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ABSTRACT
We continue our attempt to connect observational data on current helicity in solar active regions
with solar dynamo models. In addition to our previous results about temporal and latitudinal
distributions of current helicity, we argue that some information concerning the radial profile
of the current helicity averaged over time, and latitude can be extracted from the available
observations. The main feature of this distribution can be presented as follows. Both shallow
and deep active regions demonstrate a clear dominance of one sign of current helicity in a
given hemisphere during the whole cycle. Broadly speaking, current helicity has opposite
polarities in the Northern and Southern hemispheres, although there are some active regions
that violate this polarity rule. The relative number of active regions violating the polarity rule
is significantly higher for deeper active regions. A separation of active regions into ‘shallow’,
‘middle’ and ‘deep’ is made by comparing their rotation rate and the helioseismic rotation law.
We use a version of Parker’s dynamo model in two spatial dimensions, which employs a non-
linearity based on magnetic helicity conservation arguments. The predictions of this model
about the radial distribution of solar current helicity appear to be in remarkable agreement
with the available observational data; in particular the relative volume occupied by the current
helicity of ‘wrong’ sign grows significantly with the depth.
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1 I N T RO D U C T I O N

The solar 22-yr activity cycle is thought to be a manifestation of
dynamo action somewhere inside the solar convective zone or even
in the overshoot layer. The solar differential rotation acts as a driver
of the solar dynamo, generating a toroidal magnetic field from an
existing poloidal magnetic field. The other dynamo driver, required
to transform toroidal magnetic field into poloidal and so to close
the chain of self-excitation, is thought to be what is commonly
known as the α-effect, i.e. a specific feature of convective flows in
a rotating body. It was E. Parker who suggested as early as 1955
that cyclonic motions in the solar convective zone produce a mean
(large-scale) poloidal magnetic field from a mean toroidal magnetic
field. 10 years later, Steenbeck, Krause & Rädler developed a theory
of this process, calling it the α-effect (see Krause & Rädler 1980).

�E-mail: moss@maths.man.ac.uk
†Present address: Department of Applied Mathematics, University of Leeds,
Leeds LS2 9JT.

A physical feature of the α-effect in the form discussed at this stage
is that the action of the Coriolis force on the convective vortices
results in a domination of right-handed vortices in the Northern
solar hemisphere and, correspondingly, left-handed vortices in the
Southern solar hemisphere. A non-vanishing difference between
vortices with right and left helicities in a given hemisphere provides
the required conversion of toroidal magnetic field to poloidal.

Parker (1955) demonstrated that the scheme briefly discussed
above leads to the self-excitation of a wave of magnetic field (the
so-called dynamo wave). A suitable choice of the differential rota-
tion shear and mean helicity of solar convection in, say, the Northern
hemisphere leads to a dynamo wave whose shape mimics remark-
ably that of the solar butterfly diagram. The simplest order of mag-
nitude estimates for the dynamo-governing parameters results in
an estimate for the cycle length which is about 10 times shorter
than the real solar cycle – this seems reasonable for this obviously
oversimplified model.

Until now the above scheme for the solar dynamo, known as the
Parker migratory dynamo, has remained the basis of most dynamo
models for solar and stellar dynamo activity. Of course, present-day
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solar dynamo models include achievements of helioseismology, ef-
fects of meridional circulations and various other features of solar
magneto hydrodynamics (MHD). As a result, these dynamo models
are much richer and, in principle at least, closer to the real Sun than
the simple Parker model. Nevertheless, although these more sophis-
ticated models can reproduce many specific details, some points
remain as obscure now as in 1955 (for recent reviews, see Ossendri-
jver 2003; Brandenburg & Subramanian 2005a).

Note that the α-effect has remained for several decades a purely
theoretical concept. It is deeply associated with the helicity of rotat-
ing turbulence and arises from averaging Maxwell’s equations over
the ensemble of rotating vortices. For a long time, there has been no
evidence available to support the concept of the α-effect from either
astronomical observations or from laboratory MHD experiments.
Obviously, such a situation makes the basis of solar dynamo theory
rather unsatisfactory and even shaky.

In the last decade, some basic progress here has been made and
the first observational data of physical quantities associated with
the α-effect are now available. The fundamental point is that the α-
effect includes two contributions (Pouquet, Frisch & Leorat 1976),
an hydrodynamical contribution as discussed above (αv) associated
with helicity of convective vortices, and also a contribution from the
helicity of the magnetic field itself (αm). The hydrodynamic helicity
is determined by a correlation between the convective velocity u and
its vorticity, i.e. 〈u · (∇× u)〉, and so its observational determination
requires knowledge of all three components of velocity while the
Doppler effect gives a line-of-sight velocity component only. The
magnetic part of the α-effect, αm, can be related to what has become
known as the current helicity, proportional to 〈b · (∇ × b)〉, where b
is the small-scale magnetic field. Because Zeeman splitting provides
information concerning all three components of b, αm appears to be
more accessible for observational determination than αv (Seehafer
1990). As a result, the first observations to be made relate to the cur-
rent helicity in active regions on the solar surface (Pevtsov, Canfield
& Metchalf 1994, 1995; Longcope, Fisher & Pevtsov 1998; Zhang
& Bao 1998, 1999).

Such observational findings about the current helicity on the solar
surface can be related to theoretical results in dynamo theory, where
the concept of the magnetic part of α-effect has been developed into
a theory of dynamo saturation through αm. Kleeorin & Ruzmaikin
(1982) and Kleeorin & Rogachevskii (1999) suggested a governing
equation for αm which describes the time evolution of the α-effect.
Together with the mean-field dynamo equations, this equation has
solutions in the form of a propagating dynamo wave whose ampli-
tude is steady in time (Kleeorin, Rogachevskii & Ruzmaikin 1995;
Covas et al. 1998; Blackman & Brandenburg 2002).

