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We derive equations for the mean entropy and the mean internal energy in low-
Mach-number temperature stratified turbulence (i.e. for turbulent convection or stably
stratified turbulence), and show that turbulent flux of entropy is given by Fs = ρ us,
where ρ is the mean fluid density, s is fluctuation of entropy and overbars denote
averaging over an ensemble of turbulent velocity fields, u. We demonstrate that the
turbulent flux of entropy is different from the turbulent convective flux, Fc = T ρ us,
of the fluid internal energy, where T is the mean fluid temperature. This turbulent
convective flux is well-known in the astrophysical and geophysical literature, and it
cannot be used as a turbulent flux in the equation for the mean entropy. This result
is exact for low-Mach-number temperature stratified turbulence and is independent of
the model used. We also derive equations for the velocity–entropy correlation, us, in
the limits of small and large Péclet numbers, using the quasi-linear approach and the
spectral τ approximation, respectively. This study is important in view of different
applications to astrophysical and geophysical temperature stratified turbulence.

1. Introduction
Temperature stratified turbulence (e.g. turbulent convection or stably stratified

turbulence) plays a crucial role in astrophysics (Shakura, Sunyaev & Zilitinkevich
1978; Peebles 1980; Zeldovich, Ruzmaikin & Sokolov 1983; Ruzmaikin, Sokolov &
Shukurov 1988; Zeldovich, Ruzmaikin & Sokoloff 1990; Clarke & Carswell 2007)
and geophysics (Monin & Yaglom 1975; Zilitinkevich 1991; Zilitinkevich et al. 2008,
2013; Canuto 2009). The large-scale properties of temperature stratified turbulence are
determined in the framework of the mean-field approach in which all quantities are
decomposed into the mean and fluctuating parts, where the fluctuating parts have zero
mean values and overbars denote averaging over an ensemble of turbulent velocity
fields.

In the astrophysical and geophysical literature on low-Mach-number temperature
stratified turbulence two different formulae for the turbulent flux of entropy are
used. The first formula coincides with the turbulent convective flux of internal energy,
Fc=T ρ us, so that the equation for the mean entropy is (Kitchatinov & Mazur 2000;

† Email address for correspondence: gary@bgu.ac.il

mailto:gary@bgu.ac.il


2 I. Rogachevskii and N. Kleeorin

Brun, Miesch & Toomre 2004; Miesch et al. 2008; Jones & Kuzanyan 2009; Jones,
Kuzanyan & Mitchell 2009; Käpylä, Mantere & Brandenburg 2012)

ρ

(
∂S
∂t
+ (U · ∇)S

)
+ 1

T
∇ · (T ρ us)= 1

T
[∇ · (K∇T)+ J], (1.1)

where ρ, T , S and U are the mean fluid density, temperature, specific entropy and
mean velocity, respectively; u and s are the fluctuations of fluid velocity and entropy,
respectively; J is the mean source and/or sink of the entropy (that also includes the
viscous heating) and K is the coefficient of molecular heat conductivity. The last term
on the left-hand side of (1.1) corresponds to the turbulent flux of entropy.

The other form of the turbulent flux of entropy is Fs = ρ us, and the equation for
the mean entropy is (Braginsky & Roberts 1995; Glatzmaier & Roberts 1996a,b)

ρ

(
∂S
∂t
+ (U · ∇)S

)
+∇ · (ρ us)= 1

T
[∇ · (K∇T)+ J]. (1.2)

Equations (1.1) and (1.2) are essentially different. In particular, the last term on the
left-hand sides of (1.1) and (1.2) are different.

The goal of the present paper is to derive equations for the mean entropy and the
mean internal energy which yield formulae for the turbulent flux of entropy and the
turbulent flux of internal energy, and to clarify which equation for the mean entropy
((1.1) or (1.2)) used in temperature stratified turbulence, is correct. When the fluid
temperature profile is not uniform, the above question is crucial.

