.48, δ̃5 = 1.02 and δ̃M = 0 (solid line) and the data from observations
(circles) of all solar cycles published in fig. 3 of Tlatova et al. (2018). The
dotted line corresponds to equation (10) with δ0 = 0.406 and δM = 0.

Figure 2. The mean tilt −γ (in degrees) versus the latitude φ (in degrees):
equation (13) of our theory with δ̃0 = 0.31, δ3 = 1.26, δ5 = 0.22, δ̃3 = 1.87,
δ̃5 = 0.78 and δ̃M = 0.2 (solid line), and the data from observations (circles)
of all solar cycles published in fig. 3 of Tlatova et al. (2018).

the sunspot bipolar regions is neglected here). For comparison
with observations, we also show in Fig. 1 the data obtained from
observations of all solar cycles presented in fig. 3 of Tlatova et al.
(2018), shown here as circles (see Section 4 for more details about
the observational data). The observational data have been averaged
over bipolar regions of all sizes (see tables 1 and 2 in Tlatova et al.
2018), where the mean value and the standard deviation of Gaussian
fittings have been computed. The dotted line in Fig. 1 corresponds
to equation (10), which does not take into account the effect of
the latitudinal dependence of the solar rotation on the mean tilt.
Fig. 1 demonstrates that taking account of the latitudinal part of the
differential rotation improves the agreement with observations.

In Fig. 2 we also show the theoretical latitudinal dependence
of the mean tilt −γ (solid line), taking into account the magnetic
contribution to the mean tilt of the sunspot bipolar regions (δ̃M =
0.2). By slightly varying the values of the other coefficients (δ̃0 =
0.31, δ3 = 1.26, δ5 = 0.22, δ̃3 = 1.87 and δ̃5 = 0.78), we obtain a
good agreement between the theoretical predictions for the mean
tilt and the observational data (see Fig. 2).

3 N U M E R I C A L M O D E L L I N G O F TH E M E A N
TILT O F SUNSP OT BIPOLAR REGIONS

To obtain the time evolution of the mean tilt of sunspot bipolar
regions, and in particular to obtain the butterfly diagram of the
mean tilt, we use a non-linear mean-field dynamo model, which
is discussed in detail in Kleeorin et al. (2016) and Safiullin et al.

(2018). Below, we briefly outline this model. We use spherical
coordinates (r, θ , ϕ) for an axisymmetric large-scale magnetic
field, B = Bϕeϕ + ∇×(Aeϕ). We consider the mean-field dynamo
equations in a thin convective shell, where we take into account
the strong variation of the plasma density in the radial direction by
averaging the dynamo equations for the mean toroidal field Bϕ and
the magnetic potential A of the mean poloidal field over the depth of
the convective shell (the so-called no-r dynamo model). We neglect
the curvature of the convective shell and replace it by a flat slab (see
below). The mean-field dynamo equations for Bϕ and A read

∂Bϕ

∂t
= GD sin θ

∂A
∂θ

+ ∂2Bϕ

∂θ2
− μ2Bϕ, (14)

∂A
∂t

= αBϕ + ∂2A
∂θ2

− μ2A. (15)

In the framework of the no-r model, the last terms on the right-
hand side of equations (14) and (15), which determine the turbulent
diffusion of the mean magnetic field in the radial direction, are
given as −μ2Bϕ and −μ2A (Kleeorin et al. 2016; Safiullin et al.
2018). The differential rotation is characterized by the parameter
G = ∂�/∂r, and the parameter μ is determined by the following
equation:

∫ 1
2/3(∂2Bϕ/∂r2) dr = −(μ2/3)Bϕ . The dynamo number

D in equation (14) is defined as D = Rα Rω, where Rα = α0R�/ηT

and Rω = (δ�) R2
�/ηT . Here the angular velocity δ� characterizes

the differential rotation, and α0 is the characteristic value of the
kinetic part of the α-effect. When the dynamo number is negative,
equations (14) and (15) describe the dynamo waves propagating
from the central latitudes towards the equator. We use the standard
latitudinal profile of the kinetic part of the α-effect as α(θ ) =
α0sin3θcos θ .

Equations (14)–(15) are written in a non-dimensional form,
where the length is measured in units of the solar radius R�,
time is measured in units of the turbulent magnetic diffusion
time R2

�/ηT , the angular velocity δ� is measured in units of the
maximal value of �, and α is measured in units of the maximum
value of the kinetic part of the α-effect. Here ηT = 
 u/3 is the
turbulent magnetic diffusion coefficient, where the integral scale of
the turbulent motions 
 and the turbulent velocity u at the scale

 are measured in units of their maximum values through the
convective region, and the magnetic Reynolds number Rm = 
 u/η

is defined using the maximal values of the integral scale 
 and the
characteristic turbulent velocity u. The toroidal component of the
mean magnetic field Bϕ is measured in units of the equipartition
field Beqp = u

√
4πρbot, and the vector potential A of the poloidal

component of the mean magnetic field is measured in units of
RαR�Beqp. The density ρ0 is normalized by its value ρbot at the
bottom of the convective zone. The radius r varies from 2/3 to 1
inside the convective shell, so that the value μ = 3 corresponds to
a convective zone with a thickness of about 1/3 of the radius.

