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Abstract

A review of recent studies on a new mechanism of generation of large-scale magnetic field in a sheared turbulent plasma is presented.

This mechanism is associated with the shear-current effect which is related to theW� J-term in the mean electromotive force. This effect

causes the generation of the large-scale magnetic field even in a nonrotating and nonhelical homogeneous sheared turbulent convection

whereby the a effect vanishes (where W is the mean vorticity due to the large-scale shear motions and J is the mean electric current). It is

found that turbulent convection promotes the shear-current dynamo instability, i.e., the heat flux causes positive contribution to the

shear-current effect. However, there is no dynamo action due to the shear-current effect for small hydrodynamic and magnetic Reynolds

numbers even in a turbulent convection, if the spatial scaling for the turbulent correlation time is tðkÞ / k�2, where k is the small-scale

wave number. We discuss here also the nonlinear mean-field dynamo due to the shear-current effect and take into account the transport

of magnetic helicity as a dynamical nonlinearity. The magnetic helicity flux strongly affects the magnetic field dynamics in the nonlinear

stage of the dynamo action. When the magnetic helicity flux is not small, the saturated level of the mean magnetic field is of the order of

the equipartition field determined by the turbulent kinetic energy. The obtained results are important for elucidation of origin of the

large-scale magnetic fields in astrophysical and cosmic sheared turbulent plasma.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulence with a large-scale velocity shear is a universal
feature in astrophysical plasmas. It has been recently
recognized that in a sheared turbulent plasma with high
hydrodynamic and magnetic Reynolds numbers a mean-
field dynamo is possible even in a nonhelical and
nonrotating homogeneous turbulence whereby a kinetic
helicity and a effect vanish (see Rogachevskii and Kleeorin,
2003,2004,2007; Brandenburg, 2005; Brandenburg and
Subramanian, 2005c; Rogachevskii et al., 2006a, b). The
large-scale velocity shear produces anisotropy of turbu-
lence with a nonzero background mean vorticity W ¼

=�U, where U is the mean velocity. The dynamo
instability in a sheared turbulent plasma is related to the
W� J-term in the mean electromotive force, and it can be
e front matter r 2007 Elsevier Ltd. All rights reserved.
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written in the form Ed / �l20W� ð=� BÞ / l20 ðW � K
B
ÞB,

where l0 is the maximum scale of turbulent motions
(the integral turbulent scale) and KB

¼ =B2=2B2 deter-
mines the inhomogeneity of the mean original magnetic
field B. In a sheared turbulent plasma the deformations of
the original magnetic field lines are caused by the upward
and downward turbulent eddies, and the inhomogeneity of
the original mean magnetic field in the shear-current
dynamo breaks a symmetry between the influence of
upward and downward turbulent eddies on the mean
magnetic field. This creates the mean electric current J

along the mean magnetic field and produces the mean-field
dynamo due to the shear-current effect.
The goal of this communication is to review recent

studies on the new mechanism of generation of large-scale
magnetic field due to the shear-current effect in a sheared
turbulent plasma. The mean-field dynamo instability is
saturated by the nonlinear effects. There are two types of
the nonlinear effects caused by algebraic and dynamic
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nonlinearities. The effects of the mean magnetic field on the
motion of fluid and on the cross-helicity result in
quenching of the mean electromotive force which deter-
mines the algebraic nonlinearity. The dynamical nonlinear-
ity in the mean-field dynamo is caused by the evolution of
small-scale magnetic helicity, and it is of a great impor-
tance due to the conservation law for the magnetic helicity
in turbulent plasma with very large magnetic Reynolds
numbers (see, e.g., Kleeorin and Rogachevskii, 1999;
Brandenburg and Subramanian, 2005a; Rogachevskii et
al., 2006b, and references therein). The combined effect of
the dynamic and algebraic nonlinearities saturates the
growth of the mean magnetic field.

The shear-current effect has been studied by Rogachevs-
kii and Kleeorin (2003,2004,2007) for large hydrodynamic
and magnetic Reynolds numbers using two different
approaches: the spectral t approximation (the third-order
closure procedure) and the stochastic calculus (the path
integral approach in a turbulence with a finite correlation
time). A justification of the t approximation for different
situations has been performed in numerical simulations
and analytical studies by Blackman and Field (2002); Field
and Blackman (2002); Brandenburg et al. (2004); Branden-
burg and Subramanian (2005a,b); Sur et al. (2007).