2. Turbulent convective flux of mean internal energy and turbulent flux of mean
entropy
In this section we will derive equations for the mean entropy and the mean internal

energy. We consider low-Mach-number temperature stratified fluid flows.

2.1. Governing equations
The budget equation for the instantaneous internal energy density E= cvT is (Landau
& Lifshitz 1959)

∂(ρE)
∂t
+∇ · (ρUW −UP−K∇T)=Q, (2.1)

where U is the instantaneous velocity determined by the Navier–Stokes equation
for fluid motion, ρ, T and P are the instantaneous density, temperature and
pressure, respectively, which satisfy the equation of state for a perfect gas, K is
the coefficient of molecular heat conductivity, W = cpT = cvT + P/ρ = E + P/ρ
is the instantaneous enthalpy, where cv and cp are the specific heats at constant
volume and pressure, and Q = −P∇ · U + σ̂ij(U)∇jUi, where σ̂ (U) = 2νρŜ(U),
Ŝ(U) = Sij = (Ui,j + Uj,i)/2 − (δij∇ · U)/3, ν is the kinematic viscosity, and δij is
the Kronecker tensor. The instantaneous density ρ is determined by the continuity
equation:

∂ρ

∂t
+∇ · (ρU)= 0. (2.2)
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The budget equation for the instantaneous kinetic energy density ρU2/2 is (Landau &
Lifshitz 1959)

∂

∂t

(
1
2
ρU2

)
+∇ ·

[
U
(

1
2
ρU2 + P

)
−Uσ̂ (U)

]
=−Q. (2.3)

The sum of (2.1) and (2.3) yields the conservation law for the instantaneous total
(kinetic plus internal) energy densities (ρU2/2+ ρ E) (Landau & Lifshitz 1959):

∂

∂t

(
1
2
ρU2 + ρ E

)
+∇ ·

[
U
(

1
2
ρU2 + ρW

)
−Uσ̂ (U)−K∇T

]
= 0. (2.4)

2.2. Turbulent convective flux and equation for mean internal energy
Averaging (2.1) over the ensemble we obtain the budget equation for the mean internal
energy density E= cvT:

∂(ρ E)
∂t
+∇ · (ρU E+ ρ uw− up−K∇T)=Q, (2.5)

where u is the velocity fluctuations, w= T s+ p/ρ are the enthalpy fluctuations, s and
p are the entropy and pressure fluctuations, respectively, and Q=−P∇ ·U − p∇ · u+
σ̂ij(U)∇jUi + σ̂ij(u)∇jui. In the derivation of (2.5) we used the identity W = E+ P/ρ,
and since we consider a low-Mach-number turbulent flow, we took into account that
|uρ|/|ρ| � |us|/|S| (Chassaing et al. 2002). The turbulent flux of enthalpy is

uw= T us+ up
ρ
. (2.6)

Since W = E + P/ρ we obtain that ρU E = U (ρW − P). Substituting the latter
equation and (2.6) into (2.5), we obtain

∂ρ E
∂t
+∇ · (ρU E+ T ρ us−K∇T)=Q. (2.7)

The mean fluid density ρ is determined by the continuity equation:

∂ρ

∂t
+∇ · (ρU)= 0. (2.8)

Equations (2.7) and (2.8) yield the following equation for the evolution of the mean
internal energy:

ρ

(
∂E
∂t
+ (U · ∇)E

)
+∇ · (T ρ us−K∇T)=Q, (2.9)

where the turbulent convective flux of the mean internal energy is

Fc = T ρ us. (2.10)
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2.3. Equation for the sum of mean and turbulent kinetic energies and conservation
law for total mean energy

Averaging (2.3) for the instantaneous kinetic energy density ρU2/2 we obtain an
equation for the sum of the mean and turbulent kinetic energies ρU2/2+ ρ u2/2:

