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Constant-density electrically conducting fluid is confined to a rapidly rotating spher-
ical shell and is permeated by an axisymmetric potential magnetic field with dipole
parity; the regions outside the shell are rigid insulators. Slow steady axisymmetric
motion is driven by rotating the inner sphere at a slightly slower rate. Linear solutions
of the governing magnetohydrodynamic equations are derived in the small Ekman
number E-limit for values of the Elsasser number Λ less than order unity. Attention
is restricted to the mainstream outside the Ekman–Hartmann layers adjacent to the
inner and outer boundaries.

When Λ � E1/2, MHD effects only lead to small perturbations of the well-known
Proudman–Stewartson solution. Motion is geostrophic everywhere except in the E1/3

shear layer containing the tangent cylinder to the inner sphere; that is embedded
in thicker E2/7 (interior), E1/4 (exterior) viscous layers in which quasi-geostrophic
adjustments are made. When E1/2 � Λ � E1/3, those quasi-geostrophic layers become
thinner (E/Λ)1/2 Hartmann layers (inside only when Λ > O(E3/7)), across which the
geostrophic shear is suppressed with increasing Λ; they blend with the E1/3 Stewartson
layer at Λ = O(E1/3). When E1/3 � Λ � 1, magnetogeostrophic adjustments are
made in a thicker inviscid Λ-layer. Viscous effects are confined to the shrinking
(blended) Hartmann–Stewartson layer; it consists of a column (stump) aligned to the
tangent cylinder, attached to the equator, height O((E/Λ3)1/8) and width O((E3/Λ)1/8),
supporting strong zonal winds.

With increasing Λ the main adjustment to the geostrophic flow occurs at Λ =
O(E1/2). When E1/2 � Λ � 1, the mainstream analogue to the non-magnetic Proudman
solution is a state of rigid rotation, except for large quasi-geostrophic shears in
(magnetic–Proudman) layers adjacent to but inside both the tangent cylinder and the
equatorial ring of the outer sphere of widths (E1/2/Λ)4 and (E1/2/Λ)4/7 respectively;
the former is swallowed up by the Hartmann layer when Λ > O(E3/7).
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1. Introduction
1.1. Historical perspective

The study of almost rigid rotation of a uniform incompressible viscous fluid confined
between two concentric spheres rotating differentially about a common z∗-axis with
angular velocities (1 − ε)Ω∗ (inner) and Ω∗ (outer) has a long history initiated by
Proudman (1956). He argued that, in the rapid rotation limit of small Ekman number
(2.1a)

E � 1, (1.1)

viscous forces are negligible almost everywhere in the mainstream outside the thin
E1/2-Ekman layers adjacent to the inner and outer boundaries. Their role is to
translate the viscous boundary stress into an azimuthal momentum flux into (out
of) the mainstream via Ekman pumping (sucking). The mainstream motion is almost
everywhere geostrophic (i.e. azimuthal and independent of the axial coordinate z∗).
We call the circular cylinders of radius s∗, on which the azimuthal geostrophic flow
is constant everywhere, geostrophic cylinders. Geostrophic degeneracy is manifested
by the unknown dependence of the fluid angular velocity (1− εΩG)Ω∗ on the radial
coordinate s∗; here ΩG is the small dimensionless relative geostrophic rotation rate,
which we refer to frequently below. Under steady-state conditions the degeneracy is
resolved by balancing boundary friction at the top and bottom of each geostrophic
cylinder (ST = SB in (2.8) below – the Proudman balance). Consequently, fluid
outside the tangent cylinder to the inner sphere (see figure 1 below) is stagnant, while
inside the geostrophic angular velocity is intermediate between that of the inner and
outer spheres, achieving the inner-sphere rotation rate at the tangent cylinder, across
which motion suffers an abrupt discontinuity.

A striking feature of the Proudman solution is that the O(E1/2) mainstream merid-
ional motion inside the tangent cylinder induced by Ekman boundary layer pumping
is itself geostrophic. Consequently, the associated streamlines are axial; they carry the
fluid flux ejected from the bottom Ekman layer up to the top Ekman layer, where it
is reabsorbed. As a result the bottom Ekman layer carries a net radial Ekman influx
at the equator of the inner sphere; it acts as a sink for fluid, which has emerged from
the corresponding source on the outer sphere. This source–sink combination leads to
an axial jet on the tangent cylinder. The detailed nature of the resulting axial shear
layers was resolved later by Stewartson (1966) (see also Philander 1971), following
his earlier plane layer study of the ‘split-disc’ geometry (Stewartson 1957, but see
also Greenspan 1968). Their main features are as follows. Thick quasi-geostrophic
layers, controlled by the balance (see (3.4b) with Λ = 0) of interior radial (s∗) friction
(viscous effects) and top/bottom friction (i.e. the Ekman boundary conditions), re-
move the discontinuity in the azimuthal velocity and its radial derivative. The velocity
jump is eliminated outside the tangent cylinder in an E1/4 Stewartson layer, while
the remaining shear discontinuity is removed inside the tangent cylinder, where the
Ekman boundary layer on the inner sphere is singular, in a thinner E2/7 Stewartson
layer. Still, a discontinuity of the meridional fluid flux remains, which is removed in
a thinner ageostrophic E1/3-layer. Finally we note that the equatorial Ekman layer
singularity leads to that layer thickening to O(E2/5) over an axial distance O(E1/5)
about the equator. These various layer length scales are illustrated in Stewartson
(1966, figure 1).

When the fluid is electrically conducting and permeated by an applied axisymmetric
meridional magnetic field, the resulting magnetohydrodynamic problem is character-
ized by an additional parameter, the Elsasser number Λ (2.1c) which provides a
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measure of the magnetic field strength. The presence of the magnetic field modifies
the character of the Ekman layer. The nature of the resulting Ekman–Hartmann layer
was first investigated by Gilman & Benton (1968). Transient effects in a plane layer
geometry were considered by Benton & Loper (1969), and Loper & Benton (1970).
Steady Ekman layers on plane boundaries received further attention from Loper
(1970b), while extensions to our spherical geometry were added by Loper (1970a);
the main results, as they relate to our problem, are summarized in Appendix A.

Investigation of the MHD modifications to the axial shear layers was initiated by
Vempaty & Loper (1975) in a rotating cylinder. In that study and a later investigation
(Vempaty & Loper 1978) with Stewartson’s (1957) split-disc geometry, the applied
magnetic field is aligned to the rotation axis; MHD effects are only evident for
large Λ. For a magnetic field with arbitrary orientation the magnetic field normal
to the rotation vector is far more important, even when it is relatively weak. This is
implied by the unpublished study by Kleeorin, Rogachevskii & Ruzmaikin referred
to by Ruzmaikin (1993). To investigate this effect Hollerbach (1996) considered a
plane layer of fluid permeated by a uniform magnetic field parallel to the boundaries,
which are normal to the rotation. A rectangular analogue of Stewartson’s (1957)
split-disc geometry was considered. He applied spatially periodic velocity boundary
conditions, which enabled him to resolve the axial shear layers using a Fourier series
decomposition.

1.2. Summary of results

We restrict attention to the steady linear mainstream flow located outside the Ekman–
Hartmann layers; all our detailed results are for the case Λ � 1 (3.1) for which they
have an Ekman layer character. The essential idea is that, in this small-Λ limit,
the bulk of the mainstream motion is geostrophic. The geostrophic degeneracy is
resolved by considering the depth-averaged equation of motion (2.8) – the modified
Taylor’s (1963) condition (see §3.1). What remains is ageostrophic. Hollerbach (1996)
identified three key parameter ranges: Λ � E1/2, E1/2 � Λ � E1/3 and E1/3 � Λ � 1.
The scalings, which he isolated in these ranges, guide our investigation – though
arguably Kleeorin, Rogachevskii & Ruzmaikin’s earlier unpublished investigations
provided him with some inspiration. We therefore call them the weak, intermediate
and strong field limits respectively.

In the weak field limit Λ � E1/2 (3.7) discussed in §3.2.1, the Lorentz force is
sufficiently weak that the non-magnetic Proudman–Stewartson description continues
to give the leading-order solution everywhere.

For Λ = O(E1/2) discussed in §3.2.2, the Lorentz force becomes comparable in
size with top/bottom friction. That magnetic–Proudman balance (ST − SB =
Λs2HL[ΩG] in (2.8), (3.4)) resolves the geostrophic degeneracy throughout the bulk
of the sphere. Elsewhere, only the E1/4 Stewartson layer is significantly modified by
the Lorentz force (see (3.14)).

For E1/2 � Λ � 1 discussed in §3.2.3, the Lorentz force dominates almost every-
where except in small axial shear layers. Consequently, Taylor’s condition (L[ΩG] = 0
in (3.4)) holds throughout the bulk of the fluid and is met trivially by a state of almost
rigid rotation; essentially, the meridional magnetic field locks the fluid – a feature
observed by Hollerbach (1994) and more recently by Dormy, Cardin & Jault (1997)
in their numerical solutions. Its dimensionless relative angular velocity Ω† (3.16b)
is determined by the condition that the torque on the inner and outer spheres be
equal and opposite (see Appendices B and C). Departures from rigid rotation are
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small, ΩG − Ω† = O(E1/2/Λ), almost everywhere, consistent with Hollerbach’s (1996)
analytic results.

Throughout the intermediate field limit range E1/2 � Λ � E1/3 several quasi-
geostrophic adjustments are made, which we itemize separately.

For E1/2 � Λ � E3/7 (3.18), large departures from rigid rotation are achieved
in what we will call the E2/Λ4 magnetic–Proudman layer, where the geostrophic
degeneracy is resolved by the magnetic–Proudman balance mentioned above. It is
triggered inside the tangent cylinder by the equatorial Ekman layer singularity. As
in the non-magnetic Proudman case, the geostrophic angular velocity adjusts across
it to the inner-sphere angular velocity on the tangent cylinder (see (3.17)). The
thinner radial friction layers take distinct forms (see (3.19) and figure 2a) on the two
sides of the tangent cylinder; outside the tangent cylinder, an (E/Λ)1/2 Hartmann
layer accomplishes the angular velocity adjustment previously accommodated by
the E1/4 Stewartson layer, while inside the E2/7 Stewartson layer continues with its
non-magnetic role.