Kleeorin et al. (2003) discussed a link between the observational
and theoretical findings outlined above. They concluded that the ac-
cumulated observational knowledge is sufficient to follow the tem-
poral evolution during one solar cycle of current helicity averaged
over a given hemisphere or the latitudinal distribution of current
helicity averaged over one solar cycle. Existing ideas concerning
the non-linear solar dynamo saturated by the magnetic part of the
α-effect provide a theoretical prediction of the corresponding quan-
tities. These demonstrate a general agreement with observations and
provide a possibility of fitting the governing parameters of the solar
dynamo by observational data.

Here we present an extension of the approach of the paper of
Kleeorin et al. (2003). First of all, we discuss the extent to which the
solar helicity data can be used to understand the radial dependence
of solar magnetic helicity and the corresponding dynamo activity.
An initial step in this direction was made by Kuzanyan et al. (2003)

who separated the data base of active regions for which the helicity
data are available into subsets corresponding to shallow, middle and
deep active regions, according to their rotation rate. Of course, a
substantial part of the data cannot be so classified. After averaging
magnetic helicity data over the subsets, we obtain quantities which
can be compared with the theoretical data averaged over the three
radial ranges.

We note that at the moment current helicity observations only
give very preliminary information concerning this quantity, which
is so central to solar dynamo theory. It could be argued that any con-
frontation between the data and dynamo theory should be postponed
until the current helicity evolution has been monitored over several
activity cycles. However, we would stress that the effort involved
in continuing these observations, and improving their quality, needs
some theoretical motivation. This is why we feel that the study re-
ported below, although necessarily restricted in scope, is relevant.
Our reason for using relatively crude mean-field dynamo models
with a particular parametrization for the turbulence, rather than the
more detailed dynamo models that are now slowly becoming avail-
able from direct numerical simulations, is that the level of descrip-
tion provided by direct numerical simulation is incompatible with
the available level of observations.

This approach is to some extent similar to the studies of the solar
rotation curve using the sunspot data associated with various types
of sunspots. Following the remarkable advances in helioseismology,
such reconstructions now look rather archaic [this is why we refer
here only to the single paper, Collin et al. (1995), in which one of
the authors participated]. However, at this preliminary stage of solar
helicity studies, a similar approach appears to be reasonable.

The other topic to be addressed here is a plausible improvement
of the governing equation for the magnetic helicity. The point is
that the dynamo saturation by a magnetic contribution to the α-
effect is necessarily combined with a modification of the turbulent
diffusivity and other transport coefficients. For the sake of simplicity,
these effects were ignored in our first paper (Kleeorin et al. 2003).
Now we restore these terms in order to investigate their possible
contribution, and to produce a more fully self-consistent model.

Inter alia, we also demonstrate explicitly that it is the presence
of fluxes of helicity that avoids ‘catastrophic’ quenching of dynamo
action (cf. Gruzinov & Diamond 1994).

Obviously, our model is still simplified and does not include many
important features of solar activity. In particular we do not address
the problem of the storage of magnetic fields and the formation of
flux tubes in the overshoot layer near the bottom of the convective
zone (see e.g. Spiegel & Weiss 1980; Tobias et al. 2001; Tobias &
Hughes 2004; Brandenburg 2005, and references therein).

2 DATA O N C U R R E N T H E L I C I T Y
O B TA I N E D AT T H E H UA I RO U S O L A R
O B S E RVATO RY S TAT I O N

Our research is based on the data on current helicity accumulated
during 10 successive years (1988–97) of observations at the Huairou
Solar Observatory Station of the National Astronomical Observa-
tories of China (Bao & Zhang 1998), which were further processed
by Zhang, Bao & Kuzanyan (2002). The description of the observa-
tional procedure and the basic ideas of data processing can be found
in Kleeorin et al. (2003) and references therein. The total available
sampling that we used contains data of 410 active regions.

Following Kuzanyan et al. (2003) we divide the active region into
four groups, i.e. shallow, middle and deep active regions, as well
as a group for which the depth cannot be estimated satisfactorily
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Table 1. Current helicity Hc for active regions binned by depth, threshold
σ = 0.5. Here and below Hc is measured in units of 10−3 G2 m−1.

d N N∗ H c N∗/N

North
s 47 1 −0.6 ± 0.2 0.02 ± 0.04
m 5 1 −0.2 ± 0.7 0.20 ± 0.35
d 34 8 −1.0 ± 0.7 0.24 ± 0.14
d+m 39 9 −0.9 ± 0.6 0.23 ± 0.13

South
s 41 5 0.5 ± 0.6 0.12 ± 0.10
m 6 2 0.3 ± 1.5 0.33 ± 0.38
d 38 11 0.6 ± 0.4 0.29 ± 0.14
d+m 44 13 0.6 ± 0.4 0.3 ± 0.13

(Table 1). The separation of the active regions into three groups is
based on the result of helioseismology (Schou et al. 1998) that the
angular rotation rate grows monotonically with radius at least for the
domain between fractional radii 0.65 and 0.95 and latitudes below
30–35◦ (for details see Kuzanyan et al. 2003).

The Solar Geophysical Data records, which can be obtained from
the NOAA (USAF-MWL) data base, provide us with several tens of
longitudinal locations (in terms of the Carrington coordinate system)
for each active region under investigation, for several consequent
days. Therefore, we attempt to calculate partial, or ‘individual’, an-
gular rotation rates with respect to the Carrington rotation. For some
active regions we can find a certain trend in the evolution of their
Carrington coordinates with time. From the complete sampling of
the data, which contain 410 active regions, we select subsamples for
which this trend in Carrington longitude versus time has significant
correlation. We determined the subsamples for which the correla-
tion coefficient σ is greater than 0.5 and 0.6, respectively. These
samples contain 178 and 134 active regions (or 43 and 33 per cent
of the available data), respectively.