Let us discuss the main non-linear effects in the dynamo
model. The total α-effect is the sum of the kinetic and mag-
netic parts, α = χv�v(B) + σχc�m(B) (Kleeorin et al. 2016;
Safiullin et al. 2018), where χv = −(τ/3) u · (∇×u) and χc =
(τ/12πρ) b · (∇×b). Here, τ is the correlation time of the turbulent
velocity field, u and b are the velocity and magnetic fluctuations,
respectively, and σ = ∫ 1

2/3(ρ0(r)/ρbot)−1 dr .
The magnetic part of the α-effect (Frisch et al. 1975; Pouquet,

Frisch & Leorat 1976) and the density of the magnetic helic-
ity are related to the density of the current helicity b · (∇×b)
in the approximation of weakly inhomogeneous turbulent con-
vection (Kleeorin & Rogachevskii 1999). The quenching func-
tions �v(B) and �m(B) in the equation for the total α-effect
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are given by �v(B) = (1/7)[4�m(B) + 3�B(B)] and �m(B) =
(3/8B

2
) [1 − arctan(

√
8B)/

√
8B] (Rogachevskii & Kleeorin 2000,

2001, 2004), where �B(B) = 1 − 16B
2 + 128B

4
ln[1 + 1/(8B

2
)],

and χv and χ c are measured in units of the maximal value of the
α-effect. The function �v describes the algebraic quenching of the
kinetic part of the α-effect that is caused by the feedback effects of
the mean magnetic field on the turbulent electromotive force. The
densities of the helicities and quenching functions are associated
with the middle part of the convective zone. The parameter σ > 1
is a free parameter.

The magnetic part αm of the α-effect is based on two non-
linearities: the algebraic non-linearity (quenching of αm), given by
the function �m(B), and the dynamic non-linearity. In particular,
the function χc(B) is determined by a dynamical equation (Kleeorin
& Ruzmaikin 1982; Kleeorin & Rogachevskii 1999; Kleeorin,
Rogachevskii & Ruzmaikin 1995; Kleeorin et al. 2000, 2002,
2003a,b; Brandenburg & Subramanian 2005; Zhang et al. 2006,
2012):

∂χc

∂t
+ (

τ−1
χ + κTμ

2
)
χc = 2

(
∂A
∂θ

∂Bϕ

∂θ
+ μ2A Bϕ

)

−
(

R2
�

2
2

)
α B

2 − ∂

∂θ

(
Bϕ

∂A
∂θ

− κT

∂χc

∂θ

)
, (16)

where Fχ = −κT∇χc is the turbulent diffusion flux of the density of
the magnetic helicity, κT is the coefficient of the turbulent diffusion
of the magnetic helicity, and τχ = 
2/η is the relaxation time of
the magnetic helicity. This dynamical equation is derived from the
conservation law for the total magnetic helicity. The inverse time
τ−1
χ averaged over the depth of the convective zone is given by

τ−1
χ = H−1

∫ 1

2/3
τ̃−1
χ (r) dr ∼ H
 R2

� η

H 
2 ηT

, (17)

where H is the depth of the convective zone, H
 is the characteristic
scale of variations of the integral turbulence scale 
, and τ̃χ (r) =
(ηT/R2

�)(
2/η) is the non-dimensional relaxation time of the density
of the magnetic helicity. The values H
, η, 
 in equation (17) are
associated with the upper part of the convective zone. The squared
mean magnetic field is given by

B
2 = 2
2

R2�

⎡
⎣B

2
ϕ + R2

α

⎛
⎝μ2A

2 +
(
∂A
∂θ

)2
⎞
⎠
⎤
⎦ . (18)

Let us discuss the assumptions we use in the mean-field dynamo
model that we apply for the numerical mean-field simulations. In
the used dynamo model, equations are averaged over the depth of
the solar convective zone in the radial direction. Such averaging is
undertaken because the fluid density in the solar convective zone
is stratified by seven orders of magnitude. There is no numerical
dynamo model that is able to take into account such a strong
fluid density stratification in the radial direction: the numerical
simulations would need to have a very high spatial resolution to
resolve a convective zone with such a strong density stratification,
and this is not currently possible. That is why we use the no-r
dynamo model.

No information is available from the observations about the radial
profile of the kinetic helicity and the α-effect in the convective
zone of the Sun. This implies that numerical mean-field dynamo
models are based on an assumption about the radial profile of the α-
effect, which causes uncertainty in the radial profile of the numerical
solutions.

On the other hand, three-dimensional mean-field dynamo models
allow us to obtain non-axisymmetric dynamo modes and to study
non-axisymmetric effects, for example solar active longitudes
(Berdyugina et al. 2006; Bigazzi & Ruzmaikin 2004; Pipin &
Kosovichev 2015). In particular, observations show that solar activ-
ity is distributed non-axisymmetrically, concentrating at ’preferred
longitudes’. This effect appears when the solar activity persists
within a fixed interval of longitude for a long period of time.

Note also that the radial dependence of the α-effect and dif-
ferential rotation may give rise to new features. For example,
the change in the sign of the α-effect either with radius or with
latitude can give a poleward branch of the solar activity (Yoshimura
1981; Glatzmaier 1985; Krivodubskiy 1998). Furthermore, there
are indirect signatures that the sign of the observable current
helicity, the proxy of the α-effect, changes with depth in the solar
convection zone (Kuzanyan et al. 2003). Similarly, in order to obtain
simultaneously coexisting poleward and equatorward branches of
the dynamo waves, a two-dimensional dynamo model with different
signs of the differential rotation can be considered (Belvedere,
Kuzanyan & Sokoloff 2000).

