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The effect of different nonlinearities (Ampere force and Hall effect) on the saturation of a magnetic 
field generated by flows of conducting fluid is studied by means of numerical simulations. A 
three-fluid (i.e., ions, electrons, and neutral particles) model is considered. The velocity field of the 
neutral particles is a prescribed, deterministic, incompressible three-dimensional field in the form of 
the Arnol’d-Beltrami-Childress (ABC) flow. The dynamics of the charged components of fluid is 
determined by two-fluid magnetohydrodynamics when ion-neutral particle collisions are taken into 
account. Four typical regimes of the nonlinear evolution of the magnetic field, corresponding to 
different types of nonlinearities (Ampere force or Hall effect) and different types of collisions 
(ion-ion collisions or ion-neutral particle collisions) are found. The transitions between these 
regimes, the structure of the saturated magnetic field, and the evolution of the magnetic field in these 
regimes are studied. Scaling estimates of the level of the saturated magnetic field and conditions 
obtained for the different regimes of the magnetic field evolution are in agreement with the results 
of the numerical simulations. 0 1995 American Institute oj’ Physics. 

I. INTRODUCTION 

Investigations of the nonlinear mechanisms of saturation 
of the growth of the magnetic field caused by flows of con- 
ducting fluid are important from the point of view of the 
theory of the generation of magnetic fields and various cos- 
mic and laboratory applications.1-6 A number of publications 
on the turbulent nonlinear dynamo7-‘Y and the laminar non- 
linear dynamo”-“’ have concentrated on the study of one- 
fluid magnetohydrodynamics (MHD). In the laminar dynamo 
the velocity field of the conducting fluid is deterministic; 
whereas in the turbulent dynamo it is random. 

Recently, in the framework of two-fluid MHD, the non- 
linear evolution of the magnetic. field has been investigated 
for a deterministic” and turbulenta4’2” velocity field. The 
nonlinearity in these studies is due to the Hall effect. The 
influence of the magnetic field on the motion of the ions is 
negligibly small. Therefore this nonlinear dynamo model is 
kinematic in the sense that the evolution of the magnetic 
field is determined by a prescribed velocity field. 

In the present paper we study dynamical effects. This 
means that together with the Hall effect we take into account 
the influence of the Ampere force on the motion of the ions. 
We consider a three-fluid (i.e., ions, electrons, and neutral 
particles) model. The motion of the neutral particles is cho- 
sen as a prescribed deterministic incompressible three- 
dimensional flow ‘in the form of the ABC flow, since its 
properties are well studied.26-37 The dynamics of the charged 

components of the fluid is determined by two-fluid MHD 
when taking into account ion-neutral particle collisions. 
This model represents weakly ionized plasma, where the ef- 
fect of the charged component of the plasma on the motion 
of the neutral particles is negligibly small. Examples of such 
media include ionospheric plasma at low altitudes and labo- 
ratory plasma.38-4’ Four typical regimes of the nonlinear 
evolution of the magnetic field corresponding to different 
types of nonlinearities (Ampere force or Hall effect) and dif- 
ferent types of collisions (ion-ion collisions or ion-neutral 
particle collisions) are found here. The transitions between 
these regimes are studied numerically. .The structure of the 
saturated magnetic field and the evolution of the magnetic 
field in these cases are investigated. 

II. THE GOVERNING EQUATIONS 

We consider three-fluid MHD for electrons, ions, and 
neutral particles. The momentum equations for electrons and 
ions are given byfzY4* _. 

X (V,-J'i) + y (U-Vi), (1) 

= -Vp,-enE- F (v,Xb)- z (ve-vi) 

*)Present address: Department of Chemical Physics, Weizmann Institute of 
Science, Rehovot ‘76100, Israel. 
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+----- yr (u--+-e), (2) 

V.U-V.Vi=V.V,=O; V.b=O, (3) 
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where 
ISviXble 

I 
& bX(Vxb) t 

I dv dv 
;I;= z+(v.V)v, 

V e, vi, and u are the electron, ion, and neutral particle ve- 
locities, respectively, m, and mi are the electron and ion 
masses, pe and pi are the electron and ion pressures, Tin, 
re,, , and rei are the ion-neutral, electron-neutral, and 
electron-ion collision times, respectively, ze is the ion 
charge, e is the electron charge, n is the electron number 
density, ni is the ion number density, and c is the light speed. 
The relationship zni= n is due to the electrical quasineutral- 
ity of plasma, E is the electric field, and b is the magnetic 
field. 