As Λ increases, the Hartmann length scale O((E/Λ)1/2) shortens until at Λ = O(E3/7)
it has shrunk to O(E2/7) – as has the O(E2/Λ4) one. Accordingly, the magnetic–
Proudman layer evaporates, being absorbed by the radial friction layers.

For E3/7 � Λ � E1/3 (3.21), the geostrophic angular velocity no longer makes
a significant excursion to meet the inner-sphere velocity on the tangent cylinder
but instead remains close to the rigid rotation rate. Some small departures are
accomplished in the remaining weak radial friction Hartmann layer (see (3.22) and
figure 2b).

In the intermediate field limit, ageostrophic flow is confined to the E1/3 Stewartson
layer (see §4.2), which remains non-magnetic in character. Nevertheless, once Λ exceeds
O(E3/7) the failure of the geostrophic angular velocity to achieve the inner-sphere
rotation rate on the tangent cylinder means that the Ekman flux that must be carried
away from the equator increases by an order of magnitude, thereby considerably
enhancing its strength and any features that it exhibits. In fact, inside and near
the base of this E1/3 Stewartson layer, large O(εΩ∗) angular velocity adjustments
are driven by magnetic and viscous forces; these ‘winds’ are terminated in the E2/5

equatorial Ekman layer. The resulting intense ageostrophic angular velocity gradients
in the winds focused close to the inner-sphere equator were overlooked by Hollerbach
(1996).

At Λ = O(E1/3), the Hartmann layer width shrinks to O(E1/3) so becoming a
Hartmann–Stewartson layer. With further increase of Λ its size decreases; it detaches
itself from the outer sphere but remains as a stump on the tangent cylinder attached
to the the equator of the inner sphere, where the shear discontinuity is its raison
d’être.

In the strong field limit E1/3 � Λ � 1 (3.23), described largely in §4, a thinning
(E/Λ)1/2 Hartmann layer length scale may still be identified (see (4.7), (4.8)) but
there does not appear to be any significant boundary layer structure linked to it (see
§4.1). Nevertheless, two substantial ageostrophic layers clearly emerge. The larger is
a thickening Λ-magnetogeostrophic layer (see §4.3), in which viscous forces play an
insignificant role. It continues to thicken until it fills the shell, when Λ = O(1) (see
§4.5). The smaller is the (viscous) Hartmann–Stewartson layer stump, axial length
O(E1/8/Λ3/8), radial width O(E3/8/Λ1/8) (see §4.4, (4.15) and figure 4), which detaches
from the outer sphere and shrinks as Λ increases from E1/3. The magnitudes of the
shears that it supports (see (4.16b)) are comparable to the intense shears identified
once Λ exceeds E3/7, although they are limited to the axial extent of the stump.
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Nevertheless, as z∗ decreases, they intensify and reach their maximum independent
of Λ at the base of the stump (see the case |s− ri| → 0 of (4.6b)), where the layer of
intense shear contracts to its minimum on merging with the E2/5 equatorial Ekman
layer. In view of the other smoothing properties of the meridional magnetic field,
this result comes as a surprise and may be of considerable significance (see §6) to the
geodynamo application that we describe below.

Note in addition that throughout the range E1/2 � Λ � 1, there is a quasi-
geostrophic E2/7/Λ4/7 magnetic–Proudman layer adjacent to the equator of the outer
sphere, described in §3.3. Its role is to bring the almost constant geostrophic angular
velocity up to speed with the outer sphere (see (3.28) and figure 3). Final minor
adjustments are made, where the layer terminates, in an E2/5 equatorial Ekman layer
(see (3.30)).

We develop our spherical shell model for an applied axisymmetric potential mag-
netic field with dipole parity about the equatorial plane. It includes Hollerbach’s
(1994) special case of an axial dipole (2.7) employed in his numerical studies – also
re-examined recently by Dormy et al. (1997). Since that dipole field drops off in
intensity rapidly with radial distance, his results are sensitive to the inner to outer
sphere radius ratio ∆; for his case ∆ := 1

3
(5.1c). Since the local Elsasser number drops

by a factor ∆6 (about 10−3, see (5.1d)) between the inner and outer boundaries, it is
difficult to attain clearly identifiable asymptotic regimes without adopting extremely
small Ekman numbers. Indeed, even for the largest value of Λ used by Hollerbach
(1994) the E2/7/Λ4/7 magnetic–Proudman layer adjacent to the equator of the outer
sphere is not thin but occupies the entire region exterior to the tangent cylinder.
Nevertheless, by reaching yet smaller Ekman numbers and larger Elsasser numbers
Dormy et al. (1997) have achieved the required limit; their numerical results are
excellent quantitative agreement with our asymptotics, as we explain in §5.

1.3. Geodynamo implications

An important motivation for the study is provided by the geodynamo. There fluid in
the outer core is confined to a spherical shell while the rigid inner core is free to rotate
relative to the solid mantle with possibly significant implications to core dynamics
(Gubbins 1981; Steenbeck & Helmis 1975; Whaler & Holme 1996). The Earth’s core
system may lead to conditions similar to those of our problem, as Ruzmaikin (1989,
1993) and Nikitina & Ruzmaikin (1990) have pointed out. Indeed only recently has
firm seismological evidence emerged that the inner core rotates faster than the mantle
(ε < 0, see Song & Richards 1996; Su, Dziewonski & Jeanloz 1996).

Even before the differential rotation of the inner core and mantle was established
it was recognized that the rigidity of the inner core plays an important role in the
dynamo process. From their numerical results for mean-field axisymmetric dynamo
calculations, Hollerbach & Jones (1993a) noted that, on the one hand, dynamo condi-
tions can change their character across the tangent cylinder. On the other, Hollerbach
& Jones (1993b, 1995) showed that the presence of an electrically conducting inner
core can stabilize the dipole field against reversal. They also concluded that poloidal
magnetic field reduces the strong shears across the tangent cylinder suggested by the
Proudman–Stewartson results; asymptotic results valid at large magnetic Reynolds
number, obtained by Starchenko (1993), support this conclusion. Anufriev (1994)
developed these ideas further along lines proposed by Braginsky (1992), while Jault
(1996) reports on possible inhibition of dynamo action caused by the presence of the
inner solid core. From a general point of view, the asymptotics developed in this paper,
like Hollerbach’s (1996) before, argue that the poloidal magnetic field with moderate
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Elsasser number will cause the tangent cylinder shear layers to largely evaporate.
Nevertheless, there remains the strong stumpy Hartmann–Stewartson shear layer at-
tached to the equator of the inner sphere, which we believe we are the first to identify;
its existance is corroborated by Dormy et al.’s (1997) numerical results – their figure 6.
The strong winds that they support may even provide some explanation for the intense
shears found in Glatzmaier & Roberts’ (1995a,b) fully three-dimensional numerical
geodynamo calculations; we comment briefly on this matter in our concluding §6.

There are other implications, of course, for core–mantle coupling, for which topo-
graphic coupling, in particular, continues to be an exciting and controversial subject
(Hide 1995a,b). The role of Ekman–Hartmann boundary layers in viscous and elec-
tromagnetic coupling has been discussed by Kleeorin, Rogachevskii & Ruzmaikin
(1993) amongst others. Nevertheless, in view of Song & Richards’ (1996) results, it is
essential also to understand inner (solid) and outer (fluid) core coupling; Glatzmaier
& Roberts (1996a,b) have recently addressed this issue.

Finally, we note three important modifications to our model necessary for a more
faithful representation of conditions in the Earth’s core and comment briefly on the
extent to which they affect our results.

First, the Earth’s dynamo is generally believed to be of αω-type with the conse-
quence that the azimuthal magnetic field is significantly larger than the meridional
magnetic field by a factor of the large magnetic Reynolds number. Nevertheless, we
have ignored it in our model. The reason is that, though the azimuthal magnetic
field can drive magnetic winds, there is no direct feedback on the strong geostrophic
flows that interest us, due to their alignment. This notion is supported by Vempaty
& Loper’s (1978) results for axial magnetic fields which also produce no coupling
between geostrophic cylinders. It is our belief that the introduction of reasonable
azimuthal magnetic field does not upset the key scalings that we predict.

Secondly, since the solid inner core is probably largely frozen iron, it is likely to
have a conductivity comparable with that of the outer fluid core. As a consequence,
the character of the Ekman–Hartmann layer on the inner core boundary assumed
by us changes. For sufficiently large poloidal magnetic field the resulting strong
electromagnetic coupling will lead to co-rotation of the inner and outer cores (Ω† ≈
−1) and so weaken the equatorial singularity on the inner sphere. Despite this
striking modification of the magnetic Proudman solution, we anticipate that the other
boundary layer structures that we predict continue to exist. Numerical results for this
case have recently been reported by Dormy et al. (1997), which confirm the tendency
towards co-rotation.

Thirdly, density variations must play an important role in the geophysical system.
Indeed, the relative rotation rates of the inner and outer spheres is likely to be
driven by thermal winds in the fluid core resulting from pole–equator temperature
gradients (see Aurnou, Brito & Olson 1996). These appear to be set up in a natural
way by asymmetric thermal convection; its distinct character inside and outside the
tangent cylinder (see Olson & Glatzmaier 1995) is likely to aggravate the equatorial
singularity as exemplified by the Glatzmaier & Roberts dynamo simulations (but see
also Jones, Longbottom & Hollerbach 1995; Sarson, Jones & Longbottom 1997). On
the other hand, we note that asymmetry in the magnetic field, such as an oblique
dipole, or simply the addition of an axisymmetric quadrupole component, will lead to
a radial component of magnetic field on the equator of the inner sphere, which will
give the surface boundary layer a Hartmann character and so remove the equatorial
singularity.
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Figure 1. The shell geometry. The inner and outer spheres of radii ri and ro respectively are shown
together with the location of the tangent cylinder TC and equatorial ring ER relative the rotation
axis Ω.

2. Mathematical formulation of the problem

We consider the steady axisymmetric flow of constant-density ρ fluid with kine-
matic viscosity ν between two differentially rotating spheres. Relative to the frame
rotating with angular velocity Ω∗, the outer sphere of radius L∗ro is at rest, while
the inner sphere of radius L∗ri rotates with angular velocity −εΩ∗ (ε � 1); following
Hollerbach (1996) L∗ is the average of the sphere radii (ri+ ro := 2) (see figure 1). The
electrically conducting fluid with magnetic diffusivity η is permeated by an axisym-
metric dipole field of typical magnitude B∗. The inner and outer boundaries are rigid
insulators.