2. The shear-current effect

Let us consider a nonhelical and nonrotating homo-
geneous turbulent plasma with a weak mean velocity shear,
U ¼ ð0;Sx; 0Þ and mean vorticity W ¼ ð0; 0;SÞ, where
ðSt0Þ

2
51, t0 ¼ l0=

ffiffiffiffiffiffiffiffi
hu2i

p
and u are the velocity fluctua-

tions. The mean magnetic field Bðt; zÞ ¼ ðBx;By; 0Þ in the
kinematic approximation is determined by the following
equations

qBxðt; zÞ

qt
¼ �Sl20sBB00y þ ZTB00x, ð1Þ

qByðt; zÞ

qt
¼ SBx þ ZTB00y , ð2Þ

where B00i ¼ q2Bi=qz2, ZT is the coefficient of turbulent
magnetic diffusion and the dimensionless parameter sB

determines the shear-current effect (Rogachevskii and
Kleeorin 2003, 2004). In Eqs. (1) and (2) we have taken
into account that BybBx since ðSt0Þ

2
51. The first term

/ SBx in Eq. (2) determines the stretching of the magnetic
field Bx by the shear motions, which produces the field By.
The interaction of the non-uniform magnetic field By with
the background vorticity W produces the electric current
along the field By. This implies generation the field
component Bx due to the shear-current effect, which is
determined by the first term / �sBSl20B

00
y in Eq. (1). This

effect results in the large-scale dynamo instability. The
solution of Eqs. (1) and (2) we seek for in the form
/ expðgtþ iKzzÞ, where the growth rate g of the mean
magnetic field due to the dynamo instability is given by
g ¼ Sl0

ffiffiffiffiffiffi
sB
p

Kz � ZTK2
z . The necessary condition for the

dynamo instability is sB40.
The shear-current dynamo instability depends on the
spatial scaling of the correlation time tðkÞ / k�m of the
turbulent velocity field, where k is the small-scale wave
number. In particular, the shear-current dynamo in a non-
convective turbulence occurs when the exponent mo1. For
the Kolmogorov’s type turbulent convection, the exponent
m ¼ 2=3 and sB ¼ ð4=135Þ½1þ ð6=7Þan�, where the convec-
tive contribution to the dynamo instability due to the
shear-current effect depends on the parameter
an ¼ 2gt0Fn=hu2i. Here Fn is an imposed vertical heat flux
which maintains the turbulent convection and g is the
acceleration of gravity. For a turbulent convection with a
scale-independent correlation time, the exponent m ¼ 0
and the parameter sB is given by sB ¼ ð1=15Þ½1þ ð9=7Þ
anð1þ 3 sin2 fÞ�, where f is the angle between the back-
ground mean vorticity W and g. Note that the turbulent
convection promotes the shear-current dynamo instability.
In particular, the heat flux causes positive contribution to
the shear-current effect when 2þ 3ð2� 3mÞsin2 f40 (see
Rogachevskii and Kleeorin, 2007).
However, for small hydrodynamic and magnetic Rey-

nolds numbers, the turbulent correlation time is of the
order of tðkÞ / 1=ðnk2

Þ or tðkÞ / 1=ðZk2
Þ depending on the

magnetic Prandtl number, i.e., tðkÞ / k�2, where n is
the kinematic viscosity and Z is the magnetic diffusion due
to the electrical conductivity of the plasma. In this case
m ¼ 2, and the parameter sBo0 even in a turbulent
convection. This implies that for small hydrodynamic and
magnetic Reynolds numbers there is no dynamo action due
to the shear-current effect. This result is in agreement with
the recent studies by Rädler and Stepanov (2006) and
Rüdiger and Kitchatinov (2006), where the dynamo action
have not been found in non-helical and non-rotating
sheared non-convective turbulent plasma in the framework
of the second-order correlation approximation (SOCA) or
the first-order smoothing approximation (FOSA). This
approximation is valid only for small hydrodynamic
Reynolds numbers. Even in a highly conductivity limit
(large magnetic Reynolds numbers), SOCA can be valid
only for small Strouhal numbers, while for large hydro-
dynamic Reynolds numbers (for a developed turbulence),
the Strouhal number is 1.
Note that the standard approach (i.e., SOCA) cannot