We neglect the inertia of electrons m,n(dvJdt) in Eq. 
(2) because m,emi. Ohm’s law follows from Eq. (2): 

(4) 

where the electric current is j=en(v,-vi), VXb=(4dc)j 
and we consider for simplicity the case r,,+ ren . The elec- 
trical conductivity is then u= e2rz TJrn, . The second term in 
Ohm’s law describes the Hall effect. 

When the electric field E is taken out of Eq. (4) and 
substituted into the Maxwell equation 

db 
-=-c(VxE) 
a7 

we obtain the induction equation: 

& bx(Vxb)- +‘xb (6) 

where v= c2/4 7tcr is the magnetic diffusivity. The second 
term in Eq. (6) describes the Hall effect. 

The sum of Eqs. (l)-(2) yields 

-Vp+-!(jXb)+F (Uevi), (7) 

where p=pi+p,, and we take into account that m,<mi . 
The second term in Eq. (7) describes the inlluence of the 
magnetic field on the motion of plasma. It follows from Eqs. 
(4)-(7) that this term corresponds to a cubic nonlinearity 
(-b3ri/4mminiZr,) in terms of the magnetic field in the in- 
duction equation. Here ri is the characteristic time of the ion 
component of the plasma and lb is the characteristic scale of 
the magnetic field variations. In contrast, the nonlinearity in 
the induction equation caused by the Hall effect [the second 
term in Eq. (6)] is a quadratic nonlinearity in terms of the 
magnetic field. 

Now let us compare these two kind of nonlinearities. 
First, we consider the case 7in~ 7i. It follows from Eq. (7) 
that the variation of the ion velocity SUi under the influence 
of the generated magnetic field is 

SVi-- ri }jxbl. 
IRjnjC 

The cubic nonlinearity is not as effective as the quadratic if 

This leads to the following criterion: 

WHiTi 1, (8) 

where ~~~=ebl(rn~c) is the ion gyrofrequency. When the 
ion characteristic time ri is much longer than rin, the Hall 
nonlinearity is dominated if 

W&i-jne 1. (9) 
In the intermediate case, when ri- 7in, the criterion (8) co- 
incides with (9).23 

The case of the quadratic nonlinearity caused by the Hall 
effect ( wHiri+ I) was considered in Ref. 23. This cor-re- 
sponds to two-fluid MHD. On the other hand, the case of the 
cubic nonlinearity in the dynamo of ABC flow in one-fluid 
MHD was studied in Ref. 22. In the present paper we inves- 
tigate the more general case where both nonlinearities (Am- 
pere force and the Hall effect) may be of the same order of 
magnitude. We also study the effect of ion-neutral particle 
coupling on the evolution of the magnetic field. The follow- 
ing system of momentum and induction equations is solved 
numerically: 

fR,‘AVi+fABC, (10) 

~=Vx[ViXs-l-h~X(VXB)l+R,‘AB, 111) 

V’Vi=O, V’B=O. (12) 

Equations (lo)-( 11) are written in dimensionless variables: 
coordinates, velocity, and time are measured in the units 
z,=k;‘, ug, and rO, respectively; the magnetic field B is 
measured in units of Be= uo(47rmini) 1’2, the kinematic Rey- 
nolds number is R,= L$( rev), v is the kinematic viscosity, 
the magnetic Reynolds number is R,= l$( 7. v), the body 
force is fABC= -I?, ’ AUABC , where UABC is the ABC flow, 
and P is the pressure measured in the units min&, Here we 
take into account a small but finite kinematic viscosity of the 
ions II. The dimensionless parameters of the system are given 
by 

A’(Cl~jTo)-‘* T=TO/Tjn, 

where ClnBi=eBO/mic and T, A are positive control param- 
eters. Different values of the parameters determine the vari- 
ous regimes of solutions. The criterion (9) can be rewritten 
as 