The no-curvature assumption is used in the dynamo model to
take into account the polar regions, where exact calculations of the
Stokes operator require a very high resolution. On the other hand, we
use the mean-field numerical simulations only for the calculations
of the third-order derivative of the mean magnetic field with respect
to the latitude, which is needed to determine the time evolution of
the magnetic contribution δM to the mean tilt.

The observed solar activity is characterized by the Wolf number
(Gibson 1973; Stix 1989), defined as W = 10gw + fw, where gw is the
number of sunspot groups and fw is the total number of sunspots in
the visible part of the Sun. The dynamo model applied in the present
study is directly related to the evolution of the Wolf number. In
particular, we derive the phenomenological budget equation for the
surface density of the Wolf number (Kleeorin et al. 2016; Safiullin
et al. 2018), which is given in Appendix C (see equation C1).
This equation allows us to perform direct comparisons between the
numerical solution of the dynamo equations and the observational
data for the evolution of the Wolf number. The budget equation
used for the surface density of the Wolf number contains the source
term for the sunspot formation (i.e. the rate of production of the
Wolf number density) and the sink term describing the decay
of sunspots. The rate of increase of the Wolf number density
depends on two control parameters: the threshold Bcr in the mean
magnetic field required for the formation of sunspots, and the
inverse time γ inst of the formation of sunspots. The form of the
budget equation for the evolution of the Wolf number is rather
general.

As an example for the estimation of the parameters Bcr and
γ inst, we use the negative effective magnetic pressure instability,
which can be excited even for a uniform mean magnetic field. This
effect has been investigated in analytical (Kleeorin, Rogachevskii
& Ruzmaikin 1989, 1990; Kleeorin, Mond & Rogachevskii 1993,
1996; Kleeorin & Rogachevskii 1994; Rogachevskii & Kleeorin
2007) and numerical (Brandenburg et al. 2011; Brandenburg,
Rogachevskii & Kleeorin 2016) studies. This instability results
in the formation of magnetic spots (Brandenburg, Kleeorin &
Rogachevskii 2013; Brandenburg et al. 2014) and bipolar active
regions (Warnecke et al. 2013, 2016).

There is another mechanism for the formation of large-scale
inhomogeneous magnetic structures, for example the magnetic
buoyancy instability of a stratified continuous magnetic field (Parker
1966, 1979; Gilman 1970; Priest 1982). This instability is excited
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when the characteristic scale of the initial mean magnetic field
variations is less than the density stratification height-scale. The
critical magnetic field Bcr and the growth rate γ inst for the magnetic
buoyancy instability can be used for the estimation of the rate of
increase of the Wolf number density. For further discussion, see
Appendix C.

The observed Wolf number time-series (the monthly mean
total sunspot number) have been used for comparison with the
results obtained from the mean-field numerical simulations. These
observational data are available via open access from the World
Data Center SILSO, Royal Observatory of Belgium. The details
of the quantitative comparisons between the numerical results and
observational data are given in Kleeorin et al. (2016) and Safiullin
et al. (2018), and are outlined below.

In the present study, we solve equations (14), (15), (16) and (C1)
numerically for the following initial conditions: Bφ(t = 0, θ ) =
S1 sin θ + S2 sin(2θ ) and A(t = 0, θ ) = 0. The parameters of the
numerical simulations are as follows: D = −8450, G = 1, σ = 3,
μ = 3, κ

T
= 0.1, Rα = 2, τχ = 6.3, S1 = 0.051 and S2 = 0.95.

These parameters are chosen in the numerical simulations for the
following reasons. In our previous studies (Kleeorin et al. 2016;
Safiullin et al. 2018), we performed a parameter scan using about
103 runs with different sets of parameters to find an optimal set of
parameters to reach a strong correlation between the Wolf numbers
obtained in the numerical simulations and observations. There are
two crucial parameters that strongly affect the dynamics of the non-
linear dynamo system: the dynamo number D and the initial field
B

dip
init for the dipole mode, determined by the parameter S2. A realistic

choice of the initial field B
dip
init allows very long transient regimes to

be avoided.
To find the maximum correlation between the Wolf numbers ob-

tained in the numerical simulations and observations, the following
parameter scan was performed: −8800 ≤ D ≤ −8200 and 0.85
≤ S2 ≤ 0.95. The maximum correlation (with about a 70 per cent
correlation in observed data and numerical simulations of Wolf
numbers) is obtained when the parameters are D = −8450 and
S2 = 0.95 (see fig. 12 in Kleeorin et al. 2016). The parameter μ

determines the critical dynamo number, |Dcr|, for the excitation of
the large-scale dynamo instability. The flux of the magnetic helicity
(see equation 16), characterized by the parameter κT , cannot be very
small, in order to avoid the catastrophic quenching of the α-effect
(Kleeorin et al. 2000, 2002, 2003a,b). The optimal value for this
parameter is κT ≈ 0.1. The variations of the other parameters only
weakly affect the obtained results (Kleeorin et al. 2016).