∂

∂t

(
1
2
ρU2 + 1

2
ρ u2

)
+∇ ·

[
U
(

1
2
ρU2 + P

)
−Uσ̂ (U)

+ u
(

1
2
ρu2 + p

)
− uσ̂ (u)

]
=−Q. (2.11)

The sum of (2.7) and (2.11) yields the conservation law for the total mean energy
Etot = ρU2

/2+ ρ u2/2+ ρ E:

∂

∂t

(
1
2
ρU2 + 1

2
ρ u2 + ρ E

)
+∇ ·

[
U
(

1
2
ρU2 + P+ ρ E

)
−Uσ̂ (U)

− uσ̂ (u)+ u
(

1
2
ρu2 + p

)
+ T ρ us−K∇T

]
= 0. (2.12)

This equation contains the turbulent convective flux Fc = T ρ us. The conservation
law (2.12) for the total mean energy Etot can be rewritten in terms of the mean, U W,
and turbulent, uw, fluxes of enthalpy (see (2.6)):

∂

∂t

(
1
2
ρU2 + 1

2
ρ u2 + ρ E

)
+∇ ·

[
U
(

1
2
ρU2 + ρW

)
−Uσ̂ (U)

− uσ̂ (u)+ u
(

1
2
ρu2

)
+ ρ uw−K∇T

]
= 0. (2.13)

2.4. Equation for mean entropy
The evolution equation for the instantaneous entropy S = cv ln(Pρ−γ ) is (Landau &
Lifshitz 1959) (

∂

∂t
+U · ∇

)
S= 1

ρT
[∇ · (K∇T)+ J], (2.14)

where γ = cp/cv is the ratio of specific heats and J is a source and/or sink of entropy
(that also includes the viscous heating). Multiplying the equation for the entropy (2.14)
by the fluid density ρ, and the continuity equation (2.2) by the fluid entropy S, and
add them, we obtain the following equation:

∂(ρ S)
∂t
+∇ · (ρUS)= 1

T
[∇ · (K∇T)+ J]. (2.15)

The second term on the left-hand sides of (2.14) and (2.15), which contributes to the
turbulent diffusion of the mean entropy, does not contain the temperature field. This
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is a reason why the turbulent flux of the mean entropy for stratified turbulence cannot
contain the mean temperature.

Averaging (2.15) over the ensemble we obtain the equation for the mean entropy, S:

∂(ρ S)
∂t
+∇ · (ρU S+ ρ us)= 1

T
[∇ · (K∇T)+ J]. (2.16)

In the derivation of (2.16) we have taken into account that, for a low-Mach-number
turbulent flow, |ρ s| � |ρ| |S|, |ρ s|/|ρ| � |us|/urms and |uρ|/|ρ| � |us|/|S| (Chassaing
et al. 2002). To get the simplest form of the molecular diffusion term and the source
term on the right-hand side of (2.16) we assumed that: (a) the temperature fluctuations,
θ , are much smaller than the mean fluid temperature, T , i.e. |θ | � T; (b) in the
framework of the mean-field theory there is a separation of scales, `0 � LT , where
LT is the characteristic scale of the mean temperature variation and `0 is the integral
scale of turbulence (the random velocity field); (c) the coefficient of molecular heat
conductivity K is independent of the temperature fluctuations and (d) fluctuations of
the source or sink of the entropy, J′, are independent of the temperature fluctuations.
Equations (2.8) and (2.16) yield the following equation for the evolution of the mean
entropy:

ρ

(
∂S
∂t
+ (U · ∇)S

)
+∇ · (ρ us)= 1

T
[∇ · (K∇T)+ J], (2.17)

which coincides with (1.2), and the turbulent flux of the mean entropy for stratified
turbulence with non-uniform profiles of the mean fluid temperature and density is

Fs = ρ us. (2.18)

Other forms of the turbulent flux of entropy (see (1.1)) used in the astrophysical and
geophysical literature are incorrect. This is an exact statement for low-Mach-number
temperature stratified turbulence and is independent of the model.