We adopt L∗, L∗Ω∗ and B∗ as our units of length, velocity εu and magnetic field
b+ εE−1

η b. Our system is characterized by the Ekman and Elsasser numbers

E :=
ν

L∗2Ω∗
, Eη :=

η

L∗2Ω∗
and Λ :=

σB∗2

ρΩ∗
, (2.1a–c)

where σ = 1/µη is the electrical conductivity. Motion is governed by the linear (with
respect to ε) system of equations

2ẑ × u = −∇p+ Λ(∇× b)× b+ E∇2u (∇ · u = 0), (2.2a)

0 = ∇×
(
u× b

)
+ ∇2b (∇ · b = 0), (2.2b)

where the ‘hat’ is used to denote unit vector, p is the dimensionless pressure and we
have used the fact that the applied magnetic field is potential, ∇× b = 0.

Relative to cylindrical polar coordinates (s, φ, z), we set

u := sΩφ̂+∇× (s−1ψφ̂), b := sJφ̂+∇× (s−1Aφ̂), b := ∇× (s−1Aφ̂), (2.3a–c)

where Ω, ψ, J , A and A are functions of s and z alone. The corresponding toroidal
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and poloidal decomposition of (2.2) is

− 2
∂ψ

∂z
= − Λ

s
J(s2J, A) + ED(s2Ω), (2.4a)

2
∂Ω

∂z
=
Λ

s
J
(
A,

1

s2
DA
)

+
E

s2
D2ψ, (2.4b)

0 = J(A,Ω) +
1

s
D(s2J), (2.4c)

J(ψ,A) = sDA, 0 = DA, (2.4d)

where J and D are the Jacobian and modified Laplacian operators defined by

J(f, g) :=
∂f

∂s

∂g

∂z
− ∂f

∂z

∂g

∂s
≡ − (∇f × ∇g) · φ̂ , (2.4e)

Df := s
∂

∂s

(
1

s

∂f

∂s

)
+
∂2f

∂z2
≡ s

(
∇2 − 1

s2

)
f

s
. (2.4f)

For some calculations we find it convenient to write the toroidal magnetic field in
the form

sJ = sΘ + bsΦ, (2.5a)

where Φ is related to the toroidal flow by

Ω = − 1

s

∂Φ

∂s
; (2.5b)

it is only uniquely determined up to an arbitrary function of z. From (2.4c), the new
function Θ satisfies

D
(
s2Θ

)
= 2∇

(
∂A

∂z

)
· ∇Φ+ ∇A · ∇

(
∂Φ

∂z

)
. (2.6)

The applied dipole magnetic field investigated by Hollerbach (1994) has radial-s
and axial-z components

bs := − 1

s

∂A

∂z
= − r3

i

sz

r5
, bz :=

1

s

∂A

∂s
= − r3

i

2z2 − s2
3r5

, (2.7a,b)

corresponding to the potential

A := − r3
i

s2

3r3
, (2.7c)

where, relative to spherical polars (r, θ, φ),

s ≡ r sin θ, z ≡ r cos θ. (2.7d)

We restrict our discussions to the Northern hemisphere 0 < θ < 1
2
π. There, the

‘top’ boundary is zT := ro sin θ; the ‘bottom’ boundary is zB := ri sin θ for 0 < s 6 ri
and zB := 0 for ri 6 s < ro. Important in our subsequent analysis is the z-integral
between the bottom and top boundaries of the φ-component (2.4a) of the momentum
equation. It is the modified Taylor’s condition

ST −SB =
1

s

d

ds

[
s2 (M+U)

]
, (2.8a)
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where
M := Λ

∫ zT

zB

sbsJ dz, U := E

∫ zT

zB

s
dΩ

ds
dz (2.8b,c)

are the z-integrals of the φ-components of the Maxwell and viscous stresses on
cylinders of radius s, while on the spherical surfaces

S = −
[
2ψ +

s2

cos θ

(
ΛbrJ + E

∂Ω

∂r

)]
(2.8d)

is composed of the φ-components of momentum flux across the boundary, and
Maxwell and viscous stresses on the boundary; ST and SB are its values on the
top and bottom boundaries respectively. In our applications, the values of S are
evaluated outside the Ekman–Hartmann boundary layers and there the contribution
made by the term proportional to E∂Ω/∂r is negligible.

At the inner and outer boundaries, the no-slip and insulating conditions yield the
boundary conditions

ψ =
∂ψ

∂r
= J = 0 on r = ri and r = ro , (2.9a)

Ω =
{−1 on r = ri ;

0 on r = ro .
(2.9b)

It is not necessary to specify the boundary conditions on A, because we only need
the toroidal electric current −s−1DA and do not need to solve for A itself. Note also,
our symmetries are such that on the equatorial plane

ψ =
∂Ω

∂z
= J =SB = 0 on z = 0 for ri 6 s 6 ro , (2.9c)

while on the symmetry axis

ψ = 0, Ω and J finite on s = 0 for ri 6 z 6 ro . (2.9d)

3. Quasi-geostrophic flow
In order to make analytic progress, we generally restrict attention to small Elsasser

number
Λ � 1. (3.1)

Then large gradients are confined to boundary layer regions, which include the
Ekman–Hartmann boundary layers adjacent to the inner (i) and outer (o) spheres
and vertical shear layers on the inner-sphere tangent cylinder s = ri and at the
outer-sphere equator s = ro.

The Ekman–Hartmann boundary layer solution, valid off the equators, is sum-
marized in Appendix A. The jump conditions across the simplified Ekman layer,
appropriate to the small Elsasser number limit (3.1), yield from (2.9) the reduced
boundary conditions

ψ

s2
=



finite on s = 0 ;

− E1/2

2(cos θo)1/2
Ω on r = ro ;

E1/2

2(cos θi)1/2
(Ω + 1) on r = ri (s < ri) ;

0 on z = 0 (s > ri) ,

(3.2a)

J = O(E1/2) everywhere on the boundary (3.2b)
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on the mainstream solution valid outside the Ekman layer. The reduction in the
number of boundary conditions is linked to the neglect of the z-derivatives in the
viscous diffusion operator ED in (2.4a,b), but importantly they are retained in the
magnetic diffusion operator in (2.4c,d). Note that (3.2a) is only uniformly valid down
to the equator for magnetic fields with dipole symmetry, for which the radial magnetic
field vanishes on the equator.

Within the framework of the reduced boundary conditions, motion in the bulk of
the mainstream is geostrophic, becoming magnetogeostrophic when Λ increases to
order unity. Throughout the range Λ 6 O(1) the flow exhibits singularities on the
tangent cylinder and the equatorial ring on the outer sphere (see figure 1). They are,
in part, removed in quasi-geostrophic layers, which we discuss in this section. The yet
smaller ageostrophic sublayers are investigated in §4.

3.1. Modified Taylor’s condition

In our small E,Λ-limit, the Coriolis acceleration dominates and the terms on the
right-hand side of (2.4b) are negligible. This is the Proudman–Taylor theorem and its
consequence is that flow is geostrophic:

Ω = ΩG(s) = − 1

s

dΦG
ds

, Φ = ΦG(s). (3.3)

The magnetic induction equation (2.4c) with Ω = ΩG, namely

1

s2
D(s2J) = − bs

dΩG
ds

, (3.4a)

is solved for the azimuthal magnetic field sJ subject to the condition sJ = 0 everywhere
on the boundary, namely (2.9) but importantly taken in the mainstream flow just
outside the Ekman–Hartmann boundary layer. In this way, we determine the Maxwell
stress M as a functional L of ΩG. Accordingly from (2.8) ΩG is the solution of the
integro-differential equation

E

Hs3
d

ds

(
Hs3

dΩG
ds

)
+ ΛL [ΩG] =

E1/2

H
[(BT +BB)ΩG +BB] , (3.4b)

where BT ≡ B− and BB ≡ B+ are defined by (A3c) everywhere except on z = 0,
ri < s < ro; there BB = 0 (see (2.9c)). The main obstacle to further progress is the
determination of the functional

L [ΩG] :=
1

Hs3
d

ds

∫ zT

zB

s3bsJ dz, (3.4c)

in which

H := zT − zB. (3.4d)

Note, however, that there is one important global torque balance, which follows
immediately from (3.4b) after multiplication by Hs3: upon integration over the entire
hemispherical shell, the terms on the left-hand side vanish yielding the result∫ ro

0

s3[(BT +BB)ΩG +BB] ds = 0. (3.5)

This says that the total interior viscous and magnetic torques vanish; what remains
is the balance of equal and opposite couples on the inner and outer spheres as
determined from the Ekman–Hartmann jump conditions.



Flow between differentially rotating spheres in a magnetic field 223

Unlike other mean-field studies involving modified Taylor conditions (see e.g. Jault
1995) for which there are additional source terms, in our case there appears to be no
boundary layer on the axis s = 0. There, assuming the regularity of the solution in
the form

ΩG(s) = ΩG(0) + O(s2), J(s, z) = J0(z) + O(s2), (3.6a)

the balance (3.4b) yields the identity

ΩG(0)−
(

2HE1/2 d2ΩG

ds2

)
s=0

= − 1

2
− Λ

E1/2

∫ ro

ri

(
∂bz

∂z
J

)
s=0

dz. (3.6b)

In all our applications, we anticipate that the interior viscous term, here proportional
to E1/2, is negligible.

The main point to note is that the differential rotation ΩG(s) is forced by the
boundary condition through the right-hand side of (3.4b). Motion in the tangent
cylinder, which is also governed by the modified Taylor’s condition (3.4b), has impor-
tant ramifications for the bulk of the quasi-geostrophic flow exterior to it; the outer
equatorial ring has further implications.

3.2. The tangent cylinder

There are two limiting cases of small and large Λ/E1/2, which we discuss below.