Using the results of these numerical simulations, we plot in Fig. 3
(upper panel) the butterfly diagram of the normalized mean tilt
−γ /δ̃0 given by equation (13), with the magnetic contribution to
the mean tilt as

δM

(
B

2
)

= C∗

(
∂3

∂φ3

B
2

B2
eqp

)
bot

, (19)

where the parameter C∗ = 0.8. The increase of the values of the
mean tilt in the recent three cycles in the low latitudes seen in Fig. 3
(upper panel) can be explained by the joint effect of the dipole
and quadrupole dynamo modes. In particular, as follows from the
numerical simulations during the non-linear evolution caused by
the dynamics of the magnetic helicity in the recent three cycles,
the contribution of the dipole dynamo mode to magnetic activity
decreases, while the quadrupole dynamo-mode contribution in-
creases. This is in qualitative agreement with observations (Livshits
& Obridko 2006). In addition, as follows from observations, during

Figure 3. Butterfly diagrams of the normalized mean tilt −γ /δ̃0 (upper
panel) given by equation (13) and the total magnetic contribution δ∗

M
to the

mean tilt (middle panel) given by the second line of equation (13). Butterfly
diagram of the surface density of the Wolf numbers (bottom panel). Here
the colour bars are normalized by their maximum values.

the transition from high to low solar cycles, the magnitude of the
mean tilt decreases (Dasi-Espuig et al. 2010).

In Fig. 3 (middle panel), we also show the butterfly diagram
of the total magnetic contribution δ∗

M
= −δ̃M (cos φ + δ̃3 cos 3φ −

δ̃5 cos 5φ) to the mean tilt, where the latitudinal part of the differen-
tial rotation is taken into account. For comparison, in Fig. 3 (bottom
panel), we also plot the butterfly diagram of the surface density of
the Wolf numbers. The butterfly diagram of the normalized mean
tilt of sunspot bipolar regions is essentially different from that of
the surface density of the Wolf numbers. In particular, the mean tilt
distribution in both hemispheres is nearly homogeneous; that is, it
depends weakly on the phase of the solar cycle except for in small
regions at lower latitudes, where the mean tilt has opposite signs in
each hemisphere. On the other hand, the distribution of the surface
density of the Wolf number is strongly inhomogeneous; that is, it
strongly depends on the phase of the solar cycle.

It can be seen from Fig. 3 (middle panel) that around the solar
maximum in the middle latitudes (the ’Royal’ activity zone), the sign
of the magnetic contribution δ∗

M
to the mean tilt is the same as that of

the contribution caused by the Coriolis force. The ’Royal’ activity
zone migrates towards lower latitudes for lower solar activity circles
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23–24 (see Fig. 3, bottom panel). At lower latitudes (below 10◦),
the magnetic contribution δ∗

M
to the mean tilt is negative/positive in

the northern/southern hemisphere (see Fig. 3, middle panel). This
effect increases towards lower solar activity circles 23–24. In spite
of the fact that the magnetic contribution δ∗

M
in lower latitudes is the

dominant contribution to the mean tilt of sunspot bipolar regions,
its contribution to the mean tilt is also important at latitudes around
25◦–30◦ (see Figs 1–3, upper and middle panels).

4 C O M PA R I S O N W I T H O B S E RVAT I O N S O F
THE MEA N TILT

In this section, we compare our numerical results with observational
data of the mean tilt −γ of sunspot bipolar regions. We use the obser-
vational data that were obtained by Tlatova et al. (2018) from daily
sunspot drawings taken at Mount Wilson Observatory (MWO). The
data cover a century-long period. The original MWO drawings
were digitized using a software package developed by Tlatova et al.
(2015, see also references therein). The digitization includes the
date and time of observations, the heliographic coordinates of each
umbra, its area, and the strength and polarity of its magnetic field.
The overall digitized data set used by us contains 20 318 days of
observations, from 1917 to 2016 October. The method of Tlatova
et al. (2018) enables us to identify clusters of sunspots of positive
and negative polarity, from which bipolar pairs formed.

In total, 441 973 measurements of the magnetic field of individual
nuclei and pores of sunspots have been carried out, and 51 413
bipolar regions have been allocated. Initially, clusters of active
regions of positive and negative polarity were searched for. In
order to achieve this, the sunspots were sorted by area for each
day of observation, and kernels of the same polarity located at a
distance of no more than 10◦ in longitude and 7◦ in latitude from the
spot of maximum area were selected. For each cluster, the average
coordinates were computed using the weight function over the area.
Next, a bipole counterpart through clusters of sunspots of negative
polarity was found.

There are two types of observational data. The first type of data
used in the present study, to produce Figs 1 and 2 (see Section 2),
is the result of averaging bipolar pairs of all sizes. This type of data
is presented in tables 1 and 2 of Tlatova et al. (2018), where the
mean value and the standard deviation of Gaussian fittings were
computed. We compared the observational data with the mean tilts
obtained from our theoretical and numerical simulations, and found
that the theoretical results fit the observations very well. The data
were filtered to exclude bipolar regions smaller in length than 3◦. In
total, there were 18 547 bipolar regions in the even solar cycles and
17 435 in the odd solar cycles. We used bipolar regions larger than
3◦ because smaller bipolar regions almost do not possess certain tilt
angles.

