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Abstract

A new phenomenon of turbulent thermal di�usion is discussed. This e�ect is related to the dynamics
of small inertial particles in low-Mach-number compressible turbulent ¯uid ¯ows. Turbulent thermal
di�usion is caused by the correlation between temperature and velocity ¯uctuations of the surrounding
¯uid and leads to relatively strong nondi�usive mean ¯ux of inertial particles in regions with mean
temperature gradients. It is shown that turbulent thermal di�usion under certain conditions can cause a
large-scale instability of spatial distribution of particles. Particles are concentrated in the vicinity of the
minimum (or maximum) of the mean temperature of the surrounding ¯uid depending on the ratio of
material particle density to that of the surrounding ¯uid. At large Reynolds and Peclet numbers the
turbulent thermal di�usion is much stronger than the molecular thermal di�usion. Turbulent thermal
di�usion can be important in various naturally occurring and industrial multiphase ¯ows. In particular,
this e�ect may cause formation of inhomogeneities in spatial distribution of fuel droplets in internal
combustion engines. It is conceivable to suggest that the e�ect of turbulent thermal di�usion can play
an important role in a process of soot formation in ¯ames and in atmospheric dynamics of pollutants,
e.g. smog and aerosol clouds formation. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is generally believed that turbulence promotes mixing (see for example McComb, 1990;
Stock, 1996). However, experiments show formation of long-living inhomogeneities in con-
centration distribution of small inertial particles or gaseous admixtures in turbulent ¯uid ¯ows
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(see, for example, Eaton and Fessler, 1994; Patterson et al., 1994). The origin of these
inhomogeneities is not always clear but there in¯uence on the mixing can be hardly
overestimated.
Problem of formation of aerosol clouds is of fundamental signi®cance in many areas of

environmental sciences, physics of the atmosphere and meteorology. It is well-known that
turbulence results in decay of inhomogeneities of aerosols concentration due to turbulent
di�usion, whereas the opposite process, e.g. the preferential concentration of aerosols in
atmospheric turbulent ¯uid ¯ow still remains unexplained.
The main goal of this study is to bring attention to a new recently discovered phenomenon,

i.e. the turbulent thermal di�usion (Elperin et al., 1996a). This phenomenon is related to the
dynamics of small inertial particles in turbulent ¯uid ¯ow in the presence of mean temperature
gradient. The essence of this e�ect is that under certain conditions the initial spatial
distribution of small inertial particles evolves into a highly inhomogeneous large-scale pattern
where domains with increased particles concentration border on domains depleted of particles.
Remarkably, similar phenomenon can occur in a turbulent ¯uid ¯ow of gaseous mixtures
(Elperin et al., 1997a).
In the present paper we have derived an equation for the turbulent ¯ux of particles advected

by a compressible turbulent ¯uid ¯ow with low Mach numbers. It is shown that turbulent
thermal di�usion may contribute to the formation of large-scale inhomogeneous structures in a
particles distribution. The large-scale dynamics are studied by considering the stability of the
equilibrium solution of the derived evolution equation for the mean number density of the
particles in the limit of large PeÂ clet numbers. The resulting equation is reduced to an
eigenvalue problem for a SchroÈ dinger equation with a variable mass, and a modi®ed Rayleigh±
Ritz variational method is used to estimate the lowest eigenvalue (corresponding to the growth
rate of the instability). This estimate is in good agreement with obtained numerical solution of
the SchroÈ dinger equation.
Turbulent thermal di�usion can be important in various naturally occurring and industrial

multiphase ¯ows. It is generally believed that in conventional spark-ignition engines the fuel±
air mixture is essentially homogeneous when it enters the cylinder. However, the turbulence can
result in formation of an inhomogeneous concentration distribution which will have profound
e�ects on the combustion process (Heywood, 1987; 1988; Reitz and Rutland, 1995). In fuel
injection engines, e.g. diesel engines, the fuel is injected into the cylinder in the form of small
liquid droplets. Turbulence induced inhomogeneities in the spatial distribution of the
evaporating fuel droplets have strong e�ects upon combustion, and soot, and emissions
formation in internal combustion engines and liquid (or solid) fuel combustors (Butler et al.,
1981; Heywood, 1987; Glassman, 1988).
The e�ect of turbulent thermal di�usion can be a reason for smog and aerosol clouds

formation and must be taken into account in the analysis of atmospheric dispersion of
pollutants.
Note that inertia of particles also causes intermittency in spatial distribution of small inertial

particles advected by a turbulent incompressible ¯uid ¯ow (Elperin et al., 1996b). The inertia
of particles results in divergent velocity ®eld of particles and causes self-excitation (i.e.
exponential growth) of small-scale ¯uctuations of concentration of small particles in a
turbulent ¯uid ¯ow. Under certain conditions the growth rates of the higher moments of
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particles concentration is higher than those of the lower moments (Elperin et al., 1996b), i.e.
particles spatial distribution is intermittent. The self-excitation of ¯uctuations of particles
concentration is important in turbulent ¯uid ¯ows of di�erent nature with inertial particles or
droplets (e.g. in atmospheric turbulence, combustion and in a laboratory turbulence). In
particular, this e�ect may cause formation of small-scale inhomogeneities in spatial distribution
of fuel droplets in internal combustion engines. Also this e�ect results in formation of small-
scale inhomogeneities in droplet clouds (``inch clouds'') which were discovered recently (Baker,
1992).