B/AT@ 1. 03) 
This condition corresponds to the predominance of the Hall 
nonlinearity. In this case the main balance in the induction 
equation is 

~,xBI-A[Bx(V xB)j. (14) 

On the other hand, the influence of the Ampere force on the 
motion of fluid can be neglected, i.e., 
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JBX(VXB)}~TIU-Vii. (15) 
It follows from Eq. (14) that the level of the magnetic field in 
saturation is given by 

B-I/h. (16) 

Here we take into account that IUl-lVil- 0( 1). Substituting 
(16) in (13) yields the condition for when the Hall nonlin- 
earity dominates 

A’TS 1. (17) 
Note that in this regime TSR, ‘. This case corresponds to a 
two-fluid (electron-ion) model and was studied in detail in 
Ref. 23. This regime is called the % regime. 

Now we consider an opposite case, when the influence 
of the magnetic field on the motion of ions is strong and the 
Hall effect is not substantial. This means that the main bal- 
ance in the momentum equation is 

~BX(VXB)I--T~J-V~~, (18) 

whereas in the induction equation the nonlinear in B term is 
small: 

Iv~xBIsAIBx(VXB)I. (19) 
Condition (18) yields the saturation level of the magnetic 
field B-T112. This case corresponds to a two-fluid (ion- 
neutral particles) model. This regime is called the gregime. 

The !? regime can be interpreted in terms of “ambipolar 
diffusion” (see, e.g., Refs. 43-45). The ambipolar diffusion 
is taken into account in the term T (U-V,) in the momentum 
equation (10). In order to get the coefficient of the ambipolar 
diffusion we take the velocity Vi from Eq. (18) and substitute 
it in the induction equation (11). It yields after simple ma- 
nipulation the total diffusion coefficient v,, in the nondimen- 
sional form 

B2 1 
170’T + R,’ (20) 

where the second term determines the magnetic diffusivity 
whereas the first term is the nonlinear coefficient of the am- 
bipolar diffusion. Equation (19) allows us to obtain more 
rigorous estimation of the level of magnetic field in satura- 
tion for the ‘Z?regime. If v. = 1 /Rz , where Rz is the critical 
magnetic Reynolds number for excitation of the magnetic 
field, then the level of magnetic field in saturation for the %’ 
regime is given by 

112 
B--T’/2 . R,>R;. (21) 

Criterion (19) is reduced to 

’ (22) 

where T% RJ ’ and we take into account Eq. (21). 
When time of ion-neutral particle collisions is much 

longer than the characteristic time r. (i.e., T4 1; R, ‘), the 
main balance in the momentum equation is 

IBX(VXB)I-R,'lAViI (23) 

and the condition (19) is still valid. It follows from (23) that 
the level of the magnetic field in saturation in this case is 
given by 

B-R,‘, (24) 
and criterion (19) is reduced to 

R,“2h4 1. w 

This case corresponds to the one-fluid MHD model and was 
studied in Ref. 22. This regime is called the %’ regime. 

III. NUMERICAL SIMULATIONS 

The nonlinear equations (lo)-(11) have been solved nu- 
merically in a 2rr-periodic domain. The time-marching 
scheme is a second-order Adams-Bashforth scheme in 
which diffusion is treated exactly. The nonlinear terms are 
calculated using a Fourier (pseudo)-spectral method in space. 
Since the calculation of the nonlinear terms is the major part 
of the whole computation, an attempt to minimize the num- 
ber of fast Fourier transforms (FFT) has been made. For a 
three-dimensional Navier-Stokes equation eight FFT’s are 
required.46 The number of FIT’s increases to 14 when solv- 
ing the induction equation and three additional PET’s are 
needed when including the pure Hall nonlinearity. This is in 
comparison with the computation of the pure nonlinear Hall 
effect that requires only nine FIT’s (see Ref. 23). 

The velocity field of neutral particles U is given as an 
ABC flow: 

U= UABc= [A sin( koz) + C cos( ksy ), 

B sin(kcx) +A cos(koz). 