The second type of data, used below to produce Fig. 4, comprises
all the data on the tilts of all bipolar regions filtered by the small-
sized bipolar pairs, so that only bipolar regions larger than 3◦ were
retained. The cut-off area of those pairs was set to several μH (4π

× 10−6 of a steradian). We used these data to compare with our
theoretical and numerical results based on the time evolution of the
mean tilt of sunspot bipolar regions.

Note that both these samplings are very different from what was
previously published for the statistics of bipolar regions by Tlatov
et al. (2013) and Tlatov (2015). In earlier works, the bipolar regions
were composed from individual sunspot nuclei, while in our studies
they are formed from clusters of sunspots. Thus, our results may
be qualitatively very different from those of Kosovichev & Stenflo

Figure 4. The mean tilt −γ (in degrees) versus the latitude φ (in degrees):
numerical simulations (solid line) and observations of sunspot bipolar
regions (crosses) averaged over individual cycles 15–24.

(2008) and Dasi-Espuig et al. (2010). Because the nuclei of spots
are formed of two opposite polarities, the technique and the results
are significantly different.

In Fig. 4, we show the mean tilt −γ (in degrees) versus the
latitude φ (solid line) obtained using equation (13), where the
magnetic contribution δM to the mean tilt is calculated by the
mean-field numerical simulation for C∗ = 0.8, δ0 = 0.29, δ3 =
0.122, δ5 = 1.56 × 10−2, δ̃3 = 4.48 and δ̃5 = 1.02. These numerical
results are also compared with the observational data of the mean
tilt −γ of sunspot bipolar regions. The observational data have
been averaged over individual solar cycles (from cycle 15 to cycle
24). The numerical results are also averaged over the same cycles.
It follows from Fig. 4 that there is an asymmetry between the
northern and southern hemispheres. We stress that we have taken
into account here the effect of the latitudinal dependence of the solar
differential rotation on the mean tilt of the sunspot bipolar regions,
as well as the contribution to the mean tilt caused by the large-scale
magnetic field. The theoretical results and the numerical simulations
for the mean tilt of sunspot bipolar regions are in agreement with
the observational data.

Remarkably, there is a difference between Figs 1 and 4 in the
vicinity of the equator. In particular, in Fig. 4 the mean tilt is
calculated by averaging over only large-size bipolar regions, and
is not zero in the vicinity of the equator. Moreover, the mean tilt
of the large-size bipolar regions reverses its sign in the vicinity of
the equator, φ ≈ ±5◦. On the other hand, in Fig. 1 the mean tilt
is calculated by averaging over active regions of all sizes, and it
tends to zero in the vicinity of the equator. An explanation of this
phenomenon is given in the next section.

5 TH E C O N T R I BU T I O N O F T H E C U R R E N T
HELI CI TY TO THE MEAN TI LT

The current helicity, 〈Bar·curl Bar〉, of the magnetic field, Bar, in the
active region describes the correlation between the magnetic field
and the electric current, and it characterizes the twist of the magnetic
field, where the angular brackets denote averaging over the surface
occupied by the active region. This implies that the current helicity
of the active region should contribute to the total mean tilt. This
contribution is given by

γ
H

= Lar
〈Bar·curl Bar〉

〈(Bar)2〉 , (20)

where Lar is the characteristic size of an active region. It has been
shown by Zhang et al. (2012) that the current helicity of the active
region, 〈Bar·curl Bar〉, is related to the magnetic helicity 〈Aar·Bar〉

MNRAS 495, 238–248 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/238/5838000 by Ben-G
urion U

niversity of the N
egev - Aranne Library user on 17 M

ay 2020



The mean tilt of sunspot bipolar regions 245

of the active region as

〈Bar·curl Bar〉 ≈ 1

L2
ar

〈Aar·Bar〉 + O

(
L2

ar

R2�

)
, (21)

where R� is the solar radius. Substituting equation (21) into
equation (20), we obtain

γ
H

= 〈Aar·Bar〉
Lar 〈(Bar)2〉 . (22)

The total magnetic helicity Htotal is conserved. Owing to a non-
zero flux of magnetic helicity, part of the total magnetic helicity is
transported to the chromosphere and corona from the active region.
This implies that the total magnetic helicity Htotal ≡ 〈Aar·Bar〉 V is
the sum of the transported magnetic helicity, Htransp, and the residual
magnetic helicity (i.e. the observable magnetic helicity), Hobserv:

Htotal = Htransp + Hobserv, (23)

where V is the volume occupied by the active region. Here
we assume that the transported magnetic helicity, Htransp, is the
sum of the magnetic helicity caused by the writhe of the active
region, Cw〈Aar·Bar〉V (with Cw < 1), and the magnetic helicity,
C� 〈(Bar)2〉 γ Lar V , produced by the mechanical twist of the
magnetic flux tube due to the Coriolis force:

Htransp =
(
Cw 〈Aar·Bar〉 + C� 〈(Bar

)2〉 γ Lar

)
V , (24)

where γ is the mean tilt discussed in Sections 2–4. The observed
mean tilt is defined as

γobserv = Hobserv

〈(Bar)2〉 Lar V
. (25)

The total magnetic helicity Htotal ≡ γ
H
Lar 〈(Bar)2〉 V is conserved.