2. The governing equations

Consider in detail the physics of the phenomenon of turbulent thermal di�usion. Evolution
of the number density np(t, r) of small particles in a turbulent ¯ow is determined by equation:

@np
@t
� HHH � �npU� � ÿHHH � JM, �1�

where U is a random velocity ®eld of the particles which they acquire in a turbulent ¯uid
velocity ®eld, the ¯ux of particles JM is given by

JM � ÿD HHHnp � kt
HHHTf

Tf
� kp

HHHPf

Pf

� �
:

The ®rst term in the formula for the ¯ux of particles describes molecular di�usion, while the
second term accounts for the ¯ux of particles caused by the temperature gradient HHHTf

(molecular thermal di�usion for gases or thermophoresis for particles, see e.g. Reist, 1993), and
the third term determines the ¯ux of particles caused by the pressure gradient HHHPf (molecular
barodi�usion). Here D is the coe�cient of molecular di�usion, ktA np is the thermal di�usion
ratio, and Dkt is the coe�cient of thermal di�usion, kpA np is the barodi�usion ratio, and Dkp
is the coe�cient of barodi�usion, Tf and Pf are the temperature and pressure of the
surrounding ¯uid, respectively.
We consider here the case of large Reynolds and Peclet numbers and do not take into

account the e�ect of particles upon the carrying ¯uid ¯ow. The velocity of particle U depends
on the velocity of the surrounding ¯uid, and it can be determined from the equation of motion
for a particle. This equation represents a balance of particle inertia with the ¯uid drag force
produced by the motion of the particle relative to the surrounding ¯uid. Solution of the
equation of motion for small particles with rp>>r yields:

U � v�t,Y�t�� ÿ tp
@v

@t
� �v � HHH�v

� �
�O�t2p�, �2�

(Maxey, 1987; Maxey et al., 1996), where v is the velocity of the surrounding ¯uid, Y(t) is the
position of the particle, tp is the characteristic time of coupling between the particle and
surrounding ¯uid (Stokes time), rp is the material density of particles, and r is the density of
the ¯uid. For instance, for spherical particles of radius a* the Stokes time is tp=mp/(6pa*rn),
where n is the kinematic viscosity of the surrounding ¯uid, and mp is the particle mass. The
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second term in Eq. (2) describes the di�erence between the local ¯uid velocity and particle
velocity arising due to the small, but ®nite, inertia of the particle.
In this study we consider low Mach numbers compressible turbulent ¯ow HHH � v$0. The

velocity ®eld of particles is also compressible, i.e. HHH � U$0. Eq. (2) for the velocity of particles
and the Navier±Stokes equation for the ¯uid for large Reynolds numbers yield

HHH �U � HHH � vÿ tpHHH � dv

dt

� �
�O�t2p� � HHH � v� tpHHH � HHHPf

r

� �
�O�t2p�: �3�

Here we used that H � F=0, where F is the stirring force in the Navier±Stokes equation (see
Appendix A).
We study the large-scale dynamics of small inertial particles and average Eq. (1) over an

ensemble of random velocity ¯uctuations. For this purpose we use the stochastic calculus
which has been previously employed in magnetohydrodynamics (Zeldovich et al., 1988;
Kleeorin and Rogachevskii, 1994; Rogachevskii and Kleeorin, 1997) and in the problems of
passive scalar transport in incompressible (Zeldovich et al., 1988; Avellaneda and Majda, 1994)
and compressible (Elperin et al., 1995; 1996a, b, c; 1997a, b, c) turbulent ¯ows. Within the
stochastic calculus the solution of Eq. (1) is reduced to the analysis of the evolution of the
concentration ®eld np(t, r) along the Wiener path, xxx:

xxx�t, t0� � xÿ
�tÿt0
0

U�ts, xxx�t, ts�� ds� �2D�1=2w�tÿ t0�, �4�

where ts= tÿ s, and w(t) is a Wiener process. Eq. (4) describes a set of random trajectories
which pass through the point x at time t. A solution of Eq. (1) with the initial condition
np(t= t0, x)= n0(x) is given by Feynman±Kac formula

np�t, x� �MfG�t, t0�n0�xxx�t, t0��g �5�
(see Appendix B and Schuss, 1980), where

G�t, t0� � exp ÿ
�t
t0

b*�s, xxx�t, s�� ds
� �

, �6�

b*0HHH � U, and M{ � } denotes the mathematical expectation over the Wiener paths. Hereafter
we neglect small molecular thermal di�usion (see below). It can be taken into account in the
mean velocity of particles.
Using the procedure described in detail in Appendix C we arrive at the equation for the

mean ®eld N= hnpi:
@N

@t
� HHH � �NVe� ÿ D̂HHHmN� � 0, �7�

where DÃ0Dpm=Ddpm+ htupumi, Ve�=Vpÿhtbui, and b=HHH � u, and t is the momentum
relaxation time of random velocity ®eld u, which depends on the scale of turbulent motion. We
use here for simplicity the d-correlated in time random process to describe a turbulent velocity
®eld. However, the results remain valid also for the velocity ®eld with a ®nite correlation time,
if the mean number density of the particles varies slowly in comparison with the correlation
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time of the turbulent ¯ow (see e.g. Dittrich et al., 1984). Eq. (7) was derived for Pe>> 1. It is
shown that for Pe<< 1 (see Appendix D) and the arbitrary velocity ®eld the equation for the
mean ®eld coincides with Eq. (7).

3. Turbulent ¯ux of particles

Now we derive an equation for N 2. Multiplication of Eq. (7) by N and simple manipulations
yield

@N2

@t
� �HHH � S� � ÿN2�HHH � Ve�� ÿ ID,

where Sm=N 2(Ve�) mÿDmpHHHpN
2, ID=2Dmp(HHHmN)(HHHpN). The latter equation implies that if