3. The velocity–entropy correlation
Now let us determine the velocity–entropy correlation, us. For simplicity we

consider turbulent flows with a zero mean velocity, U = 0. Subtracting (2.16) from
(2.15) we obtain the equation for the entropy fluctuations:

∂s
∂t
+N − χ∇2s= I, (3.1)

where N = (ρ)−1∇ · [ρ(us− us)] is the nonlinear term, χ = K/cpρ is the molecular
diffusion coefficient of entropy and I = −(ρ)−1∇ · (ρS u) = −(u · ∇)S is the source
term. In the derivation of (3.1) we took into account the anelastic approximation,
[∇ · (ρ u) = 0], we assumed that fluctuations of the source or sink of the entropy,
J′, are very small, and we also assumed that the molecular diffusion term can be
simplified as (ρT)−1∇ · [(K/cp)∇(Ts)] ∼ χ∇2s. In the latter estimate we assumed
that: (i) the temperature fluctuations are much smaller than the mean fluid temperature;
(ii) `0� LT ; (iii) the coefficient of molecular heat conductivity is independent of the
coordinates; (iv) for low Mach numbers the entropy fluctuations are given by

s= cp

(
θ

T
+ (1− γ )p

c2
sρ

)
≈ cp

θ

T
, (3.2)



6 I. Rogachevskii and N. Kleeorin

where cs = (γP/ρ)1/2 is the sound speed. Equation (3.2) follows from the equation
of state for a perfect gas: P = (cp − cv)ρT and the definition of entropy. Let us
derive the equation for the velocity–entropy correlation us in two limiting cases for
small and large Péclet number, where Pe= u0`0/χ is the Péclet number and u0 is the
characteristic turbulent velocity in the integral scale of turbulence, `0.

3.1. Small Péclet numbers
In order to study entropy fluctuations for small Péclet numbers we use a quasi-linear
approach (Moffatt 1978; Krause & Raedler 1980), that for a given velocity field is
valid only for small Péclet numbers (Pe� 1). In the framework of this approximation
we neglect the nonlinear term and keep the molecular diffusion term in (3.1). We
rewrite (3.1) in Fourier space and solve this equation. The solution is

s(ω, k)=Gχ(ω, k)I(ω, k), (3.3)

where Gχ(ω, k)= (χk2+ iω)−1, ω is the frequency and k is the wave vector. We apply
a standard two-scale approach, whereby the non-instantaneous two-point second-order
correlation function is written as follows:

ui(t1, x) s(t2, y) =
∫

ui(ω1, k1)s(ω2, k2)

× exp[i(k1 · x+ k2 · y)+ i(ω1t1 +ω2t2)] dω1 dω2 dk1 dk2

=
∫

Fi(ω, k) exp[ik · r + iω τ̃ ] dω dk, (3.4)

where we use large scale variables: R = (x + y)/2, K = k1 + k2, t = (t1 + t2)/2,
Ω = ω1 + ω2, and small scale variables: r = x − y, k = (k1 − k2)/2, τ̃ = t1 − t2,
ω= (ω1 −ω2)/2, and

Fi(ω, k)=
∫

ui(ω1, k1) s(ω2, k2) exp[iΩt+ iK · R] dΩ dK . (3.5)

Here ω1 = ω + Ω/2, ω2 = −ω + Ω/2, k1 = k + K/2, and k2 = −k + K/2 (see
e.g. Roberts & Soward 1975). We assume here that there is a separation of scales,
i.e. the maximum scale of random motions `0 is much smaller than the characteristic
scales of inhomogeneities of the mean entropy and fluid density. Equations (3.3)–(3.5)
yield the velocity–entropy correlation us:

uis=
∫

ui(ω, k)I(−ω,−k)G∗χ dω dk=−(∇jS)
∫

ui(ω, k)uj(−ω,−k)G∗χ dω dk. (3.6)