Given an ‘individual’ angular rotation rate for each active region
we can identify them with certain effective depths. Using a particular
analytical approximation of the solar rotation curve (see Kuzanyan
et al. 2003), the active regions with known individual angular rota-
tion were separated into three groups. The individual rotation rates
in the first group fall into the range covered by the analytical ap-
proximation for the radial range r � 0.76, for the second group the
bound is 0.76 � r � 0.84, and r > 0.84 for the third group. These
groups were labelled as deep, middle and shallow. Notice that the
internal rotation of the solar convective zone above approximately
fractional radius 0.94 is slower than in the zone below, and so we
disregarded this subsurface layer. We stress that the above bounds
were chosen rather arbitrarily and the details of trends in the current
helicity properties with respect to depth can hardly be considered
quantitatively. The active regions appear to be distributed between
the upper and lower layers approximately equally, while very few
occur within the middle layer (Kuzanyan et al. 2003). We will con-
sider separately the upper and lower layers and compare the results
of statistical analysis of the data in each of them.

Because the current helicity is expected to be of opposite sign
in Northern and Southern hemispheres, we subdivide these groups
between the two hemispheres and average the data in each group
over all latitudes as well as cycle phases. The result of averaging H c

is given in Table 1 for active regions with identified depth. Here d is
a depth identifier, with ‘s’ meaning shallow, ‘m’ middle and ‘d’ deep
active regions. Because the number of active areas of intermediate

Table 2. Current helicity for active regions binned by depth, threshold σ

= 0.6.

d N N∗ Hc N∗/N

North
s 33 1 −0.6 ± 0.3 0.03 ± 0.06
m 2 1 −0.3 ± 9.4 0.5 ± 0.69
d 28 7 −1.0 ± 0.8 0.25 ± 0.16
d+m 30 8 −1.0 ± 0.8 0.27 ± 0.16

South

s 33 4 0.6 ± 0.7 0.12 ± 0.11
m 3 2 −0.2 ± 4.8 0.7 ± 0.53
d 29 9 0.4 ± 0.4 0.31 ± 0.17
d + m 32 11 0.4 ± 0.4 0.34 ± 0.16

depth appears to be quite low and insufficient to estimate the sign
of helicity, we combine quite arbitrarily the data for the middle and
deep active regions into a single group, i.e. ‘d+m’. N is the number
of active regions included in each group. For Table 1, we use the
threshold σ = 0.5, where σ is the correlation coefficient. (We use
this non-standard notation, as the more usual symbol r is reserved for
the radial coordinate.) To demonstrate the stability of the selection
procedure for the threshold value, we give in Table 2 similar results
for the threshold value σ = 0.6.

In agreement with theoretical expectations, the data for H c are
remarkably antisymmetric with respect to the solar equator. Note
that the same kind of antisymmetry was recognized in the averaging
over latitude or time undertaken in Kleeorin et al. (2003). We note
however that there are a significant number of active regions that
violate this polarity law. The number of such active regions are given
in Tables 1 and 2 as N∗.

We present in Table 3 the averaged values of the helicities for
for all 410 active regions for which the observations of helicity are
available. These active regions follow the same polarity rule as the
active regions with known depth, and again some active regions
violate this rule. Their number is given as N∗.

The number of active regions with current helicity that violate
the polarity rule can be calculated for both hemispheres (Table 4).
Note that it is not appropriate to average the current helicity over
both hemispheres because the data in the Northern and South-
ern hemispheres cancel. We conclude from Table 4 that the deep
(and middle) active regions contain several times more cases of
parity rule violations than the shallow active regions, and even
slightly more than the active regions without definite estimation of
depth.

Table 3. Current helicity for all 410 active regions.

hemisphere N N∗ Hc N∗/N

North 193 30 −0.8 ± 0.2 0.16 ± 0.05
South 217 47 0.6 ± 0.2 0.22 ± 0.05

Table 4. Number of active region with current helicity violating the polarity
rule, binned by depth, threshold σ = 0.5.

Depth N N∗ N∗/N

s 88 6 0.07 ± 0.05
d+m 83 22 0.27 ± 0.09
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Table 5. Number of active region with current helicity violating the polarity
rule ordered by date, threshold σ = 0.5.

Years N N∗ N∗/N

1988–89 87 23 0.26 ± 0.09
1990–91 126 20 0.16 ± 0.06
1992–93 121 18 0.15 ± 0.06
1994–96 69 13 0.18 ± 0.09

Table 6. Number of active region with current helicity violating the polarity
rule, ordered by latitude �, threshold σ = 0.5.

Latitude (degrees) N N∗ N∗/N

24 � � � 32 18 4 0.22 ± 0.19
16 � � � 24 53 10 0.19 ± 0.11
12 � � � 16 36 5 0.14 ± 0.11
8 � � � 12 48 8 0.17 ± 0.11
−8 � � � 8 65 6 0.08 ± 0.06
−12 � � � −8 58 12 0.21 ± 0.10
−16 � � � −12 46 8 0.17 ± 0.11
−24 � � � −16 67 19 0.28 ± 0.11
−32 � � � −24 12 3 0.25 ± 0.25

We were unable to recognize any clear trend in the number of ac-
tive regions violating the polarity rule selected according to latitude
or the cycle phase. However, we present the relevant data below
(Tables 5 and 6).

3 T H E DY NA M O M O D E L

We use here a dynamo model which is basically an extension of
the simplified model of Kleeorin et al. (2003). In particular, the
present model includes an explicit radial coordinate and takes into
account the curvature of the convective shell, and also quenching of
turbulent magnetic diffusivity. We start from the general mean-field
dynamo equations (see e.g. Moffatt 1978; Krause & Rädler 1980).
Using spherical coordinates r , θ , φ we describe an axisymmetric
magnetic field by the azimuthal component of magnetic field B, and
the component A of the magnetic potential corresponding to the
poloidal field. Following Parker (1955), we consider dynamo action
in a convective shell. However, we retain a radial dependence of A
and B in the dynamo equations and we do not neglect the curvature
of the shell. The equations for Ã = r sin θ A and B̃ = r sin θ B read
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where

Gr = ∂�

∂r
, Gθ = ∂�

∂θ
.

Here, we measure lengths in units of the solar radius R� and time
in units of a diffusion time based on the solar radius and the turbu-

lent magnetic diffusivity ηT0 . When estimating this time-scale we
use the ‘basic’ (assumed uniform) value of the turbulent magnetic
diffusivity, unmodified by the magnetic field.