Substituting equations (24) into equation (23), and using equa-
tions (22) and (25), we obtain

γobserv = (1 − Cw) γ
H

− C� γ. (26)

Because γ
H

∝ L−1
ar and γ ∝ L2

ar, we obtain that |γ
H
| � |γ | for

large-size active regions, where we take into account that δ0 ∝
L2

B ≥ L2
ar. This implies that C� = −1, because in this case γ observ

≈ γ . On the other hand, for small-size active regions |γ
H
| � |γ |.

In the general case, both terms in equation (26) are important, so
that the observable tilt is given by

γobserv = γ + (1 − Cw)
〈Aar·Bar〉

Lar 〈(Bar)2〉 , (27)

where we use equation (20). It follows from this equation that there
is a size of bipolar region for which the two contributions to the
mean tilt are of the same order. This is in qualitative agreement with
the study by Illarionov et al. (2015) and Tlatova & Tlatov (2019).
Note that 〈Aar·Bar〉 = −A·B (Zhang et al. 2012), so that

γobserv = γ − (1 − Cw)
A·B

Lar 〈(Bar)2〉 . (28)

Using equations (13) and (28), we obtain

γobserv = −δ̃0

[
sin φ + δ3 sin 3φ − δ5 sin 5φ

− δ̃
M

(
cos φ + δ̃3 cos 3φ − δ̃5 cos 5φ

)]

− (1 − Cw)
A·B

Lar 〈(Bar)2〉 . (29)

In the northern hemisphere, A·B is negative, which implies that
the sign of the last term describing the contribution caused by the

magnetic helicity of the active region is opposite to that due to the
contribution from the Coriolis force (the γ term). This implies that
the mean tilts caused by the large-size and small-size active regions
have opposite signs.

This explains the difference between Figs 1 and 4 in the vicinity of
the equator. Indeed, in Fig. 4 the mean tilt determined by averaging
over only large-size bipolar regions is not zero in the vicinity of the
equator. In contrast, in Fig. 1 the mean tilt determined by averaging
over all active regions tends to zero in the vicinity of the equator. The
physical reason for this is as follows. Because the mean tilts caused
by the large-size and small-size active regions have opposite signs,
the mean tilt calculated by averaging over all active regions is small,
because their contributions compensate each other. This implies
that in the vicinity of the equator, the mean tilt is less than that
calculated by averaging over only large-size bipolar regions. Recall
that the effect of the Coriolis force on the mean tilt vanishes in the
vicinity of the equator, so that the above effect of the compensation
of the contributions to the mean tilt caused by the large-size and
small-size active regions is more pronounced in the vicinity of the
equator.

6 C O N C L U S I O N S

We have developed a theory of the mean tilt of sunspot bipolar
regions. The formation of the mean tilt is caused by the effect of the
Coriolis force on meso-scale motions of super-granular convection
and large-scale meridional circulation. We have demonstrated that at
low latitudes, the joint action of the Coriolis force and the magnetic
tension results in an additional magnetic contribution to the mean
tilt of the sunspot bipolar regions, which depends on the large-scale
magnetic field. We have also found an additional contribution to
the mean tilt of the sunspot bipolar regions caused by the effect
of the latitudinal dependence of the solar differential rotation on
the mean tilt. The latter phenomenon can explain the deviations
from Joy’s law for the mean tilt at higher latitudes. Our theoretical
results and numerical simulations for the mean tilt are in an
agreement with observational data of the mean tilt of sunspot bipolar
regions.
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APPENDI X A : D ERI VATI ON O F
E QUAT I O N S ( 5 ) , ( 7 ) A N D ( 1 3 )

To derive equation (5), we rewrite equations (2) and (3) for small
perturbations b̃ and s̃ as

b̃ = (Beq · ∇)ξ − (ξ · ∇)Beq − �ρ Beq (r̂ · ξ ), (A1)

s̃ = −(ξ · ∇)Seq − �2
b

g
ξ · r̂. (A2)

Substituting equations (A1) and (A2) into equation (1) rewritten for
small perturbations ξ , we obtain equation (5). In the derivation of
equation (5), we use assumptions (6) outlined in Section 2.
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To derive equation (7) for the mean tilt of sunspot bipolar regions,
we exclude the pressure term from equation (5) by applying curl
to this equation and multiplying the obtained equation by the unit
vector eB = Beq/Beq. This yields

∂2γ̃

∂t2
= 2

[
∇ ×

((
U eq + ∂ξ

∂t
+ v(c)

)
× �

)]
· eB

+ (UA · ∇)2 δB, (A3)

where γ̃ = δtw · eB is the tilt, δtw = ∇ × ξ . Here we take into
account that at the boundary between the convective zone and the
photosphere, the magnetic field inside the sunspots is preferably
directed in the radial direction. Because the second and the last
terms in equation (5) are directed in the radial direction, they do
not contribute to the r̂ component of the curl; that is, they do not
contribute to γ̃ .