3.2.1. The weak field limit Λ � E1/2

When

Λ � E1/2, (3.7)

the magnetic field simply perturbs the Proudman–Stewartson solution. For this, the
internal torques in (3.4b) vanish everywhere; the remaining local torque balance on
the inner and outer spheres yields the mainstream Proudman solution

ΩG(s) = ΩP (s) := − BB

BB +BT

. (3.8)

Its magnitude increases from −ΩP = 1
2

on the symmetry axis s = 0 to −ΩP = 1 on
the tangent cylinder s = ri, while outside on ri < s < ro it vanishes, −ΩP = 0. The
discontinuous behaviour of the geostrophic flow on the tangent cylinder is determined
from (A3c), namely

(BT +BB)ΩG +BB =


[(

ro

Hi

)1/2

+

(
ri

2(ri − s)

)1/4
]
ΩG +

(
ri

2(ri − s)

)1/4

for s ↑ ri(
ro

Hi

)1/2

ΩG for s ↓ ri ,

(3.9a)
where

Hi := zT (ri) = (r2
o − r2

i )
1/2. (3.9b)

Here the interior viscous term is important above the inner sphere (s < ri) in a
layer of thickness O(E2/7) and outside (s > ri) in a layer of thickness O(E1/4): the
quasi-geostrophic Stewartson layers (see Stewartson 1966, figure 1).

With this Proudman–Stewartson flow we may calculate an O(1) value of J from
(3.4a) and the boundary condition sJ = 0. This in turn generates, via the modified
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Taylor’s condition (3.4b), a small O(Λ/E1/2) correction to ΩG consistent with the axial
value given by (3.6b).

3.2.2. The magnetic–Proudman balance for Λ = O(E1/2)

As in the weak field limit, when

Λ = O(E1/2), (3.10)

the angular velocity ΩG is of order unity. Likewise, the azimuthal magnetic field
sJ induced by this motion is everywhere O(1). Consequently, the term ΛL[ΩG] is
comparable to the Ekman suction term on the right-hand side of (3.4b). This is the
usual modified Taylor’s condition balance as envisaged, for example, in the weakly
nonlinear evolution of a mean-field dynamo relying on ω-quenching via the Malkus–
Proctor (1975) mechanism.

It is instructive to discuss the nature of the tangent cylinder shear layers. Across
them, the tangential z-component of electric field is continuous; specifically we note
that

1

s

∂

∂s
(s2J) + sbsΩG is continuous across s = ri . (3.11)

Accordingly, we may approximate the Lorentz force functional by

ΛL[ΩG] = −Λi(ΩG − Ω†), (3.12a)

where

Λi :=
Λ

Hi

(∫ Hi

0

b
2

s dz

)
s=ri

(3.12b)

and Ω† is a constant, as yet unknown. From it, the magnetic extension of the
Proudman solution at the tangent cylinder, valid outside the viscous shear layers, is
the magnetogeostrophic solution

ΩG =
ΛiΩ

† −
(
E1/2/Hi

)
BB

Λi +
(
E1/2/Hi

)
(BT +BB)

for δS � ri − s � 1, δh � s− ri � 1 , (3.13)

where δS is the E2/7 Stewartson length (3.19b) below and δh is defined by (3.14b)
below.

The Lorentz force term is negligible in the E2/7-layer above the inner sphere
(s < ri), where, as in the Stewartson solution, ΩG ∼ −1, i.e. the rotation rate of the
inner sphere. The details of the structure of this layer are explained in greater detail
for their extension to the intermediate field limit (3.18) below. Outside (s > ri), the
hybrid E1/4 Stewartson–Hartmann layer solution

1 + ΩG =

(
1 +

Λiδ
2
h

E
Ω†
)[

1− exp

(
− s− ri

δh

)]
, (3.14a)

where

δh := E1/4

[(
ro

H3
i

)1/2

+
Λi

E1/2

]−1/2

, (3.14b)

indicates that ΩG increases from −1 at s = ri to the value (Λiδ
2
h/E)Ω† of (3.13) as

(s− ri)/δh ↑ ∞. Determination of the value of Ω† requires knowledge of the solution
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of the modified Taylor problem outside the quasi-geostrophic layers subject to the
continuity condition (3.11). That is beyond the scope of the present analysis.

3.2.3. The intermediate and strong field limit E1/2 � Λ � 1

When

E1/2 � Λ � 1, (3.15)

the dominant balance in (3.4b) is ΛL[ΩG] = 0, namely Taylor’s condition. It is
satisfied trivially at lowest order by ΩG = Ω† = constant, as suggested by (3.13)
above. In fact, the mainstream solution has the form

ψ = E1/2ψ̃, Ω = Ω† +
E1/2

Λ
Ω̃G(s), J =

E1/2

Λ
J̃. (3.16a)

With ΩG ∼ Ω† almost everywhere, we may determine its value from the global torque
condition (3.5) as outlined in Appendix B. Setting Λ = 0 in (B4) yields

Ω† = − r4
i

r4
i + r4

o

, (3.16b)

in contrast to the weak field local result (3.8). As the tangent cylinder is approached,
the order-one departures of ΩG from Ω† predicted by (3.13) are given by

1 + ΩG

1 + Ω†
∼


(
ri − s
δP

)1/4
/[

1 +

(
ri − s
δP

)1/4
]

for s < ri

1 for s > ri,

(3.17a)

in which

δP :=
ri

2

(
E1/2

HiΛi

)4 (
≡ δ8

H/δ
7
S

) � 1 (3.17b)

(see (3.19b,c) below). On the short (by (3.15)) length δP the flow continues to exhibit
Proudman’s singularity at the tangent cylinder (s = ri) and so we call it the magnetic–
Proudman layer; see figure 2(a).

Outside the tangent cylinder (s > ri), the E1/4-layer thins with increasing Λ, taking
on the character of a (E/Λ)1/2 Hartmann layer, which continues to be represented by
(3.14). In contrast, on the inside (s < ri), the E2/7-layer continues to be non-magnetic
as Λ is increased until Λ = O(E3/7), at which value the magnetic–Proudman length
δP = O(E2/Λ4) has shrunk to order E2/7. In the range

E1/2 � Λ � E3/7, (3.18)

the solution exhibits similar characteristics to those found by Stewartson (1966); the
new boundary layer structure is summarized in figure 2(a). Essentially, the geostrophic
solution holds up to the edge of the E2/7-layer, where according to (3.13) the fluid
co-rotates with the inner sphere (ΩG ∼ −1). The main role of the thin interior
E2/7-layer is to adjust the gradient of the shear velocity so that its gradient (in
addition to its value) matches that of the thicker exterior (E/Λ)1/2-layer, in which the
quasi-geostrophic velocity rapidly relaxes to riΩ

†. Stewartson’s (1966) inner solution,
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E 2/¤4

E1/2

E 2/7 (E/¤)1/2

(a) (b)

E1/3

(E/¤)1/2

Figure 2. The tangent-cylinder boundary layer structure in the intermediate field limit. (a)
E1/2 � Λ � E3/7. The quasi-geostrophic interior E2/7 Stewartson and exterior (E/Λ)1/2 Hart-

mann layers are bounded by the solid lines. These layers abut the ageostrophic E1/3 Stewartson
layer, which is shown hatched. The E2/Λ4 magnetic–Proudman layer extends inwards as far as the

broken lines. (b) E3/7 � Λ � E1/3. As in (a), except that the interior Stewartson layer is now a
Hartmann layer which has likewise absorbed the magnetogeostrophic layer.

modified with coefficients chosen to achieve matching with the outer solution (3.17),
is

1 + ΩG

1 + Ω†
∼


−
(
δS

δH

)
1

F′(0)
F
(
ri − s
δS

)
+

(
δS

δH

)2

G
(
ri − s
δS

)
for s < ri

1− exp

(
− s− ri

δH

)
for s > ri,

(3.19a)
in which the Stewartson and Hartmann lengths

δS :=
[(

2/ri
)1/2

H2
i E
]2/7

, δH :=
(
E/Λi

)1/2
(3.19b,c)

satisfy

δS � δH � δP � 1 (3.19d)

and where F and G are the functions introduced by Stewartson (1966, equations
(5.8) to (5.11)); the prime denotes derivative. Explicitly,

F(ξ) :=
2
(

4
7

)4/7

Γ
(

4
7

) ξ1/2 K4/7

(
8
7
ξ7/8

)
(3.20a)

satisfies the homogeneous equation F′′ − ξ−1/4F = 0 with F(0) = 1 and F → 0 as
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ξ ↑ ∞ with the consequence that F′(0) = −
(

4
7

)1/7
Γ
(

3
7

)
/Γ
(

4
7

)
, while

G(ξ) := 8
7

{
ξ1/2K4/7(

8
7
ξ7/8)

∫ ξ
0
ζ1/2I4/7(

8
7
ζ7/8) dζ

+ξ1/2I4/7(
8
7
ξ7/8)

∫ ∞
ξ
ζ1/2K4/7(

8
7
ζ7/8) dζ

} (3.20b)

satisfies the inhomogeneous equation G′′ − ξ−1/4G = −1 with G(0) = 0 and G ∼ ξ1/4

as ξ ↑ ∞. Here I4/7(η) and K4/7(η) are Bessel functions of the first and second kind;
we have used the Wronskian property η(K4/7(η)I′4/7(η)− I4/7(η)K′4/7(η)) = 1.

When Λ = O(E3/7), all three boundary layer lengths δP , δH and δS are of comparable
size, O(E2/7), and abrupt changes in the geostrophic velocity in the vicinity of the
tangent cylinder are reduced. For greater values, E3/7 � Λ, only the Hartmann layer
remains (see figure 2b) and across it ΩG remains close to Ω†. In the limited range

E3/7 � Λ � E1/3 (3.21)

the resulting quasi-geostrophic Hartmann layer is sustained by the Ekman boundary
condition on the inner sphere, forcing the weak response

ΩG − Ω†
1 + Ω†

= − 1

2

(
δH

δS

)7/4

F

(
s− ri
δH

)
for s− ri = O(δH ), (3.22a)

in which

δP � δH � δS � 1 (3.22b)

and where

F(ξ) :=


∫ 0

−∞
|ξ′|−1/4 e−|ξ−ξ

′ | dξ′ for ξ 6 0;

Γ
(

3
4

)
e−ξ for ξ > 0.

(3.22c)

In other words, inside the tangent cylinder (s < ri) the singular behaviour (3.17)
on the short magnetic–Proudman length δP has been swallowed up on the longer
Hartmann layer length δH that replaces the even longer E2/7-scale δS across which
viscous adjustments are made in the weaker field regime (3.18).