HHH � Ve�<0, a perturbation of the equilibrium distribution of inertial particles can grow in
time, i.e. (@/@t)fN 2 d3r>0. However, the total number of particles is conserved. Therefore the
growth of N 2 when HHH � Ve�<0 is accompanied by formation of an inhomogeneous spatial
distribution of the inertial particles whereby regions with an increased concentration of
particles coexist with regions depleted from particles.
Now we calculate the velocity Ve�. Using the equations of state Pf =kTf r/mm and Eq. (3)

we obtain

htubi1ht�HHH � ~u�~ui � �tpv2T=T*�ht~uDYi,
where v2T=kT*=mm, mm is the mass of molecules of surrounding ¯uid and Tf (t, r) is the
temperature ®eld with a characteristic value T *, Y are ¯uctuations of temperature. We neglect
here the second moments 0huÄ ri, since the mean turbulent ¯ux of mass of the surrounding ¯uid
vanishes in a ®nite domain surrounded by solid boundaries. Here r and uÄ are ¯uctuations of
the density and velocity of the ¯uid. On the other hand, the mean turbulent heat ¯ux is
nonzero in the presence of an external mean temperature gradient HHHT$0 (see below). To
obtain an equation for htubi, we take into account that the ¯uctuating component of the
particle velocity u can be expressed in terms of the turbulent velocity of ¯uid uÄ : u=uÄ ÿtp(duÄ /
dtÿhduÄ /dti) [see Eq. (2)]. Therefore, the velocity Ve� is given by

Ve� � Vp ÿ ht�HHH � ~u�~ui ÿ tpv2T
T*

ht~uDYi;

where we neglect terms 0O(t2p). The latter formula shows that Ve� depends on the mean
turbulent heat ¯ux huÄ Yi that is determined by the well known equation

h~u�x�Y�x�i � ÿwTHHHT
(see e.g. McComb, 1990), where the total temperature is Tf =T+Y, T= hTfi is the mean
temperature ®eld, wT 0u0l0/3 is the coe�cient of turbulent thermal di�usivity. Note that herein
we do not consider a situation with very high gradients when gradient transport assumption is
violated. The above formula for the mean turbulent heat ¯ux is written in the r-space. The
corresponding second moment in k-space is given by
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h ~um�k�Y�ÿk�i � ÿt�k�h ~um�k� ~un�ÿk�i @T

@Rn

� �
,

where R is a large-scale variable, and a spectrum of the turbulent velocity ®eld and correlation
time t(k) can be chosen as Kolmogorov's spectrum:

h ~um ~uni � 2

3k0

h ~u2i
8pk2

� �
k

k0

� �ÿ5=3
dmn ÿ kmkn

k2

� �
, t�k� � 2t0

k

k0

� �ÿ2=3
,

where k0<k< k0Re
3=4
* (see e.g. McComb, 1990), Re *=ReF 1/2

0 , Re= l0u0/max(n, w) is the
Reynolds number, l0=kÿ1

0 is the maximum scale of turbulent motions, u0 is the characteristic
velocity in this scale, w is the coe�cient of molecular thermal conductivity, and F0(r)= huÄ 2(r)i/
u20. Multiplying the equation for h ~um(k)Y(ÿk)i by ÿk2t(k) and integrating in k-space we obtain
htuÄmDYi= a ln(Re*)HHHT, where a=2/3. Finally we arrive at the following equation for the
e�ective velocity

Ve� � Vp ÿ ht�HHH � ~u�~ui ÿ atpv2T
T*

ln�Re*�HHHT: �8�

Eq. (7) with this e�ective velocity Ve� can be rewritten in the form

@N

@t
� HHH � �NVp� � ÿHHH � �JT � JM�, �9�

where

JT � ÿDT
kT
T

HHHTÿ kP
P
HHHP� F0HHHN

� �
, �10�

kT � N�F0 � T�Z0 � sf ��, �11�

Z0 �
3a
Pe

mp

mm

� �
1

T*

� �
lnRe, �12�

where s=Z0/(2 ln Re), f=ln F0, DT=u0l0/3 is the coe�cient of turbulent di�usion, kT can be
interpreted as a turbulent thermal di�usion ratio, and DTkT is the coe�cient of turbulent
thermal di�usion, kP=F0N can be interpreted as turbulent barodi�usion ratio, and DTkP is
the coe�cient of turbulent barodi�usion. We use here an identity

tpv2T
l0u0
� 1

Pe

mp

mm

� �
;

and Pe= u0l0/D* is the Peclet number and the molecular di�usion coe�cient D* =kT*/
(6pa*rn). Note that for Re>> 1 and Pe>> 1 both turbulent di�usion coe�cients are much
larger than the corresponding molecular coe�cients (i.e. DT>>D, and DTkT>>Dkt, and
DTkP>>Dkp).
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Using Eq. (2) the particles mean velocity can be written in the form

�Vp�i � Vi ÿ tp
@Vi

@t
ÿ tp

@

@xj
huiuji � tphujbi: �13�

Taking into account Eq. (13) the turbulent ¯ux of particles J*T in isotropic turbulence is given
by

J*T � JT ÿ tp
3
HHHhu2i, �14�

where JT is determined by Eq. (10) and

kT � N F0 1� tp
t0

� �
� T�Z0 � sf �

� �
, kP � NF0 1� tp

t0

� �
:

The second term in Eq. (14) describes the e�ect of turbophoresis (see Caporaloni et al., 1975;
Reeks, 1983).
Now we will show that turbulent thermal di�usion results in large-scale pattern formation

whereby initial spatial distribution of particles in a turbulent incompressible ¯ow of ¯uid
evolves under certain conditions into large-scale inhomogeneous distribution due to excitation
of an instability. One of the most important conditions for the instability is inhomogeneous
spatial distribution of mean temperature of the surrounding ¯uid. In particular, the instability
can be excited in the vicinity of the minimum in the mean temperature distribution. This
results in particles concentrated in the vicinity of the minimum (or maximum) of the mean
temperature of the surrounding ¯uid depending on the ratio of material particle density rp to
that of the surrounding ¯uid r.
The mechanism of the instability for rp>> r is as follows. The inertia causes particles inside