describe the situation in principle. The reason is that the
shear-current dynamo requires a finite correlation time of
turbulent velocity field, so the delta-correlated version of
SOCA fails. The application of the path integral approach
for the study of the shear-current dynamo requires a finite
correlation time of turbulent velocity field. The shear-
current dynamo is a phenomenon that results from the
interaction of the energy-containing-scale of turbulence
with large-scale shear, and the constraint is that the
hydrodynamic and magnetic Reynolds numbers should
be not small at least. Therefore, the SOCA-based
approaches do not work properly to describe the shear-
current dynamo. Probably, the hydrodynamic and mag-
netic Reynolds numbers can be of the order of unity and
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there is no need for a developed inertial range in order to
maintain the shear-current dynamo.
3. Nonlinear effects

In order to find the magnitude of the magnetic field,
the nonlinear effects must be taken into account. The
nonlinear shear-current dynamo have been studied by
Rogachevskii and Kleeorin (2004); Rogachevskii et al.
(2006a,b). The mean magnetic field is determined by the
following nonlinear equations

qBxðt; zÞ

qt
¼ �Sl20½sBðBÞB

0
y�
0 � ½amðBÞBy�

0 þ ZTB00x, ð3Þ

qByðt; zÞ

qt
¼ SBx þ ZTB00y , ð4Þ

qwcðt; zÞ
qt

� kTw00c þ
wc
tw
¼ �

1

9prZT
E � B, ð5Þ

where B0i ¼ qBi=qz, E ¼ amBþ Sl20sBðBÞB
0
yey � ZTð=� BÞ

is the mean electromotive force, am ¼ wcðt; zÞFN ðBÞ is the
magnetic a effect, FN ðBÞ is the quenching function of the
magnetic a effect and r is the fluid density. The function
wcðBÞ is related to the small-scale current helicity
hb � ð=� bÞi, where b are the magnetic fluctuations. For a
weakly inhomogeneous turbulent plasma, the function wc is
proportional to the small-scale magnetic helicity. In Eq. (5)
we use the simplest form of the magnetic helicity flux,
/ �kT=wc, where kT is the coefficient of the turbulent
diffusion of the magnetic helicity, tw ¼ t0 Rm is the
characteristic relaxation time of the small-scale magnetic
helicity and Rm is the magnetic Reynolds number. Eqs. (3)
and (4) follow from the mean-field induction equation,
while Eq. (5) is derived using arguments based on the
magnetic helicity conservation law (see, e.g., Kleeorin and
Rogachevskii, 1999; Brandenburg and Subramanian,
2005a; Rogachevskii et al., 2006b, and references therein).
For large magnetic Reynolds numbers the relaxation term
wc=tw in Eq. (5) can be neglected. For moderate values of
the magnetic Reynolds numbers this term has been taken
into account by Brandenburg and Subramanian (2005c);
Rogachevskii et al. (2006b). The quenching function of the
magnetic a effect FNðBÞ is given by FNðBÞ ¼ ð3=8B2Þ

½1� arctanð
ffiffiffi
8
p

BÞ=
ffiffiffi
8
p

B�, where the mean magnetic field B

is measured in units of the equipartition field Beq

determined by the turbulent kinetic energy, FN ðBÞ ¼ 1�
ð24=5ÞB2 for B51=4 and FNðBÞ ¼ 3=ð8B2Þ for Bb1=4. The
nonlinear function sBðBÞ which is normalized by
sBðB ¼ 0Þ, varies from 1 for B51=4 to �11=4 for Bb1=4
(see Rogachevskii and Kleeorin, 2004).