We use the simple model for the second moments, ui(ω, k)uj(−ω,−k), of a random
velocity field in Fourier space for inhomogeneous, isotropic and incompressible flow:

ui(ω, k)uj(−ω,−k)= Ẽ(k)Φ(ω)
8πk2

[
δij − kikj

k2
+ i

2k2
(ki∇j − kj∇i)

]
u2. (3.7)

This model is obtained using symmetry arguments (see e.g. Batchelor 1971). Here δij

is the Kronecker tensor, the energy spectrum function is Ẽ(k)=CEk−1
0 (q− 1) (k/k0)

−q

for the range of wavenumbers k0 < k < kd, the wavenumber k0 = 1/`0, the length `0
is the maximum scale of random motions, the exponent 1< q< 3, and the coefficient
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CE = [1 − (k0/kd)
q−1]−1. We use the frequency function Φ(ω) in the form of the

Lorentz profile: Φ(ω) = [πτc (ω
2 + τ−2

c )]−1, where τc is the correlation time of a
random velocity field. This model for the frequency function corresponds to the
following non-instantaneous correlation function: ui(t)uj(t+ τ)∝ exp(−τ/τc).

We use (3.6) and (3.7), and after integration in ω-space and in k-space in (3.6) we
obtain the formula for the velocity–entropy correlation ui s:

ui s=−χT∇iS, (3.8)

χT =Cχu0`0 Pe, Cχ = q− 1
3(q+ 1)

[
1− (k0/kd)

q+1

1− (k0/kd)q−1

]
, (3.9a,b)

where χT is the coefficient of turbulent diffusion of the mean entropy and u0 =
√

u2

is the characteristic velocity in the maximum scale of random motions. Here we
used that I0 ≡

∫
Φ(ω)Gχ(ω, k) dω = τc/(1 + τcηk2), and for small Péclet numbers

I0 ≈ (ηk2)−1. The coefficient Cχ = 1/3 for a narrow range of the random velocity
field in the wavenumbers, kd − k0� kd, and Cχ = (q− 1)/3(q+ 1) for a wide range
in the wavenumbers, kd� k0. Contributions (which are proportional to ∇ in (3.7)) to
the velocity–entropy correlation ui s, after the integration over the angles in k-space,
vanish. However, the coefficient of turbulent diffusion χT depends on the coordinates,
due to the inhomogeneous turbulence. Equations (3.8) and (3.9a,b) are in agreement
with those obtained by means of dimensional arguments (Batchelor, Howells &
Townsend 1959) and by the Lagrangian-history direct-interaction approximation
(Kraichnan 1968).

3.2. Large Péclet numbers
In this subsection we derive a formula for the velocity–entropy correlation us using
the spectral τ approach that is valid for large Péclet and Reynolds numbers (Pe� 1).
Using (3.1) written in Fourier space we derive an equation for the instantaneous two-
point second-order correlation functions Fi(t, k)= ui(t, k) s(t,−k):

dFi

dt
= ui(t, k) I(t,−k)+ M̂F(III)

i (k), (3.10)

where M̂F(III)
i (k)=−[ui N + (∂ui/∂t) s− χui ∇2s]k are the third-order moment terms

appearing due to the nonlinear terms which also include the molecular diffusion term.
The equation for the second moment includes the first-order spatial differential

operators applied to the third-order moments. A problem arises regarding how to
close the system, i.e. how to express the third-order terms M̂F(III) through the lower
moments F(II) (Orszag 1970; Monin & Yaglom 1975; McComb 1990). We use the
spectral τ approximation which postulates that the deviations of the third-moment
terms, M̂F(III)(k), from the contributions to these terms by the background turbulence,
M̂F(III,0)(k), can be expressed through similar deviations of the second moments,
F(II)(k)− F(II,0)(k) (Orszag 1970; Pouquet, Frisch & Leorat 1976):