the turbulent eddy to drift out to the boundary regions between eddies (the regions with
decreased velocity of the turbulent ¯uid ¯ow and maximum of pressure of the surrounding
¯uid). Thus, inertial particles are accumulated in regions with maximum pressure of the
turbulent ¯uid. Indeed, the inertia e�ect results in HHH � UAtpDP$0. On the other hand, for
large Peclet numbers HHH � UAÿdnp/dt. This means that in regions with maximum pressure of
turbulent ¯uid (i.e. where DP<0) there is accumulation of inertial particles (i.e. dnp/dt>0).
Similarly, there is an out¯ow of inertial particles from regions with minimum pressure of ¯uid.
In a homogeneous and isotropic turbulence without large-scale external gradients of
temperature a drift from regions with increased (decreased) concentration of inertial particles
by a turbulent ¯ow of ¯uid is equiprobable in all directions. Therefore, ¯uctuations of pressure
(temperature) of the surrounding ¯uid is not correlated with turbulent velocity ®eld and there
exists only turbulent di�usion ¯ux of inertial particles.
The situation is drastically changed when there is a large-scale inhomogeneity of the

temperature of the turbulent ¯ow. In this case the mean heat ¯ux huÄ Yi$0. Therefore
¯uctuations of both temperature and velocity of ¯uid are correlated. Fluctuations of
temperature cause ¯uctuations of pressure of ¯uid. The pressure ¯uctuations result in
¯uctuations of the concentration of inertial particles. Indeed, increase (decrease) of the pressure
of surrounding ¯uid is accompanied by accumulation (out¯ow) of the particles. Therefore,
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direction of mean ¯ux of particles coincides with that of heat ¯ux, i.e. huÄ npiAhuÄ YiAÿHHHT.
The mean ¯ux of the inertial particles is directed to the minimum of the mean temperature and
the inertial particles are accumulated in this region.
The additional turbulent nondi�usive ¯uxes of particles can also be estimated as follows. We

average Eq. (1) over the ensemble of the turbulent velocity ®eld and subtract the obtained
averaged equation from Eq. (1). This yields an equation for the turbulent component q of
particles number density

@q

@t
ÿDDq � ÿH � �Nu�Q�, �15�

where np=N+q, Q=uqÿhuqi. Eq. (15) is written in a frame moving with the mean
velocity Vp. The magnitude of @q/@tÿDDq+H �Q can be estimated as q/t, where t is the
turnover time of the turbulent eddies. Thus the turbulent ®eld q is of the order of q 0ÿ tN(H �
u)ÿ t(u � H)N. Now we calculate the turbulent ¯ux of particles JT= huqi:

JT0ÿNhtu�H � u�i ÿ htuujiHjN: �16�
Here H � u= H � uÄ ÿtpHHH � (duÄ /dt). Using Eq. (8) we can reduce the turbulent ¯ux of particles
(16) to Eq. (10).
Compressibility of the background ¯uid is important when the size of particles are smaller

than one micron (or for the gaseous admixture). In this case the e�ect of particles inertia is
very small and the main contribution to the e�ect of the turbulent thermal di�usion is due to
the compressibility of the background ¯uid. On the other hand, when the size of particles
larger than 5±10 microns the e�ect of particles inertia is very important and the contribution
to the e�ect of the turbulent thermal di�usion caused by particles inertia is much larger than
that due to compressibility of the background ¯uid [i.e. T(Z0+sf )<< F0, see Eq. (11)].
Certainly, the compressibility (H � v$0) of the background ¯uid cannot be ignored completely,
since otherwise we cannot satisfy the continuity equation and the equation of state
simultaneously in the presence of a nonzero mean temperature gradient.

4. Formation of large-scale inhomogeneities

Let us study the large-scale instability. Evolution of the mean ®eld N is determined by
Eq. (9). Substitution

N�t; r� � N*C0�Z�exp�g0t�exp ÿ
1

2

�
w0�Z� dZ� ik � r?

� �
�N0�r�

reduces Eq. (9) to the eigenvalue problem for the SchroÈ dinger equation

1

m0
C000 �Z� � �W0 ÿU0�Z��C0�Z� � 0, �17�

where W0= ÿ g0, A0=dA/dZ, and the potential U0 is given by
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U0 � 1

m0

w20
4
� w00

2
� k0

� �
,

and

w0 � f 0 � T 0

T
ÿ P 0

P
� 1

F0
�Z0 � sf �T 0,

k0 � k2 ÿ T 0

T

� �0
� P 0

P

� �0
� f 0P 0

P
ÿ 1

F0
�Z0 � sf �T 00 ÿ f 0T 0

T
1� sT

F0

� �
:

Here m0=exp[ÿf (Z)] the axis Z is directed along mean temperature gradient, the wave vector
k is normal to the axis Z. In derivation of Eq. (17) we take into account that for an isotropic
turbulence hum(x)un(x)i=u 2

0 exp( f )dmn/3. Equilibrium distribution of the mean number
density N0(r) is determined by equation DÃHHHmN0=Ve�N0. Eq. (17) is written in the
dimensionless form, the coordinate is measured in units LT, time t is measured in units L2

T/DT,
the wave number k is measured in units Lÿ1

T , the temperature T is measured in units of
temperature di�erence dT in the scale LT, and concentration N is measured in units N*.
Now we use quantum mechanical analogy for the analysis of the large-scale pattern

formation in the concentration ®eld N of the inertial particles. The instability can be excited
(g0>0) if there is a region of well potential where U0<0. The positive value of W0

corresponds to the turbulent di�usion, whereas a negative value of W0 results in the excitation
of the instability. Consider the case P 0/P<< T 0/T. The potential U0 can be rewritten as

U0 � 1

4m0
f 0 ÿ T 0

T

� �2

� T 0

T
ÿ sTf 0

F0

� �2

� T 0

T
� 1

F0
�Z0 � sf �T 0

� �2
"

� 4k2 � 2 f 00 ÿ 2
T 00

T
ÿ 2

F0
�Z0 � sf�T 00 ÿ sTf 0

F0

� �2
#
: �18�

The potential U0 can be negative if

2 f 00 ÿ 2
T 00

T
ÿ 2

F0
�Z0 � sf �T 00 ÿ sTf 0

F0

� �2

< 0: �19�

In order to estimate the ®rst energy level W0 we use a modi®ed variational method (e.g. a
modi®ed Rayleigh±Ritz method). The modi®cation of the regular variational method is
required, since Eq. (17) can be regarded as the SchroÈ dinger equation with a variable
mass m0(Z). Now we rewrite Eq. (17) in the form