We consider the fractional radial range 0.64 < r < 1, where r =
0.64 corresponds to the bottom of the convective zone and r = 1
corresponds to the solar surface. The ‘convection zone’ proper can
be thought of as occupying 0.7 � r � 1.0, with 0.64 � r � 0.7 being
a tachocline/overshoot region. The rotation law includes radial shear
(proportional to Gr) and a latitudinal dependence (proportional
to G θ ).

At the surface r = 1, we use vacuum boundary conditions on the
field, i.e. B = 0 and the poloidal field fits smoothly on to a potential
external field. At the lower boundary, r = r 0 = 0.64, B = Br =
0. At both r = r 0 and r = 1, rather arbitrarily we set ∂χ c/∂r = 0,
where χ c is the current helicity (see equation 3); a modest amount
of experimentation suggested that our results are quite robust with
respect to changes in the condition at r = 1.

Of course these equations, although more elaborate than those of-
ten used to study the solar cycle, are still oversimplified. However,
they appear adequate to reproduce the basic qualitative features of
solar (and stellar) activity. Taking into account the exploratory na-
ture of the approach, we use the simplest profiles of dynamo gener-
ators compatible with symmetry requirements and with producing
a magnetic butterfly diagram that is concentrated towards low lati-
tudes (see also Rüdiger & Brandenburg 1995; Moss & Brooke 2000).
Thus the unquenched hydrodynamical part of the α-effect, αv(B =
0) = χ v = sin2 θ cos θ and C α < 0 (this determines the sign value
of the hydrodynamic α-effect, see below in Section 4). The points
θ = 0 and 180◦ correspond to the North and South poles, re-
spectively. See Kleeorin et al. (2003) for further discussion of this
approach.

As a new feature of equations (1) and (2), compared with the
dynamo model exploited by Kleeorin et al. (2003), we retain here the
possibility of including a contribution from the dynamo-generated
magnetic field in the turbulent diffusion coefficients (ηA and ηB ),
and the meridional circulation (V A

θ , V A
r , V B

θ and V B
r ). However, we

do not consider fully here the role of meridional circulation.
The magnetic field is measured in units of the equipartition field

Beq = u
√

4πρ∗, and the vector potential of the poloidal field A
is measured in units of R�B eq. The density ρ is normalized with
respect to its value ρ ∗ at the bottom of the convective zone, and
the basic scales of the turbulent motions l and turbulent velocity
u at the scale l are measured in units of their maximum values
through the convective zone. Because turbulent diffusivity and α-
effect depend on the magnetic field, we use their initial values in the
limit of very small mean magnetic field to obtain the dimensionless
form of the equations. To emphasize this, we do not introduce the
dynamo number in an explicit form here, however use it below when
convenient.

4 T H E N O N - L I N E A R I T I E S

We present below a model for the non-linear dynamo saturation.
The model is based as far as possible on first principles, and is
similar to that used in the derivation of the equations of mean-field
electrodynamics by Krause & Rädler (1980). As an important tech-
nical point, we used a quasi-Lagrangian approach in the framework
of Wiener path integrals to derive the dynamical equation for the
evolution of the magnetic helicity including magnetic helicity flux
(see Kleeorin & Rogachevskii 1999). We also used the spectral
τ -approximation (Orszag’s third-order closure procedure) to deter-
mine the non-linear mean electromotive force (see Rogachevskii &
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Kleeorin 2000, 2004). Here, we note some important features of the
model only.

A key assumption of the model under discussion is the concept of
the locally isotropic and weakly inhomogeneous nature of the back-
ground MHD turbulence (with a zero mean magnetic field). Because
we include large-scale phenomena such as helicity advection, the
accuracy of the approximation is limited. In particular, a completely
rigorous evaluation of the turbulent diffusion of magnetic helicity
is beyond the scope of our model and we allow this quantity to be
transported by the turbulent diffusion in the same way as a scalar
admixture, i.e. the turbulent diffusion coefficient is determined by
the velocity field correlation tensor. In contrast, the non-linear co-
efficients of the large-scale magnetic field defining the non-linear
mean electromotive force are determined by the cross-helicity of
magnetic (bi) and velocity (ui) fields, i.e. by 〈biui〉. The different
scalings for these quantities presented below are connected with
this fact.

Note that a deeper investigation of the turbulent diffusion of mag-
netic helicity, as well as of the non-diffusive fluxes of magnetic
helicity, looks possible in principle. It would require at least the
application of Orszag’s fourth-order closure procedure to derive the
magnetic helicity fluxes. However, this generalization would require
a much more extended calculation than required to obtain the model
considered here. As a substantial body of calculations already have
been necessary, it seems very reasonable to clarify the astrophysi-
cal consequences of the model now available, before attempting to
move on further.

We stress again that the model analysed is derived, as far as pos-
sible, from first principles. The scope of the model is however obvi-
ously limited and does not include all possible physical mechanisms
which could, in principle, contribute to dynamo saturation. In par-
ticular, we do not include the buoyancy of the magnetic field. Some
other limitations are mentioned below. Bearing in mind the natural
limitations of the model, we introduce several numerical coefficients
C 1, C 2, C 3 multiplying the magnetic helicity fluxes, which we con-
sider to be free parameters of order unity (see equation 5 below).

4.1 The α-effect

The key idea of the dynamo-saturation scenario exploited below (as
well as by Kleeorin et al. 2003) is the splitting of the total α-effect
into its hydrodynamic and magnetic parts, αv and αm respectively.
The calculation of the magnetic part of the α-effect is based on the
idea of magnetic helicity conservation and the link between current
and magnetic helicities, and gives (see Kleeorin et al. 2000, 2003)

α = αv + αm = χvφv + φm

ρ(z)
χ c . (3)

Here, χ v and χ c are proportional to the hydrodynamic and current
helicities respectively and φv and φm are quenching functions. The
analytical form of the quenching functions φv(B) and φm(B) is given
in Appendix A. In contrast to Kleeorin et al. (2003), we consider
here the radial helicity profiles in an explicit form and so we keep
in equation (3) the radial profile of density ρ(z) normalized by the
density ρ ∗ at the bottom of the convective zone. This factor appears
as χ c = (τ/12 πρ ∗) 〈b · (∇ × b)〉 (for details, see Kleeorin et al.
2003). Based on Baker & Temesvary (1966) and Spruit (1974), we
choose for ρ(z) the analytical approximation

ρ(z) = exp[−a tan(0.45π z)] , (4)

where z = 1 − µ (1 − r ) and µ = (1 − R0/R�)−1. Here, a ≈ 0.3
corresponds to a 10-fold change of the density in the solar convective

zone, a ≈ 1 by a factor of about 103, etc. However, in the majority
of our investigations we took ρ = constant, but we did also consider
cases with a = 0.3.