When

E1/3 � Λ � 1 (3.23)

the strength of the Hartmann layer defined by (3.22a) evaporates. The remaining
small adjustments are made in magnetogeostrophic and Hartmann–Stewartson layers
illustrated in figure 4, whose nature we discuss in §4 below.

3.3. The equatorial ring

As the equator s = ro of the outer sphere is approached, the geostrophic angular
velocity ΩG must reduce to zero. In the intermediate and strong field limit (3.15) this
happens across a magnetic–Proudman boundary layer of width

δPe :=
ro

2

(
3
E1/2

roΛeo

)4/7

(� 1) (3.24a)

illustrated on figure 3, where in the notation of (3.25d) below,

Λeo := Λr2
o

(
∂bz

∂s

)2

e

. (3.24b)
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E 2/7/¤4/7 E1/5

Figure 3. The equatorial ring in the intermediate and strong field limits E1/2 � Λ � 1. The outer
edge of the E2/7/Λ4/7 magnetic–Proudman layer abuts the E2/5 Stewartson layer shown hatched.

Assuming that the s-derivatives are large, the boundary layer approximation to
(2.6) is simply ∂2Θ/∂s2 = 0 with the trivial solution Θ = Θ0(z) + (ro − s)Θ1(z). We
assume that the mainstream solution is insensitive to the size of the small parameter
E1/2/Λ, so that matching with it yields an order-unity ratio Θ1/Θ0 independent of
E1/2/Λ. Consequently, on the short magnetic–Proudman length δPe (3.24), the second
term proportional to Θ1(z) is negligible. Upon composing the solution (2.5a) and
applying the boundary condition sJ = 0 on z ∼ [2ro(ro − s)]1/2, we obtain

sJ ∼
(
∂bz

∂s

)
e

z

[
ϕ(ρ)− ϕ

(
z2

2ro

)]
, (3.25a)

where

ϕ(ρ) := Φ(s), ρ := ro − s (3.25b,c)

and we have assumed an applied potential field(
∂bz

∂s

)
e

:=

(
∂bz

∂s

)
(ro, 0) ≡

(
∂bs

∂z

)
(ro, 0) (3.25d)

with dipole symmetry. From it, we may calculate the Maxwell stress (2.8b); after an
integration by parts the following expression may be obtained:

M =
2Λeo

3

(
2

ro

)1/2 ∫ ρ

0

ρ3/2 dϕ

dρ
dρ . (3.26)

From (3.4c) and (3.26) we obtain

ΛL[ΩG] = −2Λeo
3ro

ρ(ΩG − Ω†), (3.27a)

where the constant of integration Ω† has been chosen as usual so that L[ΩG] → 0
as ρ/δPe ↑ ∞, where ΩG → Ω†. Accordingly, the modified Taylor’s condition (3.4b)
reduces to

E

ρ1/2

d

dρ

(
ρ1/2 dΩG

dρ

)
− 2Λeo

3ro
ρ(ΩG − Ω†) =

E1/2

23/4r
1/4
o

ΩG

ρ3/4
. (3.27b)



Flow between differentially rotating spheres in a magnetic field 229

The outer magnetic–Proudman solution corresponding to (3.17) is

ΩG =
Ω†

1 + (δPe/ρ)7/4
valid for ρ = O(δPe). (3.28)

As ρ decreases, it gives

ΩG

Ω†
∼
(
ρ

δPe

)7/4

for δSe � ρ � δPe (3.29a)

valid until the interior viscous boundary layer is reached which is confined to the
length

δSe :=
ro

2

(
4E1/2

ro

)4/5

(3.29b)

illustrated on figure 3. There the second radial derivative of ΩG smooths out the re-
maining weak discontinuity in Stewartson’s E2/5-layer corresponding to the thickening
Ekman layer. The motion is sustained by the Lorentz force with solution

ΩG

Ω†
=

(
δSe

δPe

)7/4

H
(
ρ

δSe

)
, (3.30a)

where

H(ξ) := 8
5

{
ξ1/4K2/5(

8
5
ξ5/8)

∫ ξ
0
ζ7/4I2/5(

8
5
ζ5/8) dζ

+ξ1/4I2/5(
8
5
ξ5/8)

∫ ∞
ξ
ζ7/4K2/5(

8
5
ζ5/8) dζ

} (3.30b)

satisfies the inhomogeneous equation ξ−1/2(ξ1/2H′)′ − ξ−3/4H = −ξ with H(0) = 0
and H∼ ξ7/4 as ξ ↑ ∞; cf. our earlier result (3.20b).

Finally we note that the dominant balance in (2.4a) is

− 2
∂ψ

∂z
= Λr2

obze
∂J

∂z
with bze := bz(ro, 0); (3.31)

the terms proportional to ∂J/∂s are of lower order. Integration yields

ψ = − 1
2
Λr2

obzeJ. (3.32)

This is the leading-order influence of the Lorentz force, from which we see that
Taylor’s condition is satisfied trivially. The modified Taylor condition (3.27b) provides
a higher-order balance of smaller terms.

4. Ageostrophic flow and Hartmann–Stewartson layers
In the absence of magnetic field the dominance of the geostrophic flow in the

tangent-cylinder E2/7 and E1/4 Stewartson shear layers gives way to ageostrophic flow
in thinner E1/3 Stewartson layers. As the Elsasser number Λ is increased from zero,
the magnetic field continues to induce only small perturbations of that ageostrophic
flow until

Λ = O(E1/3). (4.1)

For this value all vertical shear layers blend with the same thickness and so we call
the blend the Hartmann–Stewartson layer.

We outline briefly the equations governing the Hartmann–Stewartson layer. The
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magnetic induction equation (2.4c) reduces as before to

∂J

∂s
= −bs(Ω − Ω†). (4.2)

In principle Ω† could be some function of z, but matching with the exterior geostrophic
flow implies that it has the constant value (3.16b). Accordingly (2.4a,b) with (2.4c,d)
yield

− 2
∂

∂z

(
ψ

ri

)
=

(
−Λb2

s + E
∂2

∂s2

)[
ri(Ω − Ω†)

]
, (4.3a)

2
∂

∂z

[
ri(Ω − Ω†)

]
=

(
−Λb2

s + E
∂2

∂s2

)(
1

ri

∂2ψ

∂s2

)
, (4.3b)

while the Ekman boundary condition (3.2a) reduces to

ψ

ri
=


− E

1/2

2

(
ro

Hi

)1/2

riΩGT on z = Hi

E1/2

2

(
ri

2(ri − s)

)1/4

ri(1 + ΩGB) on z = [2ri(ri − s)]1/2 for s < ri

0 on z = 0 for s > ri,

(4.4)

where ΩGT and ΩGB are the values of the ageostrophic velocities on the tangent
cylinder s = ri at the top and bottom boundaries respectively. It important to
remember that (4.2) and (4.3) are derived on the basis that ∂/∂s � ∂/∂z appropriate
to thin vertical layers. The terms on the right-hand side of (4.3b) are responsible for
the zonal winds with singular behaviour at the equator.

Since |ri − s| is small, the bottom boundary condition implies that the value of ψ
is an order of magnitude larger than E1/2 in the shear layer. Consequently, we may
approximate ψ to zero on the top boundary z = Hi. Also, within the framework of
the same small value of |ri − s|, we may apply the bottom boundary condition on
z = 0. Thus following Stewartson (1966), we may obtain the solution of (4.3) by
Fourier transform methods. It is

ψ

ri
= E1/2

(ri
2

)5/4

(1 + ΩGB)

∫ ∞
−∞
ψ̂0(k)

sinh(kχ̂(k, z))

sinh(kχ̂0(k))
eik(s−ri) dk, (4.5a)

ri(Ω − Ω†) = −E1/2
(ri

2

)5/4

(1 + ΩGB)

∫ ∞
−∞
kψ̂0(k)

cosh(kχ̂(k, z))

sinh(kχ̂0(k))
eik(s−ri) dk, (4.5b)

where

ψ̂0(k) :=
1√

2 Γ
(

1
4

)
(−ik)3/4

(4.5c)

is analytic in the upper half-plane with the complex plane cut along the negative
imaginary axis ((−ik)3/4 = e−i(3/8)πk3/4 for positive real k) and

χ̂(k, z) :=
1

2

(
Λ

∫ Hi

z

b
2

s (ri, z) dz + Ek2(Hi − z)
)
, (4.5d)

χ̂0(k) := χ̂(k, 0) ≡ 1
2
(Λi + Ek2)Hi (4.5e)

(see (3.12b) above). For all our main applications with Λ � E3/7, we have ΩGB = Ω†.
The reason for making a more general statement is to enable contact with weaker
field results and, in particular, Stewartson’s non-magnetic results, though application
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to those cases requires some care. For example, in the non-magnetic case there is
an additional linear shear, which is a trivial solution of (4.3) when Λ = 0 and is
larger than that predicted by (4.5b). Then, of course, the Ω† term is irrelevant being
absorbable in the linear shear (but see (4.10) and (4.11) below).

The most informative feature of this solution is the z = 0 value

ri(Ω − Ω†)
∣∣∣
z=0

= −E1/2
(ri

2

)5/4

(1 + ΩGB)

∫ ∞
−∞
kψ̂0(k) coth(kχ̂0(k)) eik(s−ri) dk (4.6a)

of the azimuthal velocity. From it, we may deduce the asymptotic results

ri(Ω − Ω†)
∣∣∣
z=0
∼



−E1/2(1 + ΩGB)
ri

HiΛi

(
ri

2(ri − s)

)1/4

as s− ri ↓ −∞

−E1/2(1 + ΩGB)
1

4

(
ri

2(ri − s)

)5/4

as s− ri ↑ 0

E1/2(1 + ΩGB)
1

2
√

2

(
ri

2(s− ri)

)5/4

as s− ri ↓ 0

0 as s− ri ↑ ∞ .

(4.6b)

The large-|s − ri| asymptotic behaviour is geostrophic and predicted by (3.17) in the
limit |s − ri| � δP , while the small-|s − ri| asymptotic behaviour is ageostrophic and
was previously identified by Stewartson (1966, equation (6.23)) to occur within his
E1/3-layers of the non-magnetic problem. Despite the strength of the small-|s − ri|
singularity, he pointed out that it is compatible with the results for the thickening
Ekman layer at the equator of the inner sphere.