We seek the solution of equation (A3) in the form of standing
Alfvén waves as

γ̃ =
∞∑

m=0

Am cos

[
(2m + 1)πζ

LB

]
cos

[
2π t

Tm

+ ϕ

]
, (A4)

where Tm = 2τA/(2m + 1) is the period of non-dissipating os-
cillations, τA = LB/UA is the Alfvén time, and ζ is the co-
ordinate along the magnetic field line of length LB connecting
sunspots of opposite magnetic polarities. Now we take into ac-
count that Tm � � 1, which implies that |∂ξ/∂t | � |v(c)|, |U eq|.
We also assume that the source of the tilt Iγ = 2[∇ × [(U eq +
v(c)) × �]] · eB in equation (A3) is localized near the boundary
between the solar convective zone and the photosphere. This
source can be modelled as the combination of two Dirac delta
functions:

Iγ (ζ ) = 2
[
∇ × [(U eq + v(c)) × �]

]
· eB

×
[
δ(ζ/LB ) − δ(ζ/LB − 1)

]
, (A5)

where δ(x) is the Dirac delta function.
We substitute equation (A4) into equation (A3), and after the

Fourier transformation of the source term (A5), we obtain the
equation for the amplitude Am(t) as

∂2Am

∂t2
= 2Iγ

π
−

[
UA

(2m + 1)π

LB

]2

Am. (A6)

This equation with initial condition Am(t = 0) = 0 has the following
solution:

Am(t) = 2Iγ τ 2
A

π3(2m + 1)2

{
1 − cos

[
(2m + 1)π t

τA

]}
. (A7)

Substituting equation (A7) into equation (A4), we obtain the
expression for γ̃ as

γ̃ = 2Iγ τ 2
A

π3

∞∑
m=0

1

(2m + 1)2
cos

[
(2m + 1)πζ

LB

]

×
{

1 − cos

[
(2m + 1)π t

τA

]}
. (A8)

Averaging equation (A8) over a time that is longer than the
maximum Alfvén time τA , we obtain equation (7) for the mean
tilt γ = 〈γ̃ 〉time of sunspot bipolar regions at the surface of
the Sun.

For the derivation of equation (13), we used the identities given
below:

sin3 φ = 1

4
[3 sin φ − sin 3φ] , (A9)

sin5 φ = 1

16
[10 sin φ − 5 sin 3φ + sin 5φ] , (A10)

sin2 φ cos φ = 1

4
[cos φ − cos 3φ] , (A11)

sin4 φ cos φ = 1

16
[2 cos φ − 3 cos 3φ + cos 5φ] . (A12)

A P P E N D I X B: EQUAT I O N FO R T H E R A D I A L
M E A N V E L O C I T Y

The momentum equation (1) with additional force caused by the
eddy viscosity in a steady state in spherical coordinates reads

∂

∂r
P tot = 2

r2

∂

∂r

(
r2 ρ0 Ur ν

T

Hρ

)
− B

2
ϕ

4πr
+ 2ρ0 Uϕ � sin θ

+ 1

r sin θ

∂

∂θ

(
sin θ

ρ0 Uθ ν
T

Hρ

)
, (B1)

∂

∂θ
P tot = 1

r2

∂

∂r

(
r3 ρ0 Uθ ν

T

Hρ

)
− B

2
ϕ

4π
cot θ

+2ρ0 Uϕ � r cos θ, (B2)

where, P tot = P + B
2
/8π + U

2
/2 is the total pressure, Hρ is the

density height-scale, and ν
T

is the eddy viscosity.
We exclude the total pressure term, use the continuity equation

∇ · (ρ0 U) = 0, and introduce the stream function �:

ρ0 Ur = 1

r2 sin θ

∂�

∂θ
, ρ0 Uθ = − 1

r sin θ

∂�

∂r
. (B3)

After neglecting a weak dependence of ν
T
/Hρ on radius r, equa-

tions (B1)–(B2) are reduced to

∂2Y

∂X2
+ 1

9X2

∂

∂θ

(
1

sin θ

∂

∂θ
(Y sin θ )

)
= f (X, θ ), (B4)

where X = r3, Y = X ρ0 Uθ ν
T
/Hρ , and

f (X, θ ) = 1

36π

(
1

X

∂

∂θ
− 3

tan θ

∂

∂X

)
B

2
ϕ. (B5)

Here we take into account that the contribution of the Coriolis force
to the function f(X, θ ) under the condition of slow rotation is small
(Kleeorin & Ruzmaikin 1991; Kleeorin et al. 1996). The solution
of equation (B4) with the boundary condition[

(1 − κ)
∂(ρ0 Ur )

∂r
+ 2ρ0 Ur

r

]
r=R�

= 0 (B6)

is given by

Ur = 
2
0

4π κ ν
T

ρtop R�

1

sin θ

∂

∂θ

[
sin θF (θ )

]
, (B7)

where the parameter κ ≈ 0.3–0.4 characterizes the fraction of the
large-scale radial momentum of the plasma that is lost as it crosses
the boundary between the convective zone and photosphere, and

F (θ ) ≈
∫ R�

R�−L

(
1 + R� − r

L − 
0

) (
∂B

2

u∂θ

)
dr

r

≈ Cu

(
∂B

2

∂θ

)
bot

, (B8)
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where the constant Cu varies from 0.7 to 1, depending on the radial
profile of the mean magnetic field. Therefore, equations (B7)–(B8)
yield equation (9).

A P P E N D I X C : TH E E VO L U T I O N O F TH E
WO LF N U M BER

In the framework of the non-linear mean-field dynamo model by
Kleeorin et al. (2016) and Safiullin et al. (2018), the phenomeno-
logical budget equation for the surface density of the Wolf number
is given by

∂W̃

∂t
= Iw(t, θ) − W̃

τs(B)
, (C1)

where the rate of increase of the surface density of the Wolf number
caused by the formation of sunspots is

Iw(t, θ ) = |γinst||B − Bcr|
�s

�(B − Bcr), (C2)

and the rate of decay of sunspots is W̃/τs(B) with the decay time,
τs(B), of sunspots, and �(x) is the � function, defined as �(x) = 1
for x > 0, and as �(x) = 0 for x ≤ 0. Here, Bcr is the threshold for
the sunspot formation, and γ inst is the inverse time of the formation
of sunspots.