The equation for χ̃ c = r 2 sin2 θ χ c is
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where F̃ = r 2 sin2 θF , and the flux of the magnetic helicity is
chosen in the form

F = ηA (B) B2
{

C1 ∇
[
χv φv(B)

] + C2 χv φv(B) Λρ

}
− C3 κ ∇χ c, (6)

with Λρ = −∇ρ/ρ. Here, R�/l is the ratio of the solar radius to
the basic scale of solar convection, T = (1/3) Rm (l/R�)2 is the
dimensionless relaxation time of the magnetic helicity, Rm = lu/η0

is the magnetic Reynolds number, with η0 the ‘basic’ magnetic dif-
fusion due to the electrical conductivity of the fluid. Equation (5) is a
generalization of equation (A3) of Kleeorin et al. (2003) to the case
considered here. The fluxes of magnetic helicity (6) were derived
using equations (9) and (13) of Kleeorin & Rogachevskii (1999).
Equation (6) is, to some extent, similar to the equations suggested for
the helicity transport by Vishniac & Cho (2001) and Subramanian
& Brandenburg (2004). As far as it is known, the model is not very
sensitive to fine details of the magnetic helicity transport. Previously
the helicity transport equation has been simulated numerically by,
for example, Brandenburg & Subramanian (2005b) who studied a
1D dynamo model based on the equations of Vishniac & Cho (2001).

Let us estimate the values of the governing parameters for dif-
ferent depths of the convective zone. We stress that all physical
ingredients of the model vary strongly with the depth h∗ below
the solar surface. We use mainly estimates of governing parameters
taken from models of the solar convective zone, e.g. Spruit (1974)
and Baker & Temesvary (1966) – more modern treatments make
little difference to these estimates. In the upper part of the convec-
tive zone, say at depth h∗ ∼ 2 × 107 cm (measured from the top),
the parameters are Rm ∼ 105, u ∼ 9.4 × 104 cm s−1, l ∼ 2.6 ×
107cm, ρ ∼ 4.5 × 10−7 g cm−3, ηT (the turbulent diffusivity) ∼
0.8 × 1012 cm2 s−1; the equipartition mean magnetic field is
B eq ∼ 220 G and T ∼ 5 × 10−3. At depth h∗ ∼ 109 cm these
values are Rm ∼ 3 × 107, u ∼ 104 cm s −1, l ∼ 2.8 × 108 cm,
ρ ∼ 5 × 10−4 g cm−3, ηT ∼ 0.9 × 1012 cm2 s−1; the equipar-
tition mean magnetic field is B eq ∼ 800 G and T ∼ 150. At
the bottom of the convective zone, say at depth h∗ ∼ 2 × 1010

cm, Rm ∼ 2 × 109, u ∼ 2 × 103 cm s −1, l ∼ 8 × 109 cm,
ρ ∼ 2×10−1 g cm−3, ηT ∼ 5.3×1012 cm2 s−1. Here, the equiparti-
tion mean magnetic field B eq = 3000 G and T ∼ 107. We appreciate
that various estimates for the magnetic Reynolds number and the
parameter T for the solar convective zone have been suggested and
so we investigate below the robustness of our results with respect
to T . Note also that if we average the parameter T over the depth of
the convective zone, we obtain T ∼ 5 (see Kleeorin et al. 2003).
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4.2 The turbulent diffusivity

The simplest order-of-magnitude estimates for magnetic field tur-
bulent diffusion suggest that it affects all magnetic field compo-
nents similarly. Of course, this does not preclude that a more de-
tailed parametrization of the turbulent transport coefficients could
result in different estimates for the turbulent diffusion ηB of toroidal
and ηA of poloidal magnetic field components, and Rogachevskii &
Kleeorin (2004) provide the following estimates for the coefficients
ηB and ηA for the cases of the weak and strong magnetic fields
(remember that we measure magnetic field strength in units of the
equipartition value Beq, and that for the Parker migratory dynamo
the toroidal magnetic field is much stronger than the poloidal). For
the case of weak magnetic field the turbulent diffusion coefficients
are (in units of the reference value ηT0 )

ηA = 1 − 96

5
B2 , ηB = 1 − 32B2, (7)

while for strong magnetic fields the scaling is

ηA = 1

8B2
, ηB = 1

3
√

2B
. (8)

The transition from one asymptotic form to the other can be thought
of as occurring in the vicinity of B ∼ B eq/4.

Unsurprisingly, the coefficient of turbulent diffusion of magnetic
helicity κ also has a dependence on B, namely κ(B) = 1 − 24 B2/5
for weak magnetic field and

κ(B) = 1

2

(
1 + 3π

40B

)
(9)

in the strong-field limit. The theory gives more general formulae for
these asymptotical expressions (see Rogachevskii & Kleeorin 2004
and Appendix A).

We note that the turbulent diffusion estimates depend on the de-
tails of magnetic field evolution during which the magnetic helicity
accumulated. In particular, the initial ratio between magnetic and
kinetic energy appears in the complete equations of Rogachevskii &
Kleeorin (2004). We appreciate the importance of this factor which
is almost unaddressed in existing papers in dynamo theory. How-
ever, taking into account the scope of this paper, we accept (rather
arbitrarily) that dynamo action starts in an (almost) non-magnetized
medium. Also, we neglect effects of possible inhomogeneities in
the background turbulence.