The evaluation of the Fourier integrals (4.5a,b) and (4.6a) is achieved by distorting
the integration contour in the complex plane. Contributions arise from integrating
about the cut of ψ̂0(k) at the origin (traced to the boundary conditions) and the zeros
of sinh(kχ̂0(k)). The first zero

χ̂0(k) = 0, giving k = ±i(E/Λi)
1/2, (4.7a)

determines the Hartmann layer. The higher-order zeros

kχ̂0 ≡ 1
2
(Λi + Ek2)kHi = nπi (n = 1, 2, . . .) (4.7b)

determine the remaining boundary layer structures. The small-|s−ri| asymptotic result
given in (4.6b) is slightly subtle and relies on approximating the integrand under the
limit |k| → ∞.

The formulae (4.5), (4.6) are powerful because of their generality. From them we
may recover many of the results presented in §3 together with new ageostrophic flow
and Hartmann–Stewartson layer results.

4.1. The role of the (E/Λ)1/2 Hartmann layers

In the range E1/2 � Λ � E3/7, (4.5) cannot be sensibly employed to resolve the
Hartmann layer structure, since the geostrophic angular velocity ΩGB is not constant
to lowest order as the result (4.5) assumes. We must simply refer to our earlier result
(3.19).

In the range E3/7 � Λ � E1/3, we note that kχ̂(k, z) is O((Λ3
i /E)1/2)) when k =

O((Λ/E)1/2) appropriate to the Hartmann layer length scale. With this small value,
cosh(kχ̂(k, z)) in the integral (4.5b) is approximately unity independent of z. Using
the Fourier convolution theorem we may recover our earlier quasi-geostrophic result
(3.22).
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In the strong field range E1/3 � Λ � 1, repeating the above argument, we may again
express the result as a convolution integral but now the kernel is z-dependent. From
a more general point of view, the roots of (4.7b) are now given approximately by

k ∼
{
±i(E/Λi)

1/2

i 2nπ/(ΛiHi)
for integer n = O(1). (4.8)

The former pair of roots again define the Hartmann layer, which is now very thin.
Matching with the external flow yields the trivial linear z-independent solutions of
vanishing strength as indicated by the intermediate field result (3.22). The latter single
roots are responsible for the z-dependent structure of the thicker magnetogeostrophic
layer discussed in §4.3 below. When, however, integer n is large, specifically

n = O
(
(Λi/E

1/3)3/8
)
, (4.9)

the three roots are indistinguishable and they determine the structure of the Hartmann–
Stewartson layer discussed in §4.4 below.

Essentially in the strong field range, the Hartmann layer plays a negligible role. The
main adjustments are made in the thick magnetogeostrophic Λ-layer (see §4.3), while
the remaining singular behaviour is removed in the small Hartmann–Stewartson layer
(see §4.4).

4.2. E1/3 Stewartson layers

Throughout the intermediate field regime E1/2 � Λ � E1/3, we may determine the
structure on the short E1/3 Stewartson length scale illustrated in figures 2 and 3 by
considering the contributions to the integrals (4.5) which occur when k = O(E−1/3).
Unlike the case for the thicker Hartmann layers, ΩGB is constant across the layer and
the objection raised in §4.1, about the use of (4.5) in the range E1/2 � Λ � E3/7, is
inapplicable. Under our E1/3k = O(1) approximation all terms proportional to Λ can
be neglected. We, therefore, set

χ̂(k, z) = χ̂E := 1
2
Ek2(Hi − z) (4.10a)

and essentially recover Stewartson’s (1966, equation (6.22)) but with different constants
of proportionality originating from the different bottom boundary condition. We may
express the complete solution in the form

ri(Ω − ΩH ) = −E1/2
(ri

2

)5/4

(1 + ΩH0)

∫ ∞
−∞
kψ̂0(k)

cosh(kχ̂E(k, z))

sinh(kχ̂E(k, 0))
eik(s−ri) dk, (4.10b)

where

riΩH = ri

(
ΩH0 + ΩH1

s− ri
δH

)
(ΩGB ≡ ΩH0) (4.10c)

is the linear Hartmann layer contribution; δH is defined by (3.19c). The limiting forms
of the coefficients are

1 + ΩH0

1 + Ω†
∼

 −
(
δS/δH

)
/F′(0) for E1/2 � Λ � E3/7

1− 1
2
Γ
(

3
4

) (
δH/δS

)7/4
for E3/7 � Λ � E1/3

(4.11a)

and

ΩH1

1 + Ω†
∼

 1 for E1/2 � Λ � E3/7

1
2
Γ
(

3
4

) (
δH/δS

)7/4
for E3/7 � Λ � E1/3 ;

(4.11b)

δS is defined by (3.19b).
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4.3. The magnetogeostrophic layer

In the strong field limit E1/3 � Λ � 1, a thicker Λ-magnetogeostrophic layer emerges;
see figure 4. We may determine its (s, z)-structure by neglecting the term proportional
to E in (4.5d), in the spirit of the third root taken in (4.8).

An alternative and illuminating procedure on this longer radial order-Λ length scale
is to return to the full equations (4.3) and neglect the viscous terms. The remaining
potential problem has the general solution

ri(Ω − Ω†) + i
1

ri

∂ψ

∂s
= Z(σ), (4.12a)

where Z is an analytic function of the complex variable

σ := s− ri + i 1
2
Λ

∫
b

2

s (ri, z) dz = O(Λ). (4.12b)

This representation is particularly useful in the neighbourhood of the equator of
the inner sphere, where for applied potential magnetic fields with dipole symmetry σ
has the asymptotic behaviour

σ = s− ri + i
Λeiz

3

6r2
i

with Λei := Λr2
i

(
∂bz

∂s

)2

(ri, 0). (4.13)

The corresponding potential solution (4.12) satisfying (4.4) is

ψ

ri
=
E1/2

2
ri(1 + Ω†)

(
ri

2|σ|

)1/4√
2 sin( 1

4
ϑ), (4.14a)

Ω − Ω† =
E1/2

4

1 + Ω†

ri

(
ri

2|σ|

)5/4√
2 cos( 5

4
ϑ), (4.14b)

where

σ := |σ|eiϑ. (4.14c)

It recovers the power laws given by (4.6b) for |s − ri| ↓ 0. Note, however, that the
alternative representation

Ω − Ω† =
E1/2

2
√

2

1 + Ω†

ri

(
3r3
i

Λeiz3

)5/4

Υ(ϑ) , (4.14d)

where

Υ(ϑ) := sin5/4ϑ cos( 5
4
ϑ) , (4.14e)

usefully determines the angular velocity profile at fixed z(> 0) with the radial distance
given parametrically by

s− ri =
Λeiz

3

6r2
i

cot ϑ. (4.14f)

As s − ri increases from −∞ (ϑ = π), the angular velocity Ω decreases (∂Ω/∂s < 0)
from Ω† attaining its minimum above the inner sphere (Υ = − 0.72 . . . at ϑ = 2π/3); it
increases (∂Ω/∂s > 0) passing through Ω† outside the tangent cylinder (at ϑ = 2π/5)
attaining its maximum (Υ = 0.37 . . . at ϑ = 2π/9) and decreases again (∂Ω/∂s < 0)
to Ω†, as s − ri increases to ∞ (ϑ = 0). The most striking feature of this result is
the reversed flow Ω > Ω† that it predicts sufficiently far outside the tangent cylinder.
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E3/8

K1/8

E1/8

K3/8

Figure 4. The tangent-cylinder boundary layer structure in the strong field limit E1/3 � Λ � 1.
The Λ-magnetogeostrophic layer is bounded by the solid lines. The ‘stubby’ E3/8/Λ1/8 Hart-

mann–Stewartson layer stemming from the equator of size O(E1/8/Λ3/8) is shown hatched.

This reversed flow is confirmed by Dormy et al.’s (1997) numerical results – see their
figure 6, but remember that the sign of their ε is opposite to ours.

4.4. The Hartmann–Stewartson layer

The solution (4.14) clearly illustrates the singular features of the magnetogeostrophic
solution. The viscous terms are no longer negligible in a thin viscous sublayer attached
to the equator of the inner sphere, where

s− ri = O

(
E3/8

Λ
1/8
ei

)
, z = O

(
E1/8

Λ
3/8
ei

)
; (4.15)

see figure 4. Here the height [2ri(ri − s)]1/2 of the inner-sphere surface remains small
compared to the height of this viscous column and the result (4.5) continues to be
applicable. Approximating the integrals on the basis that they are dominated by the

contributions from large k = O(Λ
1/8
ei /E

3/8) yields

ψ

ri
= E1/2

(ri
2

)5/4

(1 + Ω†)

∫ ∞
−∞
ψ̂0(k)e

Ξ dk, (4.16a)

ri(Ω − Ω†) = −E1/2
(ri

2

)5/4

(1 + Ω†)

∫ ∞
−∞
|k|ψ̂0(k)e

Ξ dk, (4.16b)

where

Ξ := ik(s− ri)− 1
6
Λei|k|(z3/r2

i )− 1
2
E|k|3z. (4.16c)

In evaluating (4.16), we regard |k| as an analytic function except for cuts along both
imaginary axes excluding the origin k = 0 of the complex k-plane. Note that the
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length scale estimates (4.15) anticipate that the dominant contribution to the integral
occurs when each of the three terms defining Ξ is of order unity, cf. the arguments
leading to the wavenumber estimate (4.9) for n.

Upon neglecting the viscous term proportional to E in (4.16c), we recover the
magnetogeostrophic solution (4.14) valid outside the viscous sublayer. The point here
is that as z decreases so does the radial component of the magnetic field. Hence
locally the Λ-layer is thinning (width = O(Λeiz

3)) until it becomes comparable to

that of the thickening Hartmann layer (width = O(E1/2/Λ
1/2
ei z)). At that stage, the

viscous Hartmann–Stewartson layer structure, first identified for the case Λ = O(E1/3),
re-emerges bounded on its outside by magnetogeostrophic flow. It should be stressed
that even with the vanishing of bs the non-zero axial field bz plays an insignificant role.
From another point of view, as Λ decreases, the size of the Hartmann–Stewartson
layer increases until it extends to cover the entire tangent cylinder when Λ = O(E1/3).