C sin(koy)+B cos(kox)], 

withA=B=C=l andthewavenumberko=l. 
W) 

The computations have been tested against various pre- 
vious known simulations. In particular, the solution was 
compared for T= 0 and A=0 to that obtained in Ref. 22 and 
for Vi=U=U,, and A= 1 to that in Ref. 23. 

Our focus in this computation is on the behavior of the 
full nonhnear system (IO)-(11) and the study the different 
contributions of the various nonlinearities. There are four 
control parameters as they appear in Eqs. (lo)-(ll), namely, 
T, A, R, , and R, . A complete study of the full parameter 
space is very difficult, and therefore we choose to reduce it to 
the most important two-dimensional parameter space: 
(T,A). The kinematic and magnetic Reynolds numbers are 
kept constant R, = R,E = 12. For this value of kinematic Rey- 
nolds number, the velocity field is found stable hydrody- 
namically (see’ Refs. 31 and 33). Moreover, this value of 
magnetic Reynolds number belongs to the first dynamo win- 
dow of the kinematic problem, and ensures a maximal 
growth rate of the magnetic field in this window (see Ref. 
30). Since the magnetic Reynolds establishes the smallest 
scale of the magnetic field, the number of modes in the 
present simulation is as much as necessary to resolve all 
existing scales. In particular, the number of modes for 
R, = R, = 12 is 163. This relatively low resolution simulation 
enables an extensive and fine study of the parameter space 
and the obtaining of the precise location of the various re- 
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FIG. I. Time evolution of the magnetic energy modes Ef for different A 
and T that corresponds to four characteristic types of magnetic field evolu- 
tion: (a) .Y? regime; (b) 3’ regime; (c) Y regime: (d) ?-regime. 

gimes in the phase space. For all simulations, a given weak 
seed magnetic field is taken as an initial condition. 

Figure 1 shows the time evolution of the magnetic en- 
ergy modes E: = fXl,l E c,lBlk1/2 in spherical shells 
CK= {K- $Glkl<K-+- i}. Here k is the wave-number vec- 
tor and K is the number of the spherical shell. The six most 
energetic shells are shown. Four characteristic examples of 
the time evolution of the magnetic energy are presented. Fig- 
ure l(a) corresponds to a regime where the Hall effect is not 
substantial (A=O.OlG 1) and the characteristic time of ion- 
neutral particle collisions is very long in comparison with ra 
(i.e., T=O.O 14 I, R, ‘). In this case the criterion 
R; “*I!< 1 is valid. The main nonlinearity that results in the 
saturation of growth of the magnetic field at t= 1000 is the 
Ampere force. The level of the magnetic field is approxi- 
mately determined by Eq. (23) and it is of the order of 
B-R - * 12. This case may be described by the one-fluid 
MHDemodel and is identified as the .A regime. 

Note that at t = tsba 2 850 there is an abrupt change in 
the magnetic energy. This transition is typical to this regime. 
The ABC flow for the case A = B = C has 24 symmetries.26 
The magnetic field which has some of the symmetries of the 
ABC flow in the primary saturation3’ loses them by symme- 
try breaking at t = t,b and stabilizes in a secondary saturation 

N- m 
9 

2 

(0.0.1) - 1 (0.0.1) - 1 
(0.1.0) (0.1.0) - - 2 2 
(1.0.0) - 3 
(1.0.1) (1.0.1) - - 4 4 
(0,l.l) - 5 
(1.1.0) - 6 (1.1.0) - 6 

f 

FIG. 2. Time evolution of the magnetic energy of .fl regime for the main 
mode K= 1 and mode K> 1 before the symmetry breaking (A=O.Ol, 
T=O.OI). 

at t>tsb. A similar transition was found in Ref. 22. Starting 
from a given random initia1 condition the magnetic field 
grows exponentially and then stabilizes in a form similar to 
that of the % regime (see below). After a relatively long 
time, marginally unstable weak modes of the magnetic and 
velocity fields with K> 1 become important and interact 
with stable modes of the magnetic and velocity fields (see 
Fig. 2). The result of this nonlinear coupling is a rapid tran- 
sition and stabilization into a new configuration, i.e., a sym- 
metry breaking. 