4.3 Non-linear advection

Our model contains a inhomogeneous non-linear suppression of
turbulent magnetic diffusion, which causes turbulent diamagnetic
(or paramagnetic) effects, i.e. a non-linear advection of magnetic
field which is not the same for the toroidal and poloidal parts of
the magnetic field. The corresponding velocities were calculated by
Rogachevskii & Kleeorin (2004), yielding

V A = 32

5
B2

[
ΛB + 3Λρ − er + cot θ eθ

r

]
,

V B = 32

5
B2

[
3Λρ − er + cot θ eθ

r

]

for a weak magnetic field, and

V A = − 1

3
√

8B

[
ΛB + 2

er + cot θ eθ

r

]
+ 5

16B2
Λρ ,
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Figure 1. Isocontours of the rotation law used in the numerical simulations.

V B = 4

3
√

8B

er + cot θ eθ

r
+ 5

16B2
Λρ

for strong fields. Here, ΛB = (∇B2)/B2, er and eθ are unit vectors
in the r and θ directions of spherical polar coordinates, [Λρ]r =
−d ln ρ/dr , and [ΛB]r = d ln B2/dr .

4.4 The rotation law

In the region 0.7� r � 1, we used an interpolation on the rotation law
derived from helioseismic inversions. This was extended to include a
tachocline region by interpolating between the helioseismic form at
r = 0.7 and solid body rotation at r = r 0 (see also Moss & Brooke
2000). Our choice r 0 = 0.64 gives a rather broad tachocline, but
simplifies the numerics. Fig. 1 shows contours � = constant.

5 R E S U LT S

5.1 Numerical implementation

We simulated the model described above in a meridional cross-
section of a spherical shell with 0 � θ � 180◦ and 0.64 �
r � 1.

The region was divided (rather arbitrarily) into three domains,
namely 0.64 � r < 0.7, 0.7 � r � 0.8 and 0.8 � r � 1 and these were
identified with the domains of the deep, middle and shallow active
regions of Section 2. We attempt to identify the relative volume
occupied by current helicity of ‘improper’ sign with N ∗/N .

5.2 Some non-linear solutions

Our simulations show that the dynamo model leads to a steadily
oscillating magnetic configuration for a quite substantial domain
in the parameter space. These parameters seem acceptable when
compared with current ideas in solar physics. We present here as a
typical model with steady oscillations the case C α = −5, C ω =
6 × 104 (i.e. D = −3 × 105), C 1 = C 2 = 1, C 3 = 0.5, and
(2R/l)2 = 300. The value T = 5 was adopted for definiteness for the
majority of our investigations, see the above discussion, although
we did study more briefly some other values. (With this value of
C ω, marginal excitation occurs when C α ≈ −4.) Of course, we
are far from understanding helicity transport inside the Sun well
enough to determine the numerical value of these parameters. The
parameter set chosen gives a realistic time-scale for the cycle pe-
riod (about 10 yr), but with a rather small nominal value of the
turbulent diffusivity coefficient ηT0 , i.e. this is how we choose to
resolve the well-known problem with the length of solar cycle in
the context of mean-field dynamo models. The value |C α| (and |D|)
chosen is perhaps larger than expected because we use the profile
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χ v = sin2 θ cos θ , which significantly reduces the mean value of χv

over the domain compared to that with the ‘standard’ χv = cos θ .
We demonstrated robustness with respect to the value of the pa-

rameter T , which is associated with the magnetic Reynolds num-
ber: a uniform increase by two orders of magnitude makes quite
small changes to our results, as does allowing a 1000-fold increase
(5–5000) from top to bottom of the convection zone. When T = 0.5
(i.e. smaller by a factor of 10 than in the basic run described above)
we still obtain regular oscillations and the magnetic energy increases
by a factor of 2 or 3 only. However, when T is significantly smaller
than 0.5, the solution becomes irregular. We also found, for exam-
ple, a solution with T = 5 × 104, again with periodic oscillations in
the magnetic field. There the field strength was of the same order as
when T = 5. For T = 5 we also verified that the differences between
taking density parameter (equation 4) a = 0 (i.e. uniform density)
and a = 0.3 were small, and that allowing a radial dependence of
χv also caused only small changes.

For this typical solution, the magnetic energy Em measured in
the units of its equipartition value oscillates near the level E m ≈
0.12, and the amplitude of the oscillations is about 0.035. This
means that the averaged magnetic field strength is about 40 per
cent of the equipartition value. The magnetic configuration can be
described as a system of activity waves which can be presented in
the corresponding butterfly diagrams. In Fig. 2, we show the near-
surface butterfly diagram (at r = 0.94). Here, a pair of activity
waves migrate from the middle latitudes towards the solar equator,
while another pair migrates from the middle latitudes towards the
poles. In Fig. 3, we present butterfly diagrams for the region just
above the interface (at r = 0.70). Here, both pairs of activity waves
are much less pronounced in comparison to the structure shown in
Fig. 2. However, the equatorward branch now dominates the pole-
ward branch. From these synthetic plots, it seems plausible that the
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Figure 2. The near-surface (r = 0.94) butterfly diagram of the mean mag-
netic field. Contours are equally spaced: solid represent positive values,
broken negative, and the zero contour is shown as dotted.
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Figure 3. The butterfly diagram of the mean magnetic field for the region
just above the interface (r = 0.70). Contours are equally spaced: solid rep-
resent positive values, broken negative, and the zero contour is shown as
dotted.
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Figure 4. The toroidal magnetic field distribution at an instant just after the
minimum of magnetic activity. Contours are equally spaced: solid represent
positive values, broken negative, and the zero contour is shown as dotted.

observed butterfly diagram can be mimicked adequately. The mag-
netic field structure found in the simulations is also quite consistent
with expectations.