ĤC0 �W0C0; Ĥ � U0 ÿ 1

m0

d2

dZ2
: �20�

The modi®ed variational method employs an inequality

W0 � I; I �
�
m0C*ĤC dZ, �21�
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where c is an arbitrary function that satis®es a normalization condition�
m0C*C dZ � 1: �22�

The inequality (21) can be proved if one uses the expansion

C �
X1
p� 0

apC
�p�
0 ;

whereX1
p� 0

j a2p j� 1

and f m0(C
(p)
0 )*C (k)

0 dZ= d pk. The eigenfunctions C (p)
0 satisfy the equation HÃC (p)

0 =WpC
(p)
0 .

We chose the trial function C in the form

C � A0 exp�ÿa�Zÿ Z0�2=2�, A0 � a� b0
p

� �1=4

exp
ab0Z2

0

2�a� b0�
� �

, �23�

where the unknown parameters a and Z0 can be found from the condition of minimum of the
function I(a, Z0) [see Eq. (21)]. Here we use the following spatial distributions of f (Z) and T(Z):

f �Z� � ÿ b0Z
2 exp�ÿb0Z2�, �24�

T�Z� � �T* � Z2 � aZ�exp�ÿE0Z2�, �25�
where b0<< 1 and E0<< 1. These distributions satisfy the necessary condition (19) for excitation
of the instability. We consider a case T ÿ1* << b0.
Note that the mean temperature gradient and the inhomogeneity of the turbulence can be

speci®ed independently due to the following reason. The hydrodynamic turbulence is generally
determined by equations (A4)±(A6) with two independent external sources F1 and Q1 (see
Appendix A). Only in the special case of a turbulent convection is there one independent
source Q1. In this case F1=r1g, where g is the acceleration of gravity. Only in this special case
the mean temperature gradient and the inhomogeneity of the turbulence cannot be speci®ed
independently. On the other hand, in a general case the external sources F1 and Q1 are
independent. The latter allows us to specify the mean temperature gradient and the
inhomogeneity of the turbulence independently.
Substituting (23) and (25) into Eq. (21) yields

I �ÿ Z0 �
1

2a3=2
�a2�aÿ b0�1=2 � b0�a� b0�1=2�b0 � 2a�b0Z2

0 ÿ 1���exp ÿ ab0Z2
0

aÿ b0

� �

� Z20
�aÿ b0�1=2

4�aÿ 2b0�5=2
�2�aÿ 2b0� � �2aZ0 � a�aÿ 2b0��2�exp a2b0Z2

0

�aÿ b0��aÿ 2b0�
� �

: �26�
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Here we consider the case of k<< 1. This implies long-wave perturbations in the horizontal
plane. Thus, the modi®ed Rayleigh±Ritz method allows us to estimate the growth rate of the
instability. For example, when b0<< Z0 (i.e. the inhomogeneity of turbulence is not strong), the
growth rate of the instability is given by:

g � 3

2
b0: �27�

Thus, it is shown here that the equilibrium distribution of the number density of particles is
unstable. The instability results in the formation of an inhomogeneous distribution of the
number of density particles. The exponential growth during the linear stage of the instability
can be damped by the nonlinear e�ects (e.g. hydrodynamic interaction between particles and a
turbulent ¯uid ¯ow, a change of temperature distribution in the vicinity of the temperature
inversion layer).
Characteristic size of the inhomogeneity in Z-direction when Z0ea0 is of the order of

lz0LT 1� 3a
Pe

mp

mm

� �
dT
T*

� �
lnRe*

� �ÿ1=2( )
:

Remarkably lz41 when Pe41, i.e. this e�ect exists for large, but ®nite, Peclet numbers.
The obtained results are valid in the case when the density of surrounding ¯uid is much less

than the material density of particles (r<< rp). However, the results of this study can be easily
generalized to include the case re rp using an equation of motion of particles in ¯uid ¯ow
(see e.g. McComb, 1990). This equation of motion takes into account contributions due to the
pressure gradient in the ¯uid surrounding the particle (caused by acceleration of the ¯uid) and
the virtual (``added'') mass of the particles relative to the ambient ¯uid. A solution of this
equation coincides with Eq. (2) except for the transformation tp4btp, where

b � 1� r
rp

 !
1ÿ 3r

2rp � r

 !
:

For re r p turbulent thermal di�usion ratio kT in Eq. (12) must be multiplied by b. Therefore
the additional mass ¯ux of particles is directed towards the mean temperature gradient [see
Eq. (10)] and particles are accumulated in the vicinity of the maximum of mean temperature of
surrounding ¯uid since b<0. In the opposite case when r<< rp, b 21 and particles are
accumulated in the vicinity of the mean temperature minimum.
Eq. (17) was solved numerically with turbulent kinetic energy and mean temperature pro®les

given by Eqs. (24) and (25). The extremum of turbulent kinetic energy is located at Z=0,
temperature minimum is located at Z= ÿa/2 [see Eqs. (24) and (25)], and Z=ÿ H is a
location of an impenetrable boundary for the particles. The boundary condition at Z= ÿ H is
determined by equation (JT)Z=0, which yields the condition for C0

dC0

dZ
� f 0 ÿ 1

2
w0

� �
C0 at Z � ÿH: �28�

Eq. (28) provides zero ¯ux of the particles through a horizontal boundary plane Z= ÿ H. The
second boundary condition is C0(Z=1)=0. As an example, Figs. 1 and 2 show the
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dependence of the growth rate of the instability versus b0 for k<< 1 for di�erent Z0. These
values of the parameters satisfy the necessary condition (19) for the excitation of the
instability. These numerical results are in agreement with the analytical estimates obtained by
means of the modi®ed Rayleigh±Ritz method for b0>0. Remarkably the numerical results
show that the instability is excited (e.g. g>0) even in a homogeneous turbulent ¯ow (b0=0).