Let us consider the simple boundary conditions for a
layer of the thickness 2L in the z-direction: Bðt; jzj ¼ LÞ ¼ 0
and wcðt; jzj ¼ LÞ ¼ 0. We introduce the following non-
dimensional parameters: D ¼ ðl0 Sn=LÞ2sBðB ¼ 0Þ is the
dynamo number and the parameter Sn ¼ SL2=ZT is the
dimensionless shear number. In the kinematic dynamo,
the mean magnetic field is generated when the dynamo
number D4Dcr ¼ p2=4 for the symmetric mode (relative to
the middle plane z ¼ 0) and when the dynamo number
D4Dcr ¼ p2 for the antisymmetric mode. Numerical
solutions of nonlinear equations (3)–(5) have been obtained
by Rogachevskii et al. (2006b). The saturated level of the
mean magnetic field depends strongly on the value of the
turbulent diffusivity of the magnetic helicity kT. The mean
magnetic field varies from very small value for kT ¼ 0:1ZT
to the super-equipartition field for kT ¼ ZT. This is an
indication of very important role of the transport of the
magnetic helicity. The generation of the mean magnetic
field causes negative magnetic a effect, which reduces the
growth rate of large-scale magnetic field. The reason is that
the first and the second terms in the right hand side of
Eq. (3) have opposite signs. The first term in Eq. (3)
describes the shear-current effect, while the second-term in
Eq. (3) determines the magnetic a effect. If the magnetic
helicity does not effectively transported out from the
generation region, the mean magnetic field is saturated
even at small values of the magnetic field. Increase of the
magnetic helicity flux by increasing of the turbulent
diffusivity kT of magnetic helicity, results in increase of
the saturated level of the mean magnetic field above the
equipartition field. The magnitude of the saturated field
increases also by the increase of the dynamo numbers D

within the range DcroDo2Dcr, and it decreases with the
increase of the dynamo number for D42Dcr. This is a new
feature in the nonlinear mean-field dynamo. For example,
in the nonlinear aO dynamo the saturated level of the mean
magnetic field usually increases with the increase the
dynamo numbers.
The generation of the large-scale magnetic field in a

nonhelical sheared turbulent plasma has been recently
investigated by Brandenburg (2005) using direct numerical
simulations (DNS). In particular, in this DNS the non-
convective turbulence is driven by a forcing that consists of
eigenfunctions of the curl operator with the wavenumbers
4:5okfo5:5 and of large-scale component with wavenum-
ber k1 ¼ 1. The forcing produces the mean flow U ¼

U0 cosðk1xÞ cos ðk1zÞ. The numerical resolution in these
simulations is 128� 512� 128 meshpoints, and the para-
meters used in these simulations are as following: the
magnetic Reynolds number Rm ¼ urms=ðZkf Þ ¼ 80, the
magnetic Prandtl number Prm ¼ n=Z ¼ 1 and U0=urms ¼

5. This DNS clearly demonstrate the existence of the large-
scale dynamo in the absence of mean kinetic helicity and
alpha effect. The growth rate of the mean magnetic field is
about gt0 � 2� 10�2. This allows us to estimate the
parameter sB characterizing the shear-current effect,
sB � 3:3� 10�2. On the other hand, our theory predicts
sB ¼ ð3� 6Þ � 10�2 depending on the parameter m. Note
that in DNS by Brandenburg (2005) the shear is not small
(i.e., the parameter St0�1), which explains some difference
between the theoretical predictions and numerical simula-
tions. The saturated level of the mean magnetic field in
these numerical simulations is of the order of the
equipartition field which is in a good agreement with the
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numerical solutions of the nonlinear dynamo equations
(3)–(5) discussed here.

In summary, we show that in a sheared nonhelical
homogeneous turbulent plasma whereby the kinetic a effect
vanishes, the large-scale magnetic field can grow due to the
shear-current effect from a very small seeding magnetic
field. The dynamo instability is saturated by the nonlinear
effects, and the dynamical nonlinearity due to the evolution
of small-scale magnetic helicity, plays a crucial role in the
nonlinear saturation of the large-scale magnetic field. Note
that a sheared turbulence is a universal feature in
astrophysical plasmas, and the obtained results can be
important for elucidation of origin of the large-scale
magnetic fields generated in astrophysical sheared turbu-
lent plasmas, e.g., in merging protogalactic clouds or in
merging protostellar clouds (Rogachevskii et al., 2006a).
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