As a typical example, we show in Fig. 4 the toroidal magnetic
field distribution for an instant soon after the minimum of magnetic
energy. The current helicity distribution at the same time is given
in Fig. 5. Here, the dotted line indicates the zero contour of current
helicity. The helicity distribution is antisymmetric with respect to
the solar equator, but there are sign changes inside each hemisphere.
If the helicity is basically positive in a given hemisphere (e.g. the
Southern hemisphere), a region of negative helicity can be isolated
near to the equator at the base of convective zone. The other region
of opposite polarity in the helicity distribution is located near to the
poles. Near the bottom of the convection zone, the helicity pattern
migrates in a similar way to the toroidal field, and the corresponding
butterfly diagram is given in Fig. 6. Quite unexpectedly, the helic-
ity pattern near the surface does not demonstrate any pronounced
migration (see Fig. 7).
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Figure 5. The current helicity distribution. The dotted line here indicates
the zero level of current helicity. Contours are equally spaced: solid represent
positive values, broken negative, and the zero contour is shown as dotted.
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Figure 6. The butterfly diagram for the current helicity for the region just
above the interface (r = 0.70). Contours are equally spaced: solid represent
positive values, broken negative.

Of course, we cannot claim that a steady oscillating solution ob-
tained for a rather arbitrary set of parameters should be directly
confronted with proxies of solar activity (see Obridko & Shelting
2003). We note however that the solution obtained reproduces re-
markably well some features of the solar cycle expected from dy-
namo theory and the observational data. Apart from a conventional
equatorward migration, it demonstrates that the activity cycle is a
complicated phenomenon which involves the Sun as a whole. We
see an poleward migration at higher latitudes which is known from
the polar faculae data (Makarov, Tlatov & Sivaraman 2001, and ref-
erences therein, which give a modern viewpoint of the long-term
research in this area) and from simple illustrative dynamo models
(Kuzanyan & Sokoloff 1995, 1997). Such a pattern is also seen in the
torsional oscillations, both as observed and as modelled by Covas,
Moss & Tavakol (2004) – these are very plausibly intimately linked
to the magnetic field variations. The magnetic field configuration
looks quite simple and smooth for the surface butterfly diagram of
toroidal magnetic field only. We see various magnetic field reversals
inside the Sun. Such reversals have been suggested by many experts
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Figure 7. The near-surface (r = 0.94) butterfly diagram for the current
helicity. Contours are equally spaced, solid represent positive values, broken
negative.

in solar activity whose analysis was not restricted to sunspot data
(e.g. Benevolenskaya et al. 1999, 2002). The dynamo wave at the
base of convective zone is much sharper and and localized (Fig. 3)
than that nearer the surface (Fig. 2) – the latter appears closer to the
current understanding of the solar cycle. Of course, it is at present
unclear just what is the relation between the sites of field produc-
tion by the dynamo and the manifestation of sunspots at the surface.
The current helicity distribution is more complicated at the base of
convective zone compared to that near the solar surface. This is in
general agreement with the observational information concerning
the radial distribution of solar helicity (Section 2).

The normalized local non-linear dynamo number DN = α(B)/
[ηA (B)ηB (B)] is shown in Fig. 8 at every point of the computa-
tional grid, as a function of mean magnetic field. Here, α(B) is
normalized by the local value of α(B = 0). The non-linear dynamo
number decreases with increase of the mean magnetic field. The

Figure 8. The normalized local non-linear dynamo number at all grid
points, as a function of the mean magnetic field.
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latter dependence implies the saturation of the growth of the mean
magnetic field in the non-linear mean field dynamo. Note that the
dynamo number which is based on the hydrodynamic part αv of
the α-effect increases with the mean magnetic field. This shows
the very important role of the magnetic part αm of the α-effect,
which causes the saturation of the growth of the mean magnetic
field.

Finally, we verified that for T up to 5 × 106, when the flux co-
efficients Ci, i = 1, 2, 3, are all set to zero, then the field decayed
exponentially. That is, in the absence of these fluxes, catastrophic
quenching occurs.

5.3 The helicity distribution

We need to reduce the numerical data from our modelling to a form
comparable with the observations available. The important point is
that the resolution of the helicity observations is very substantially
lower than that of the sunspot data, not to mention that of the dynamo
simulations. The following procedure is applied to reduce the reso-
lution of the numerical data, and so allow a meaningful comparison
with the observations.

We isolate a region 60◦ < θ < 120◦, i.e. a 60◦ belt centred on
the equator, because helicity data are available for this equatorial
domain only. We separate this region into a deep part, 0.64 � r �
0.8, and a shallow part with r > 0.8, and consider one hemisphere
only, say the Northern (the simulated data are strictly antisymmet-
ric with respect to the solar equator). Let D+ and D− be the vol-
umes inside each region where χ has a positive and negative sign
respectively. We calculate the values I+ = ∫

Tc

∫
D+

χ c dV dt and

I− = ∫
Tc

∫
D−

χ c dV dt , where Tc is the half length of the activity
cycle (note that I − is negative).

From our basic run, we obtain the following values of the helicity
integrals. For the ‘deep’ region (0.64 � r � 0.8), we obtain I − =
−5.4 × 10−5 and I + = 2.1 × 10−5, while for the ‘shallow’ region
0.8 � r � 1.0 we obtained I − = −2.2 × 10−4 and I + ≈ 0. The
clear difference in helicity distribution between deep and shallow
regions remains robust when the density parameter a is reduced to
0.3 (see equation 4). For the deep region (0.64 � r � 0.8), we then
obtain I + = −I − = 4.4 × 10−5 (of course, the equality is a pure
coincidence) while for 0.8 � r � 1 we obtained I − = −2.3 × 10−4

and I + ≈ 0.
We conclude that the available observational data concerning the

radial distribution of current helicity seems to be consistent with
the corresponding differences in numerical model. We consider the
observed radial dependence of the current helicity as an observa-
tional manifestation of a structure similar to that presented in the
numerical models.

Note that the choice of the latitudinal and radial belts in which the
helicity integrals are calculated does affect significantly the numbers
above. For our basic run, calculating the helicity integrals for the
whole Northern hemisphere we obtain I − = −2.7 × 10−3 and I + =
7.2 × 10−4 for 0.7 � r � 0.8, I − = −5.9 × 10−3 and I + = 3.6 ×
10−4 for 0.8 � r � 0.9 and I − = −6.1 × 10−3, I + = 3.5 × 10−4 for
0.8� r � 1.0. Obviously, these values of helicity integrals calculated
for these more arbitrarily chosen belts are less impressive than the
previous, where the belts were isolated on the basis of snapshots of
the helicity distribution. The important thing is that a link between
helicity integrals and depth is still visible here.