In Fig. 3(a) the contour surfaces of the magnetic field IBI 
at two instants are shown: at t =2000 (before the symmetry 
breaking) and t=3200 (after the symmetry breaking). It is 
seen that before the symmetry breaking the magnetic field is 
concentrated within cigar-like forms close to the four a-type 
stagnation points of the ABC flow. For t> t,b the cigar-like 
forms of the magnetic field completely cohapse. 
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t = 2000 t = 3200 

(4 

FIG. 3. The contour surfaces of the magnetic field IBI for four characteristic 
types of magnetic field evolution: (a) 9 regime; (b) 98 regime; (c) %? 
regime; (d) Fregime. 

Figure l(b) displays an opposite limiting case where the 
Hall effect is dominant (h=lO), and the influence of the 
magnetic field on the motion of the ions is negligibly small. 
The level of the magnetic field in saturation is determined by 
Eq. (14). It is given by B-A-’ and found to be in good 
agreement with the numerical results. The oscillations which 
characterize the linear regime die away, leading to a steady- 
state solution without oscillations. .The distribution of the 
energy in the different energy modes shows that the energy 
in the first energy shell E, has a much more significant mag- 
nitude than that of the remaining Ef for K3 1 (see Ref. 23). 
The structure of the magnetic field in this case [see Fig. 3(b)] 
is entirely different from that of the pure Ampere nonlinear- 
ity case [Fig. 3(a)]. This regime is the % regime. 

In the case of the sregime symmetry breaking does not 
occur. The solutions typical of the X regime have in general 
different symmetry groups compared to the symmetries of 
the ABC flow.= The marginally unstable modes with K> 1 
observed in the 9 regime are not generated during the non- 
linear evolution in the % regime and the velocity field is not 
changed in this regime. 
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Now we consider the case when the effect of the Ampere 
nonlinearity is much stronger than that of the Hall nonlinear- 
ity, and the ion-neutral particle collisions predominate over 
the ion-ion collisions (i.e., TSR, ‘). The evolution of the 
magnetic field in this case is shown in Fig. l(c) for T= 10 
and h=O.Ol. The level of the magnetic field in saturation in 
this case is determined by Eq. (21). The symmetry breaking 
does not appear here and the magnetic field keeps the cigar- 
like form [see Fig. 3(c)]. This regime is the Wregime. 

While the fact that the predominant nonlinearity in both 
the 9 and g regimes shown in Figs. l(a) and l(c) is the 
Ampere force, the main difference between these two cases 
is due to the mechanism of dissipation. In the regime shown 
in Fig. l(c) the friction force F,f is independent of the inho- 
mogeneity of the ion velocity and is determined by the ion- 
neutral particle collisions [i.e., when T is sufficiently large, 
and the friction force Ff= T(U-Vi)]. On the other hand, the 
friction force in the case of symmetry breaking [Fig. l(a)] is 
determined. by ion-ion collisions and depends on the inho- 
mogeneity of the ion velocity (Ff= R, * AVJ. Therefore, the 
difference in dissipations here determines the different 
mechanisms of reconstruction of the ion flows under the in- 
fluence of the magnetic field. As follows from the numerical 
simulations, the change in the ion velocity in the vicinity of 
the region of generation of the magnetic field (the stagnation 
points) is not accompanied by a strong reconstruction of 
flows in the case of the Fregime [Fig. l(c)], whereas in the 
case of the .9 regime [Fig. l(a)] reconstruction of the ion 
flow is substantial (up to the destruction of the stagnation 
points in the moment of symmetry breaking). 

The ?9’ regime can be interpreted in terms of the ambi- 
polar diffusion (see Sec. II). It was found by Refs. 45, 47, 
and 48 that the nonlinear nature of the ambipolar diffusion 
for large magnetic Reynolds number leads to the formation 
of both sharp structures in the magnetic field near magnetic 
nulls and extended force-free regions. The probability den- 
sity~ function (PDF) for the ratio quantity 

was calculated for all regimes in order to find regions with 
force-free magnetic fields. .The probability rises with 4. ‘The 
maximum of the PDF is always found where 4 tends to one. 
This indicates that we do’not have any force-free magnetic 
fields. Note that there is a difference between the problems 
considered in our paper and those studied in Refs. 45, 47, 
and 48: 

(a) We use a specific three-dimensional laminar velocity 
field in the form of an ABC flow with div U=O, 
whereas in Refs. 45, 47, and 48 the flows are two di- 
mensional and div V, # 0, where VD = Vi -U, U is the 
velocity of neutral particles, and Vi is the ion velocity. 