As an example for the estimation of the parameters Bcr and γ inst,
we use in the present study the negative effective magnetic pressure
instability (Kleeorin et al. 1989, 1990, 1993, 1996; Kleeorin &
Rogachevskii 1994; Rogachevskii & Kleeorin 2007) resulting in the
formation of magnetic spots (Brandenburg et al. 2011; Brandenburg
et al. 2013, 2014) and bipolar active regions (Warnecke et al. 2013,
2016). The growth rate γ inst of the negative effective magnetic
pressure instability is given by

γinst =
(

2U
2
Ak2

x

H 2
ρ k2

∣∣∣∣dPeff

dβ2

∣∣∣∣ − 4(� · k)2

k2

)1/2

− η
T

(
k2 + 1

(2Hρ)2

)
(C3)

(Rogachevskii & Kleeorin 2007; Brandenburg et al. 2016), where
UA = B/(4πρ0)1/2 is the Alfvén speed based on the mean magnetic
field, k is the wavenumber, Peff = 1

2

[
1 − qp(β)

]
β2 is the effective

magnetic pressure, the non-linear function qp(β) is the turbulence
contribution to the mean magnetic pressure, and β = B/Beqp.
We assume here that the characteristic time of the Wolf number
variations is of the order of the characteristic time for the excitation
of the instability, γ −1

inst . When the instability is not excited (γ inst

< 0), the production rate of sunspots Iw(t, θ ) → 0, which means
that the function Iw(t, θ) ∝ |γinst| �(B − Bcr). The production term
of sunspots is also proportional to the maximum number of
sunspots per unit area, which is estimated as ∼ |B − Bcr|/�s , where
|B − Bcr| is the magnetic flux per unit area that contributes to the
sunspot formation, and �s is the magnetic flux inside a magnetic
spot. This instability is excited when the mean magnetic field is

stronger than a critical value, B > Bcr:

Bcr

Beq
= 
0

50Hρ

⎡
⎣1 +

(
10 Co H 2

ρ


2
0

)2
⎤
⎦

1/2

. (C4)

This instability is excited in the upper part of the convective zone,
where the Coriolis number Co = 2�τ is small. The decay time
τs(B) varies from several weeks to a couple of months, while the
solar cycle period is about 11 yr. This means that we can use the

steady-state solution of equation (C1), W̃ = τs(B) Iw(t, θ ).
The Wolf number is defined as a surface integral as
W = R2

�
∫

W̃ (t, θ ) sin θ dθ dϕ = 2πR2
�
∫

τs(B) I (t, θ) sin θ dθ .
The function τs(B) is given by τs(B) = τ∗ exp

(
Cs ∂B/∂t

)
, where

Cs = 1.8 × 10−3 and γinst τ∗ ∼ 10.
There are also other mechanisms for the formation of inhomo-

geneous magnetic structures, for example the magnetic buoyancy
instability (or interchange instability) of a stratified continuous
magnetic field (Parker 1966; Gilman 1970; Priest 1982), mag-
netic flux expulsion (Weiss 1966), topological magnetic pumping
(Drobyshevski & Yuferev 1974), etc. Magnetic buoyancy is applied
in the literature in various situations. One relates to the magnetic
buoyancy instability of a stratified continuous magnetic field (Parker
1966; Gilman 1970; Priest 1982), and the magnetic flux tube
concept is not used there. Another describes the buoyancy of
discrete magnetic flux tubes discussed in various contexts in solar
physics and astrophysics (Parker 1955; Spruit 1981; Spruit & van
Ballegooijen 1982; Schüssler et al. 1994; Dikpati & Gilman P. 2006;
Choudhuri, Chatterjee & Jiang 2007). This is related to the problem
of the storage of magnetic fields in the overshoot layer near the
bottom of the solar convective zone (Spiegel & Weiss 1994; Tobias
et al. 2001; Tobias & Hughes 2004).

The growth rate of the magnetic buoyancy instability reads

γinst = UA

Hρ

[
Qp

(
Hρ

L̃B

− 1

)]1/2

− η
T
k2, (C5)

where L̃B is the characteristic scale of the initial mean magnetic field
variations, and Qp = 1 − qp(β). Without turbulence, Qp = 1 and the
magnetic buoyancy instability of a stratified continuous magnetic
field is excited when the scale of variations of the initial magnetic
field is less than the density stratification length. The source of free
energy for the magnetic buoyancy instability is the energy of the
gravitational field. Generally, the critical magnetic field Bcr and the
growth rate γ inst for the magnetic buoyancy instability can be used
for the estimation of the rate of production of the Wolf number
density given by equation (C2).

However, in the presence of strong turbulence, Qp can be
negative, and the negative effective magnetic pressure instability
can be excited. The source of free energy for the negative effective
magnetic pressure instability is the energy of turbulence or turbulent
convection.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 495, 238–248 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/238/5838000 by Ben-G
urion U

niversity of the N
egev - Aranne Library user on 17 M

ay 2020