We stress that the available observational data, as well as the na-
ture of the dynamo model, do not allow any quantitative description
of the radial helicity distribution. The best that we can hope to do is

to isolate some link between these quantities. The important result
is that such a link appears to exist, without reference to a particular
choice of boundaries. We stress this fact and do not take exactly the
same boundaries in for shallow, middle and deep regions throughout
the whole paper.

6 D I S C U S S I O N

In this paper, we have demonstrated that the available observational
data concerning solar current helicity give some hints concerning its
radial distribution. The active regions clearly associated with the up-
per layers of solar convective zone demonstrate a significantly more
homogeneous distribution of the current helicity than the deeper
regions. We interpret this as an observational indication that the
structure of the solar activity wave deep inside the Sun is substan-
tially more complicated than near its surface. In contrast to a rather
smooth structure of the surface activity wave with the dominant pat-
tern propagating from the middle latitudes to the equator, we expect
a more complicated structure of activity waves deep inside the Sun.
In particular, the waves with ‘wrong’ polarity deep inside the Sun
are expected to be more important compared to the main wave than
nearer the surface.

We have demonstrated that the scenario of solar dynamo based
on magnetic helicity conservation arguments can be extended to
include radial dependence. This scenario leads to a steady oscillatory
solution in a substantial domain of the parametric space, of a form
that is at least consistent with our basic understanding of internal
solar structure. If we choose a more extreme parameter set, it is
natural that we will need to include more effects (say, buoyancy)
into the dynamo-saturation mechanisms.

Slightly unexpectedly, we note that the results of dynamo simula-
tions are remarkably close to the available magnetic helicity obser-
vations. The structure of dynamo waves deep inside the convective
zone is much sharper and more complicated than the smooth surface
structure. The waves of ‘wrong’ polarity of helicity are pronounced
in deeper layers and almost undetectable at the surface. We hope
that this is an indication that our theoretical understanding of the
solar dynamo has some observational support from helicity data.
Of course, we stress that the very preliminary nature both of the
topic and of our model prevents any strong conclusion, and that
more observational and theoretical efforts are required to support
our inferences. However, in any case the result obtained is perhaps
as good as could be expected at the moment.

We emphasize that the ability of the observations to support (or
reject) theoretical ideas concerning the radial properties of the so-
lar activity wave is highly non-trivial. In contrast, we can neither
support nor reject a scenario suggested by Choudhuri, Chatterjee &
Nandy (2004) who believe that the number of active regions violat-
ing the polarity law should be significantly larger at the beginning
of the cycle rather than in the later phases. Some tendency of this
kind is visible in Tables 5 and 6, but the data are insufficient to sup-
port any firm statement. Further studies of a larger sample of active
regions (cf. Bao, Ai & Zhang 2000, 2002) may help to address this
point.

Note that the helicity distribution presented in Fig. 5 could be rep-
resented as a propagation of the activity wave from one hemisphere
to the other. Suppose that a wave of negative helicity penetrates from
Northern hemisphere into the Southern hemisphere, where positive
helicity dominates. Such a penetration of an activity wave into a
‘wrong’ hemisphere was investigated for the Parker migratory dy-
namo by Galitski, Sokoloff & Kuzanyan (2005). They estimated the
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scale of penetration ‘as about a dozen degrees’ in latitude, which
seems broadly consistent with Fig. 5.

In our basic numerical model, the helicity close to the surface
does not exhibit any migration. This perhaps seems quite unex-
pected, but does not directly contradict any observational or the-
oretical knowledge. Note that the butterfly diagrams for the mean
surface poloidal magnetic field exhibit standing, rather than propa-
gating, waves (Obridko & Shelting 2003).
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A P P E N D I X A : QU E N C H I N G F U N C T I O N S

The quenching functions φv(B) and φm(B) appearing in the non-
linear α-effect are given by (see Rogachevskii & Kleeorin 2000),

φv(B) = 1

7
[4φm(B) + 3L(

√
8B)] , (A1)

φm(B) = 3

8B2

[
1 − arctan(

√
8B)√

8B

]
, (A2)

where L(y) = 1 − 2y2 + 2y4 ln (1 + y−2) .
The non-linear turbulent magnetic diffusion coefficients for the

mean poloidal and toroidal magnetic fields, ηA (B) and ηB (B), and
the non-linear drift velocities of poloidal and toroidal mean magnetic
fields, V A(B) and V B(B), are given in dimensionless form by

ηA (B) = A1(4B) + A2(4B) , (A3)

ηB (B) = A1(4B) + 3

2
[2A2(4B) − A3(4B)] , (A4)

V A(B) = V1(B)
ΛB

2
+ V2(B)

r
(er + cot θ eθ ) + Vρ(B) , (A5)

V B(B) = V3(B)

r
(er + cot θ eθ ) + Vρ(B) , (A6)

where

V1(B) = 3

2
A3(4B) − 2A2(4B) ,

V2(B) = 1

2
A2(4B) ,

V3(B) = 3

2
[A2(4B) − A3(4B)] ,

Vρ(B) = 1

2
Λρ[−5A2(4B) + 3

2
A3(4B)].
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The functions Ak (y) are

A1(y) = 6

5

[
arctan y

y

(
1 + 5

7y2

)
+ 1

14
L(y) − 5

7y2

]
,

A2(y) = −6

5

[
arctan y

y

(
1 + 15

7y2

)
− 2

7
L(y) − 15

7y2

]
,

A3(y) = − 2

y2

[
arctan y

y
(y2 + 3) − 3

]
.

See, for details, Rogachevskii & Kleeorin (2004, equations 18, 19,
22–24), which have been rewritten here in spherical geometry.

The non-linear quenching of the turbulent magnetic diffusion of
the magnetic helicity is given by

κ(B) = 1

2

[
1 + A1(4B) + 1

2
A2(4B)

]
. (A7)
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