5. Discussion

The e�ect of turbulent thermal di�usion may be of relevance in combustion. In particular,
this e�ect may cause formation of inhomogeneities in spatial distribution of fuel droplets in
internal combustion engines (see e.g. Heywood, 1988; Patterson et al., 1994; Reitz and
Rutland, 1995). Indeed, characteristic parameters of turbulence in a cylinder of internal
combustion engine are: maximum scale of turbulent ¯ow l0 00.5±1 cm; velocity in the scale l0:
u0 0100 cm/s; Reynolds number Re 0(0.7±7)� 103; and characteristic values of mean
temperature distribution: scale LT 013±18 cm; and dimensionless mean spatial temperature
variation dT/T* 00.3±0.5 (see e.g. Heywood, 1988; Patterson et al., 1994; Reitz and Rutland,
1995). Then the characteristic time of formation of inhomogeneities in spatial distribution of
droplets of radius a *=30 mm is 0(3±6)� 10ÿ2 s. Notably, this time is comparable with the
duration of an engine cycle. These turbulence induced inhomogeneities in the spatial
distribution of the evaporating fuel droplets have strong e�ects upon combustion, soot and
emissions formation (see e.g. Butler et al., 1981; Glassman, 1988).
It is conceivable to suggest that the e�ect of turbulent thermal di�usion can play an

important role in a process of soot formation in ¯ames and in atmospheric dynamics of
combustion pollutants, e.g. smog formation. Observations of the vertical distributions of
pollutants in the atmosphere show that maximum concentrations can occur within temperature
inversion layers (see e.g. Seinfeld, 1986; Jaenicke, 1987). Using the characteristic parameters of
the atmospheric turbulent boundary layer: maximum scale of turbulent ¯ow l0 0103±104 cm;
velocity in the scale l0: u0 030±100 cm/s; Reynolds numbers Re 0106 and of the temperature
inversion: scale LT 03� 104 cm and dimensionless mean spatial temperature variation dT/
T * 0(1±3)� 10ÿ2 (see e.g. Seinfeld, 1986; Jaenicke, 1987), we obtain that the characteristic

Fig. 1. Dependence of the growth rate of the instability versus b0 for a= ÿ2, H=8.1, Re=105, T *=300, and
Z0=15.
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time of excitation of the instability of concentration distribution of aerosols with material
density rp 02 g/cm3 and radius a*=10 mm varies in the range from 0.3 to 3 hours. This value
is in compliance with the characteristic time of growth of inhomogeneous structures in
atmosphere. It is essential that this time strongly depends on the aerosol size, i.e. 0aÿ2

* .
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Appendix A

A.1. Governing equations for small Mach numbers

The ¯uid velocity v is determined by the nondimensional Navier±Stokes equation

@v

@t
� �v � H�v � ÿMÿ2 HPf

rf
� Reÿ1�Hv� zH�div v�� � F

rf
, �A1�

where velocity, coordinate, temperature and density are measured in the units u* , l* , T* , r* ,
respectively, M= u*/cs is the Mach number, cs= (T */m m)

1/2 is the sound speed, and z=1/
3+ zb/n, zb is a bulk viscosity, Re= u*l*/n is the Reynolds number, n is the kinematic viscosity.
The stirring force F is measured in the units F *=r*u

2
*/l * and the pressure is measured in the

units P*=r*T*/mm. A solution of equation (A1) can be sought in the form of power series of
Mach number

f �
Xk�1
k� 0

M2kfk� 1; �A2�

Fig. 2. Dependence of the growth rate of the instability versus b0 for a= ÿ2, H=8.1, Re=105, T *=300, and
Z0=30.
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where functions f=(rf ; Tf ; Pf ; v). Substitution of the expansion (A2) into equation (A1),
continuity equation and equation for the temperature ®eld, and comparing the terms of the
same order in M 2k yields a set of equations

HP1 � 0, �A3�

@v1
@t
� �v1 � H�v1 � ÿ 1

r1
HP2 � Reÿ1�Hv1 � zH�div v1�� � 1

r1
F1, �A4�

@r1
@t
� H � �r1v1� � 0, �A5�

@T1

@t
� �v1 � H�T1 � ÿ�gÿ 1�T1�H � v1� � Peÿ1HT1 �Q1, �A6�

where Q is an external heat source, P1=r1T1 and P2=r2T1+r1T2, and g is the speci®c heats
ratio. Equations (A5)±(A6) coincide with those for the total ®elds rf and Tf . Note that
equation (A3) appears in the order of M ÿ2, whereas equations (A4)±(A6) appear in the order
of M 0.

Appendix B

B.1. Solution of Eq. (1)

Show that Eq. (5) is a solution of Eq. (1). We expand the function np(t, xxxDt) in equation
(C1) in the Taylor series in the vicinity of the point x:

np�t; xxxDt� ' np�t;x� � @np
@xm
�xxxDt ÿ x�m �

1

2

@2np
@xm@xs

�xxxDt ÿ x�m�xxxDt ÿ x�s � � � � : �B1�

Using the equation for the Wiener trajectory we obtain

�xxx�t2; t1� ÿ x�m � ÿ
�t2ÿt1
0

Um�ts; xxxs� ds� �2D�1=2wm�t2 ÿ t1�, �B2�

where xxx(t2, t2ÿs)0xxxs. Expanding the velocity Um(ts, xxxs) in the Taylor series in the vicinity of
the point x, and using equation (B2) we get

Um�ts, xxxs� � Um�ts, x� � @Um

@xl
ÿ
�s
0

Ul�ts, xxxs�ds� �2D�1=2wl�s�
� �

: �B3�
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Substitution of equation (B3) into (B2) yields