The integrals (4.16) are not easily evaluated except in special cases. They do,
however, simplify on the tangent cylinder axis s = ri. There, for small z, ignoring the
magnetic term proportional to Λei, we obtain

ψ

ri

∣∣∣∣
s=ri

= E5/12

√
2Γ( 1

12
) cos(3π/8)

3Γ( 1
4
)

(ri
2

)5/4
(

2

z

)1/12

(1 + Ω†), (4.17a)

ri(Ω − Ω†)
∣∣
s=ri

= −E1/12

√
2Γ( 5

12
) cos(3π/8)

3Γ( 1
4
)

(ri
2

)5/4
(

2

z

)5/12

(1 + Ω†); (4.17b)

these power laws – identified by Stewartson (1966, equation (6.29)) – are valid outside
the equatorial Ekman layer E1/5 � z � 1.

Evidently, as Stewartson (1966) noted, viscosity does not remove the singularity in
this ‘outer viscous’ sublayer, though it weakens it. More dramatically, the geostrophic
flow velocity for s 6= ri is unmodified. So upon setting z = 0 in (4.16b) we again obtain
the magnetogeostrophic result predicted by (4.14b) and given explicitly by ((4.6b); the
limits s− ri ↑ 0 and ↓ 0).

The source of our difficulties may be traced to not applying the Ekman boundary
condition correctly. We have simply perturbed about Ω = Ω†, which is clearly
inadequate as the singularity is approached. This difficulty is finally resolved in the
even smaller ‘inner viscous’ E2/5 Stewartson layers on the equator, not illustrated in
our figures – but see Stewartson’s (1966 figure 1).

4.5. Elsasser number order unity

We conclude with some comments about the interesting limit

Λ = O(1). (4.18)

Everywhere, outside the Ekman–Hartmann layers and their Hartmann–Stewartson
equatorial extensions on the inner and outer boundaries, the solution takes the form

ψ := E1/2ψ̃(s, z), Ω := Ω†+E1/2Ω̃(s, z), A := E1/2Ã(s, z), J := E1/2J̃(s, z),
(4.19)

where the new tilded variables satisfy (2.4) with the viscous terms proportional to E
ignored. They are to be solved subject to the Ekman–Hartmann boundary layer jump
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Λ 0.25 1.0 4.0 16.0

4
9
∆6Λ 0.0002 0.0006 0.0024 0.0098
4
9
Λ 0.1111 0.4444 1.7778 7.1111
Λi 0.015 0.06 0.25 0.98

Table 1. Boundary layer characteristics for Hollerbach’s (1994) Elsasser numbers.

condition (A3a), which in the complex notation of Appendix A is(
− J̃
br

+ i
ψ̃

s2

)∣∣∣∣∣
r=rw

= ±Ωw − Ω
†

λw
. (4.20)

Though the size of two equatorial Hartmann–Stewartson layers shrinks to zero
as E ↓ 0, they leave awkward singularities. At the equator to the outer sphere, ψ̃
remains non-zero. Its value is reduced to zero across the E2/7 magnetic–Proudman
layer identified in §3.3 with solution (3.28). At the equator of the inner sphere, both

ψ̃ and particularly Ω̃ exhibit singularities as described above in §§4.3, 4.4. Despite
the singularities, the reduced mathematical problem appears to be well posed though
its numerical solution may be hard to implement. To that end the introduction of

E1/2Φ̃ in (2.5b) might remove some of the singularity exhibited by Ω. Certainly, it

could help for the strong field case E1/3 � Λ � 1, for which Ω̃ = Ω̃G(s) outside the

magnetogeostrophic layer. There Ω̃G is singular, whereas Φ̃ is finite and continuous
across the layer.

5. Hollerbach’s numerical model
We largely limit our comparisons to Hollerbach’s (1994) numerical results portrayed

in his figure 4, for the case

E := 10−4, (5.1a)

with

ri := 1
2

and ro := 3
2

(5.1b)

giving the radius ratio

∆ :=
ri

ro
= 1

3
. (5.1c)

His product ΛRm is our Λ; its values in his four sets of figures are listed in our
table 1. In applying the Ekman–Hartmann jump conditions at the outer and inner
boundaries, the parameters which measure the importance of magnetic effects are
4
9
∆6Λ cos θ and 4

9
Λ cos θ respectively; see table 1, where significantly

∆6 = 3−6 = 0.0013717 . . . . (5.1d)

So in all cases the outer wall layer is an Ekman layer. In contrast, the inner wall layer
exhibits magnetic effects and is clearly in the Ekman–Hartmann regime for the final
two cases.

To determine the appropriate shear layer regime, we need the ratio

Λi

Λ
=

∫ cos−1(1/3)

0

sin2θ cos6θ dθ =
5π

28
− 1

7 37
+ . . . = 0.0613 . . . . (5.2)
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The values of Λi – see table 1 – are all arguably large compared to E1/2 = 0.01
and small compared to unity as required by our asymptotics. Since we also have
E3/7 = 0.02, E1/3 = 0.046, we may speculate that the smallest table 1 value Λi = 0.015
corresponds to the intermediate field regime, in which a substantial shear discontinuity
should still persist; the table 1 value Λi = 0.06 corresponds to the transition regime
between intermediate and strong fields; while the largest table 1 values Λi = 0.25 and
0.98 should correspond to the strong field regimes for which the magnetogeostrophic
region is expanding to fill the sphere.

If the mainstream flow is in almost rigid rotation with angular velocity Ω†, the
torque balance on the inner and outer spheres gives

Ω† ≈ − 0.012 (5.3)

for weak magnetic fields; see (3.16b) – (B6a). In Hollerbach’s (1994) strongest field
case Λ = 16.0, the generalized result – (B6b) – may be more appropriate. It is
based on the assumption that the outer boundary supports an Ekman layer, while
in contrast the inner boundary supports a Hartmann layer. The notion is supported
by the corresponding inner-sphere torque estimate T+ ∼ 2

3
πr4

i (EΛ)1/2(1 + Ω†) ≈
0.0052 (1 + Ω†) (see (B2b) and (B3b)); it yields Hollerbach’s (1994, table 2) value
0.004831 when Ω† ≈ −0.077. Since Hollerbach claims that his motion is almost rigid
body rotation, this result is compatible with the fact that the one distinguishable
contour Ω = − 1/15 ≈ −0.067 of the last of his figures 4 lies outside the tangent
cylinder. Despite this agreement the corresponding estimate Ω† ∼ −(7/16)∆4Λ1/2 ≈
− 0.022 though of slightly larger magnitude than (5.3) still remains small compared
to Hollerbach’s rough estimate of 1/15. A similar discrepency is apparent in Dormy
et al.’s (1997) largest Λ-case illustrated in their figure 6.

A clue to the explanation of the discrepency can be seen the contour plot for ψ
in Hollerbach’s figures 4. On the outer sphere – but outside the boundary layer –
where ψ = ψo, its maximum occurs close to the tangent cylinder. For the almost pure
Ekman layer on the outer sphere, the result (A3) indicates that, while Ω remains
constant, the analytic value ψo continues to increase. Only when the outer equatorial
ring layers are reached does ψo decrease; it does so in concert with the magnitude |ΩG|
of the geostrophic angular velocity, which is brought into co-rotation with the outer
sphere. Since, however, the magnetic field is relatively weak near the outer sphere, the
magnetic–Proudman layer there is very thick; according to (3.24) and (2.7b), its width
is

δPe

ro
=

1

2

(
2E1/2

∆6Λ

)4/7

, (5.4)

giving δPe ≈ 0.7112 for the strongest field case Λ = 16.0. It indicates that departures
from almost rigid rotation occur at radial distance ro − δPe ≈ 0.7888, which is
tantalizingly close to the inner-sphere radius ri = 0.5 compatible with Hollerbach’s ψ-
plots. For each of the weaker field cases the magnetic–Proudman length δPe increases
by factor 28/7. It means that even though Hollerbach indicates that a substantial
part of the flow – in his strongest field case – is close to rigid rotation, it must
make significant adjustments in the outer regions, as indicated by our §3.3 results.
Since the torque integral on the outer sphere is heavily weighted in that region,
it is reduced by a very large factor which can easily (and must!) account for the
discrepancy noted. In Appendix C, we attempt to quantify the corrections due to the
existence of the outer magnetic–Proudman layer. Though the tendency to increase Ω†

is clearly predicted by (C3), the expansion parameter 2δPe/ro is never small in any
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ΛDCJ

EDCJ 0.1 1.0 10.0 δSe/ro

10−3 0.3052 0.0819 0.0220 0.0956
10−4 0.1581 0.0424 0.0114 0.0381
10−5 0.0819 0.0220 0.0059 0.0152
10−6 0.0424 – – 0.0060

Table 2. δPe/ro for various values of EDCJ and ΛDCJ. The values of the E2/5 Stewartson length
δSe/ro are included for comparison.

of Hollerbach’s cases as required by the asymptotics. Consequently, no quantitative
comparison is justified. Nevertheless, the result does emphasize the sensitivity of the
torque balance to this outer region. We stress these points because Hollerbach draws
attention to the closeness of his numerical solution to a state of rigid rotation.

The central issue is the small size of ∆ = 1
3
; Hollerbach (1994) has not reached

the asymptotic regime assumed in our development. Though we can make useful
comparisons of some features, it is important to appreciate the limitations. The most
significant is that isolated above, namely that outside the tangent cylinder he has not
attained the thin magnetic–Proudman equatorial ring layer limit δPe � 1 necessary for
the validity of the §3.3 asymptotic analysis. Dormy et al. (1997), on the other hand,
clearly obtain this asymptotic limit. To make comparisons we note that their Ekman
and Elsasser numbers are related to ours by

EDCJ = E/r2
o and ΛDCJ = ∆6Λ/r2

o (5.5)

respectively. The corresponding values of δPe/ro for the values of ΛDCJ used in Dormy
et al.’s (1997) figures 13 and 16 – but larger than those (5.3a) employed by Hollerbach
(1994) – are listed in table 2, where E = 2.25EDCJ, ∆6Λ = 2.25ΛDCJ (Λ = 1640.25ΛDCJ).