M̂F(III)(k)− M̂F(III,0)(k)=− 1
τr(k)
[F(II)(k)− F(II,0)(k)], (3.11)

where τr(k) is the scale-dependent relaxation time, which can be identified with
the correlation time τ(k) of the turbulent velocity field for large Reynolds and
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Péclet numbers. The functions with the superscript (0) correspond to the background
turbulence with a zero gradient of the mean entropy. Validation of the τ approximation
for different situations has been performed in numerous numerical simulations and
analytical studies (see e.g. the review by Brandenburg & Subramanian 2005; and also
discussions by Rogachevskii & Kleeorin 2007, Rogachevskii et al. 2011).

Note that the contributions of the terms with the superscript (0) vanish because
when the gradient of the mean entropy is zero, the turbulent heat flux and the entropy
fluctuations vanish. Consequently, (3.11) for M̂F(III)

i (k) is reduced to M̂F(III)
i (k) =

−Fi(k)/τ(k). We also assume that the characteristic time of variation of the second
moment Fi(k) is substantially larger than the correlation time τ(k) for all turbulence
scales. Therefore, in a steady state (3.10) yields the following formula for the velocity–
entropy correlation:

Fi =
∫
τ(k)〈ui(t, k)I(t,−k)〉 dk=−(∇jS)

∫
τ(k)〈ui(k)uj(−k)〉 dk. (3.12)

We use the following simple model for the second moments, ui(k)uj(−k), of
a turbulent velocity field in Fourier space for inhomogeneous, isotropic and
incompressible flow for large Reynolds numbers:

ui(k)uj(−k)= Ẽ(k)
8πk2

[
δij − kikj

k2
+ i

2k2
(ki∇j − kj∇i)

]
u2. (3.13)

This model is obtained using symmetry arguments (see e.g. Batchelor 1971). After
integration in k-space of (3.12) we arrive at an equation for the velocity–entropy
correlation, 〈uis〉:

〈uis〉 =−χT∇iS, χT = u0`0/3, (3.14)

where u0=
√

u2 is the characteristic turbulent velocity. In the derivation of (3.14) we
used the following expression for the turbulent correlation time: τ(k) = 2τ0(k/k0)

1−q,
where τ0 = `0/u0 is the characteristic turbulent time. Contributions (which are
proportional to ∇ in (3.13)) to the velocity–entropy correlation uis, after integration
over the angles in k-space, vanish. However, the coefficient of turbulent diffusion
χT depends on the coordinates, due to the inhomogeneous turbulence. Therefore, the
formulae for the velocity–entropy correlation, 〈uis〉, are similar for small and large
Péclet numbers, while the coefficients of turbulent diffusion of the mean entropy
are different in these two limiting cases. Equation (3.14) is in agreement with that
derived by means of the path integral approach (Elperin, Kleeorin & Rogachevskii
1995), by dimensional arguments and by the renormalization procedure used for large
Péclet numbers (Elperin, Kleeorin & Rogachevskii 1996).

4. Conclusions
In the present study we have demonstrated that for a low-Mach-number compressible

fluid flow the turbulent flux of entropy, Fs = ρ us = −ρχT∇S, is different from the
turbulent convective flux of the mean internal energy, Fc = Tρ us = −TρχT∇S. As
follows from the analysis performed in § 3, the coefficient of turbulent diffusion
of entropy χT depends on the Péclet number. For small Péclet numbers, applying
the quasi-linear approach for an isotropic and inhomogeneous background random
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velocity field we obtain the following coefficient of turbulent diffusion of the mean
entropy: χT = CχPeu0`0, where the constant Cχ depends on the energy spectrum
of the random velocity field. For large Péclet and Reynolds numbers, applying the
spectral τ approximation we get the following coefficient of turbulent diffusion of
the mean entropy: χT = u0`0/3.
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