�xxxDt ÿ x�m � ÿ
�Dt
0

Um�ts , xxxs� ds�
�Dt
0

@Um

@xl

����
�ts , x�

ds

�s
0

Ul�ts , xxxs� ds

ÿ
�������
2D
p �Dt

0

@Um

@xl

����
�ts , x�

wl�s�ds�
�������
2D
p

wm: �B4�

Integrals in formula (B4) can be evaluated by means of the ``mean value'' theorem. The result
is given by

�xxxDt ÿ x�m ' ÿUm�t* , x�Dt�
�������
2D
p

wm �O��Dt�2�, �B5�
where t * is within the interval (t, t+Dt). Substitution of equation (B5) into (B1) yields an
expression for the ®eld np(t, xxxDt)

np�t, xxxDt� ' np�t, x� � @np
@xm
�ÿUm�t* , x�Dt�

�������
2D
p

wm� �Dwmws
@2np
@xm@xs

�O��Dt�2�: �B6�

Expanding function b *(s, xxxs) in the Taylor series in the vicinity of the point x, using equation
(B5), evaluating the integral�t�Dt

t

b*�s, xxxs� ds

by means of the ``mean value'' theorem, we calculate the Green function G(t+Dt, t) accurate
up to 0Dt. The result is given by

G�t� Dt, t� ' 1ÿ b*�t3, x�Dt, �B7�

where t3 is within the interval (t, t+Dt). Combination of equations (B6), (B7) and (C1), and
averaging over Wiener trajectories yields expression for the ®eld np(t+Dt, x). Now we
calculate the value [np(t+Dt, x)ÿ np(t, x)]/Dt for Dt4 0. This procedure yields Eq. (1).
Therefore, Eq. (5) is a solution of Eq. (1).

Appendix C

C.1. Derivation of the mean-®eld equation for large Peclet number

Now let us derive an equation for the mean ®eld N= hnpi using Eq. (1). The procedure of
derivation is outlined in the following:

1. If the total ®eld np is speci®ed at instant t, then we can determine the total ®eld np(t+Dt)
at near instant t+Dt by means of substitutions t4 t� Dt and t04 t in Eq. (5). The
result is given by
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np�t� Dt, x� �MfG�t� Dt, t�np�t, xxx�t� Dt, t��g, �C1�
were

G�t� Dt, t� � exp ÿ
�t�Dt

t

b*�s, xxxs�ds
� �

,

xxx�t� Dt, t� � xxxDt � xÿ
�Dt
0

U�ts , xxxs� ds� �2D�1=2w�Dt�,

and t s= t+Dtÿ s, and xxx�t2, t1�0xxxt2ÿt1 , i.e. xxxs=xxx(t+Dt, t s).

2. Expansion of the functions np(t, xxxDt) and the velocity Um(ts, xxxs) in the Taylor series in
the vicinity of the point x allows us to express the ®eld np(t, xxxDt) in terms of the ®eld np(t,
x). Indeed, expand function np(t, xxxDt) of equation (C1) in the Taylor series in the vicinity
of the point x:

np�t; xxxDt� ' np�t, x� � @np
@xm
�xxxDt ÿ x�m �

1

2

@2np
@xm@xs

�xxxDt ÿ x�m�xxxDt ÿ x�s � � � � : �C2�

Using the equation for the Wiener trajectory we obtain

�xxx�t2, t1� ÿ x�m � ÿ
�t2ÿt1
0

Um�ts; xxxs� ds� �2D�1=2wm�t2 ÿ t1�; �C3�

where xxx(t2, t2ÿs)0xxxs. Expanding the velocity Um(ts, xxxs) in the Taylor series in the
vicinity of the point x, and using equation (C3) yields

Um�ts , xxxs� ' Um�ts , x� ÿUl
@Um

@xl
s� �2D�1=2 @Um

@xl
wl�s� � � � � : �C4�

Substituting equation (C4) into (C3) and calculating the integrals in equation (C3)
accurate up to terms 0(t2ÿ t1)

2 yields

�xxx�t2; t1� ÿ x�m 'ÿ �t2 ÿ t1�Um � 1

2
�t2 ÿ t1�2Ul

@Um

@xl

ÿ
�������
2D
p @Um

@xl

�t2 ÿ t1

0

wl ds�
�������
2D
p

wm�t2 ÿ t1� � � � � : �C5�

The combination of equations (C5) and (C2) yields the ®eld np(t, xxxDt)

np�t, xxxDt� � np�t; x� � @np
@xm

ÿUmDt� 1

2
Ul
@Um

@xl
�Dt�2 �

�������
2D
p

wm ÿ
�������
2D
p @Um

@xl

�Dt
0

wl ds

� �
� 1

2

@2np
@xm@xs

�UmUs�Dt�2 � 2Dwmws ÿ
�������
2D
p

Dt�Umws �Uswm��: �C6�

Here we keep the terms up toeO[(Dt)2].
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3. Now we expand the function b *[s, xxx(t+Dt, s)] in the Taylor series in the vicinity of the
point x, and calculate the integral�t�Dt

t

b*�s, xxx�t� Dt, s�� ds:

The result is given by�t�Dt

t

b*�s, xxxs�ds ' b*�t, x�Dtÿ
1

2
Uq

@b*

@xq
�Dt�2 �

�������
2D
p @b*

@xq

�t�Dt

t

wq ds� � � � : �C7�

Here we also keep terms eO[(Dt)2]. Using equation (C7) we calculate the function
G(t+Dt, t) accurate up to 0(Dt)2