Significantly, (3.28) implies that δPe/ro is the distance in their units from the outer
sphere at which the rotation rate is one half the value outside the magnetic–Proudman
layer. On that basis the comparison is remakably sharp. Furthermore, their figure 12
confirms that the zonal flow in this layer is geostrophic for the case EDCJ = 10−5.
Note, however, that the E2/5 Stewartson layer is of relatively wide thickness δSe/ro
(see (3.29b)) and only lies convincingly inside the magnetic–Proudman layer for the
weakest field case ΛDCJ = 0.1. For the other cases, ΛDCJ = 1.0 and 10.0, interior radial
friction clearly smooths out the solution. It also explains why the (ro− s)7/4 behaviour
predicted by (3.29a) is not discernible as s ↑ ro. Despite the viscous smoothing the
numerical results provide convincing vindication of our magnetic–Proudman layer
solution.

6. Geophysical implications
Whereas the magnitude of the differential rotation is never greater than the relative

velocities of the inner and outer spheres, its gradient may achieve larger values. Across
the tangent cylinder the peak value order-of-magnitude estimates

O
(
Ω − Ω†

)
=


1 when Λ 6 O

(
E3/7

)
Λ−7/8E3/8 for E3/7 � Λ � E1/3

E1/12 when Λ = O
(
E1/3

)
Λ5/32E1/32 for E1/3 � Λ � 1

(6.1a)
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and

O

(
∂Ω

∂s

)
=



E−1/4 when Λ 6 O
(
E1/2

)
Λ1/2E−1/2 for E1/2 � Λ � E3/7

E−2/7 when Λ = O
(
E3/7

)
Λ−3/8E−1/8 for E3/7 � Λ � E1/3

E−1/4 when Λ = O
(
E1/3

)
Λ9/32E−11/32 for E1/3 � Λ � 1

(6.1b)

can be identified as follows. In the weak field regime (Λ � E1/2) the largest gradients
occur in the E−1/4 Stewartson layer and magnitudes are fixed by (3.14). In the
intermediate field regime they occur in the Hartmann layer; the magnitudes are fixed
by (3.19) in the range (E1/2 � Λ � E3/7) and (3.22) in the range (E3/7 � Λ � E1/3).
The results show that the large shear is associated with the geostrophic velocity ΩG(s)
and is suppressed by the magnetic field in Hartmann layers. In the strong field regime
(E1/3 � Λ � 1), the strong shears are limited to the Hartmann–Stewartson layer
stump attached to the equator of the inner core. We estimate sizes of Ω(s, z) and
∂Ω/∂s on the basis of the inner core boundary results given by the limit |s− ri| ↓ 0 of
(4.6b) evaluated on the stump width O(E3/8/Λ1/8) (see (4.15)). In this small stump, the
shear remains strong though localized by the strengthening of the magnetic field; this
result contrasts dramatically with the suppression caused by the Hartmann layers in
the intermediate field regime.

There is one important qualification to the above estimates, which are based on
typical values in the various regions. For all values of Λ, the strongest shears are
located on the tangent cylinder at the edge of the E2/5 equatorial Ekman layer. There
at z = O(E1/5) (4.6b) gives Ω − Ω† = O(1 + ΩGB) and ∂Ω/∂s = O((1 + ΩGB)E−2/5).
This equatorial singularity is relatively weak for Λ � E3/7, since ΩGB is close to − 1.
When Λ � E3/7, however, ΩGB is close to Ω†. Thus the shear gradient near the equator
z = 0 is of order E−2/5 independent of Λ; it decreases rapidly with increasing z along
the tangent cylinder. Indeed, when Λ � E1/3 that rate of decrease is enhanced as
reflected by the decrease in length of the Hartmann–Stewartson layer stump. The
essential point is that though the meridional magnetic field acts to reduce the shear
throughout the bulk of the fluid shell, it exacerbates the angular velocity jump across
the inner-sphere Ekman–Hartmann layer so strengthening the equatorial singularity.
This idea is confirmed by Dormy et al.’s (1997) numerical investigations, where
the second of their figures 6 illustrates the strong shear and even the overshooting
behaviour that we predicted from (4.14).

The intensification of the shear for Λ � E3/7 leads to strong inductive effects,
which may even lead to ‘runaway’ growth of the dynamo. By that we mean that
magnetic field generation leads to a positive feedback. This concept has long been
recognized in the case of convective dynamos (Eltayeb & Roberts 1970), and has
often been used to argue that the Elsasser number Λ be at least of order unity for
dynamo equilibration (see e.g. Roberts 1988). Nevertheless, the idea must be applied
in our context cautiously, as the cross-sectional area O(E1/2/Λ1/2) of the Hartmann–
Stewartson layer stump (see (4.15)) decreases with increasing Λ above E1/3; therefore,
the total inductive effect appears to decrease. Nevertheless, we have clearly identified
a mechanism for intensifying shear in the neighbourhood of the equator to the inner
sphere, which may explain features of recent numerical results (Glatzmaier & Roberts
1995a,b, 1996a,b). We end, however, with a cautionary remark. Those calculations
(also Sarson et al. 1997) involve the use of hyperdiffusivity on toroidal surfaces. This
means that, on the one hand, Ekman–Hartmann layers are faithfully reproduced;
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on the other, radial friction is significantly enhanced with the consequence that the
axial shear layers discussed in this paper are thickened considerably. Essentially, for
comparison purposes a larger effective Ekman number is required in the formula
(6.1).
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Appendix A. The Ekman–Hartmann layers
We summarize the results for the Ekman–Hartmann layers adjacent to the inner

and outer spheres appropriate to our analysis. Assuming the dominance of the radial
derivatives, (2.4c) integrates giving ∂J/∂r = − br(Ω − Ω±), where the subscript ±
indicates mainstream values just outside the boundary layers on the inner (+) and
outer (−) spheres. In this way (2.4a,b) reduce to

− 2 cos θ

s2
∂ψ

∂r
= −Λb2

r (Ω − Ω±) + E
∂2Ω

∂r2
, (A 1a)

2s2 cos θ(Ω − Ω±) = −Λb2

r

∂ψ

∂r
+ E

∂3ψ

∂r3
, (A 1b)

In the conventional complex notation, the solution satisfying the mainstream and
wall (w) boundary conditions is

(Ω − Ω±) +
i

s2
∂ψ

∂r
= (Ωw − Ω±) exp

[
∓λw(r − rw)/E1/2

]
, (A 2a)

where

λ2
w := Λb

2

r + 2i cos θ (Re λw > 0). (A 2b)

For Hollerbach’s (1994) dipole field (2.7), it is

λ2
w = cos θ

(
2i + 4

9
Λ
[
ri/rw

]6
cos θ

) (
br = − 2

3

[
ri/rw

]3
cos θ

)
. (A 2c)

Integration across the boundary layer applying the boundary conditions ψ = J = 0
on r = rw (w = i or o) yields the important results(

− J

br
+ i

ψ

s2

)
r=rw

= ±E1/2 Ωw − Ω±
λw

, (A 3a)

S± = ±E1/2s2B±(Ω± − Ω±), (A 3b)
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where

cos θB± := Re λw =

 (cos θ)1/2 + O(Λ) for Λ � 1 ;

2
3
Λ1/2

(
ri/rw

)3
cos θ + O

(
Λ−1/2

)
for Λ � 1

(A 3c)

for their mainstream values at the edges of the Ekman–Hartmann boundary layers.

Appendix B. Torque balance: almost rigid rotation
When

Λ � E1/2, (B 1)

the mainstream flow is in almost rigid rotation Ω†. Within the framework of that
approximation the dimensionless torques T+ (on the inner sphere) and T− (on the
outer sphere) reduce via (A3) to

T± := ∓ 4π

∫ rw

0

sS± ds = 4πE1/2(Ω† − Ωw)

∫ rw

0

s3B± ds (B 2a)

yielding

T± = 4πE1/2r4
w(Ω† − Ωw)V

(
2
3
Λ1/2

(
ri/rw

)3
)
, (B 2b)

where V is a function of a single variable:

V(x) := Re

{∫ π/2

0

(
x2 cos2θ + 2i cos θ

)1/2
sin3θ dθ

}
. (B 3a)

Its asymptotic forms are

V(x) =


8
21

for the Ekman limit x � 1

1
4
x for the Hartmann limit x � 1 .

(B 3b)

Since the torques on the spheres are equal in magnitude but opposite in sign. The
global torque balance (3.5), equivalently T+ = −T−, implies that

Ω† = −
[

1 +
V
(

2
3
Λ1/2∆3

)
∆4V

(
2
3
Λ1/2

)]−1 (
∆ :=

ri

ro

)
. (B 4)

For small ∆,

∆ � 1, (B 5)

we may distinguish three limiting cases:

Ω† ∼


−∆4 for the Ekman limit Λ � 1 (B 6a)

− 7
16
∆4Λ1/2 for 1 � Λ � ∆−6 (B 6b)

−∆ for the Hartmann limit ∆−6 � Λ; (B 6c)

the middle case is hybrid – the inner and outer boundaries have Hartmann and
Ekman characters respectively.
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Appendix C. Torque balance modification due to the magnetic–Proudman
layer

In the large-gap limit

E1/2r−1
o � ∆6Λ � 1 (C 1)

the outer magnetic–Proudman layer width δPe (3.24) remains small compared to the
outer-sphere radius ro for Hollerbach’s (1994) dipole field (2.7), while the outer-sphere
boundary layer has an Ekman layer character. The torque on the outer sphere, which
takes into account the outer magnetic–Proudman layer solution (3.28), is

T− = 4πE1/2r4
oΩ
†

[
V(0) −

∫ π/2

0

δ
7/4
Pe

ρ7/4 + δ
7/4
Pe

(cos θ)1/2 sin3θ dθ

]
, (C 2a)

in the notation of §3.3 and Appendix B. Asymptotic evaluation on the basis that
δPe � ro yields with (B3a) the result

T− =
32π

21
E1/2r4

oΩ
†

[
1 −

(
3π

4 sin(3π/7)

)(
2δPe
ro

)3/4
]
. (C 2b)

In our limit (C1), (B6b) is modified to

Ω† = − 7

16
∆4Λ1/2

[
1 +

(
3π

4 sin(3π/7)

)(
2δPe
ro

)3/4
]

with δPe � ro . (C 3)
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