G�t� Dt, t� ' 1ÿ b*�t;x�Dt�
1

2
Uq

@b*

@xq
�Dt�2� 1

2
b2

*
�Dt�2 ÿ

�������
2D
p @b*

@xq

�t�Dt

t

wq ds: �C8�

4. The substitution of equation (C8) and (C6) into equation (C1) allows us to determine the
number density np(t+Dt, x). Note that the velocity U is determined by the turbulent
velocity v of surrounding ¯uid [see Eq. (2)]. In order to determine the mean ®eld N we
average the obtained equation for the number density np(t+Dt, x) over the turbulent
velocity U (i.e. N= hni). Note that U= Vp+u, where Vp= hUi is the mean velocity and
u is the random component of the velocity of particles. It is important to note that the
Wiener random process w(t) and the turbulent velocity u(t, x) are independent random
processes and, therefore, we can change the order of averaging: hMf f gi4Mfh f ig (see
Zeldovich et al., 1988). On the contrary, the random processes w(t) and u(t, xxxDt) are
correlated. We also assume that the velocities u in both intervals (0, t) and (t, t+Dt) are
independent, because we consider the random ¯ow with short time of the renewal. It is
assumed also that the velocity u in small intervals (0, Dt); (Dt, 2Dt); (2Dt, 3Dt); . . . , is
constant (time-independent) and changes every small time interval Dt. Note that the
averaging over the Wiener paths corresponds to the averaging over the molecular
processes with very small characteristic scales. On the other hand, h f i determines the
averaging over the turbulent velocity ®eld with scales that are larger than molecular ones.

5. Now we calculate

N�t� Dt, x� ÿN�t, x�
Dt

;

and pass to the limit Dt4 0. Here N= hnpi. The result is given by

@N

@t
� ��Vÿ ht�u � HHH�ui ÿ 2htbui� � HHH�N � Be�N�Dpm

@2N

@xp@xm
; �C9�

where B e�= ÿ(HHH � V)+ ht(u � HHH)bi+ htb 2i. In such a procedure the turbulent velocity
®eld u with very short time of the renewal tends to d-correlated in the time random
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process:

hum�t, x�un�t 0, y�i � 2d�tÿ t 0�htum�x�un�y�i
(see Zeldovich et al., 1988). Here we take into account that the time of the renewal Dt
may depend on scale. Using the identity

tup
@

@xp
um

� �
� @

@xp
htupumi ÿ htu�HHH � u�i

we obtain Eq. (7) for the mean ®eld N. Here we neglect a weak dependence of t on
coordinate.

Appendix D

D.1. Derivation of the mean-®eld equation for small Peclet numbers

The solution of the equation of the convective di�usion (1) in form (5) by averaging over the
Wiener trajectories is valid for arbitrary Peclet numbers. However, using a d-correlated in time
process for the turbulent velocity ®eld is justi®ed only for Pe>> 1. In this Appendix we will
show that for small Peclet numbers the equation for the mean particles number density has the
same form as in the case Pe>> 1.

The equation of the convective di�usion (1) can be rewritten in the form

@n

@t
� HHH � �nU� � DDn: �D1�

Fields U, b * and n can be presented in the form U= Vp+u, b *=B+ b, and n= N+ q,
where V= hUi, B= hb *i=HHH � Vp, N= hni, and q is a random component of the number
density of particles, the angular brackets mean statistical averaging.

Averaging of equation (D1) over the ensemble of the turbulent ¯uctuations we obtain an
equation for the mean ®eld N

@N

@t
� HHH � �VpN� ÿDDN � ÿHHH � hqui: �D2�

Subtracting equation (D2) from (D1) yields an equation for the turbulent ®eld q

@q

@t
ÿDDq � ÿ�u � HHH�Nÿ bN, �D3�

where the term Bq in the left part of equation (D3) is excluded by means of substitution
q4 q exp�ÿBt�. Equation (D3) is written in a frame moving with the mean particles
velocity Vp. Here we neglect a small quadratic in the ¯uctuating ®eld terms HHH � hquiÿHHH � (qu).
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These terms yield e�ects that are of the order of 0Pe 2, whereas linear in the ¯uctuating

®eld terms are of the order of 0Pe. A solution of equation (D3) with the initial condition
q(t=0, x)=q0(x) is given by

q�t;x� �
�
q0�z�G*�t;xÿ z�d3zÿ

�
um�t 0, z� @N

@zm
G*�tÿ t 0, xÿ z� d3zdt 0

ÿ
�
b�t 0, z�N�t y�G*�tÿ t 0, xÿ z�d3z dt 0, �D4�

where G *(t, y) is the Green function of the di�usion equation:

G*�t; y� � �2pDt�ÿ3=2 exp ÿ y2

2pDt

� �
:

Now let us calculate the second moment hquni by means of equation (D4). The result is given
by

hq�t; y�un�t; x�i �
�
hq0�z�un�t; x�iG*�t; yÿ z� d3z

ÿ
�
hun�t;x�um�t 0, z�i @N

@zm
�t 0, z�G*�tÿ t 0, yÿ z� d3zdt 0

ÿ
�
hun�t;x�b�t 0, z�iN�t 0, z�G*�tÿ t 0, yÿ z�d3z dt0: �D5�

Note that hq0uni=0, because q0 and u are not correlated. Now we introduce the fast r= xÿ z

and slow R=(x+ z)/2 variables. The derivative

@N

@zm
' @N

@Rm
�N

r

R

� �
:

It follows from equation (D5) that

hq�t; y�un�t, x�i � ÿ @N

@Rm

�
humuniG*�t, r� d3rdtÿN

�
hunbiG*�t, r�d3r dt: �D6�

Substitution of equation (D6) into equation (D2) yields an equation for the mean particles
number density

@N

@t
� HHH � �Ve�N� � @

@Rm
Dmn

@N

@Rn

� �
, �D7�

where

Dmn � Ddmn �
�
hunumiG*�t, r� d3rdt, �D8�

Ve� � Vÿ
�
hbuiG*�t, r�d3r dt: �D9�
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Comparison of equations (D7)±(D9) obtained for Pe<< 1 with Eq. (7) derived for Pe>> 1
shows that these equations coincide in form. Therefore, the described above phenomena for
Pe>> 1 can also occur for Pe<< 1. However, the instability which can occur at Pe>>1 is
suppressed for Pe<< 1 by strong di�usion.
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