(b) The most crucial parameter that determines the basic 
difference between our simulations and that considered 
in Refs. 45, 47, and 48 is the magnetic Reynolds num- 
ber R, . WeusealowR,=12. 

This difference is the reason why in the e regime there 
is no formation of sharp structures in the magnetic field near 
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FIG. 4. Transition from the case of pure Ampere nonlinearity (A=O.Ol) to FIG. 5. Transition from the case of pure Amp&e nonlinearity (h=O.Ol) to 
the case of pure Hall nonlinearity (A-+1) for T= 0.0 1. the case of pure Hall nonlinearity (A-+1) for T= 10. 

magnetic nulls and no formation of extended force-free re- 
gions. Near magnetic nulls in our case there is no generation 
of the magnetic field, because the generation of magnetic 
field in ABC flows occurs near the stagnation points of the 
velocity field (if they exist). There are no force-free struc- 
tures in .YS’, 5, and ,Y regimes because the presence of a 
nonzero Ampere force is a necessary condition for the exist- 
ence of these regimes. 

A rise in the parameter A results in an increase in the 
influence of the Hall effect on the evolution of the magnetic 
field. This is seen in Fig. l(d) for the time interval lOOO< t 
<2800. This regime is the Yregime. The energy in the first 
shell E 1 has a much more significant magnitude than that of 
the remaining Eg for K> I. The same property was found 
for the pure Hall effect regime [compare with Fig. 1 (b)]. The 
structure of the magnetic field in this time interval can be 
considered as an intermediate stage between the case shown 
in the left picture of Fig. 3(a) and the blob-like structure that 
is typical for the pure Hall nonlinearity regime [see Fig. 
3(b)]. At t = 2 800 symmetry breaking appears. The Hall ef- 
fect in this case results in the structure of the magnetic field 
not being completely destroyed. Indeed, the traces of the 
cone-like forms are kept after the symmetry breaking [see 
Fig. 3(d) at t=3200J 

(4 F 
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( 4 $2 
5 
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t 

Transition from the case of the pure Ampere nonlinearity 
(A=O.Ol) to the case of the pure Hall nonlinearity (h-l) is 
presented in Fig. 4 for T= 0.0 1 and in Fig. 5 for T= IO. The 
quasiharmonic oscillations of the function In E$ that are 
typical for the pure Ampere nonlinearity [see Figs. 4(a) and 
5(a)] are transformed to essentially unharmonic oscillations 
when A grows. The period of these oscillations increases 
with the increase in A. The oscillations fade away in the case 
of the pure Hall nonlinearity. Quasiharmonic osciliations of 
the magnetic energy for the pure Amp&e nonlinearity can be 
related to Alfvdn waves propagating along the magnetic field 
lines. In the case of the pure Hall nonlinearity (when there is 
no influence of the magnetic field on the motion of plasma), 
the oscillations of the magnetic field disappear, and thus the 
transformation of energy from the magnetic field into the 
flow of plasma vanishes and Alfvin waves cannot exist. 

Regions of parameters in the log A-log T diagram cor- 
responding to different regimes are shown in Fig. 6. The 
boundaries between different regimes can be determined in 
the following way. The boundary between ,%’ regime (the 
case of pure Hall nonlinearity) and the li; regime can be 
found by means of the comparison of conditions (17) and 
(22). The result is given by 
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for the different regimes of the magnetic field evolution are 
in satisfactory agreement with results of the numerical simu- 
lation. 

0 
c 

“: 

T 

FIG. 6. Diagram log A-log T of regions of parameters that correspond to 
different regimes of magnetic field evolution. 

h-T-“2 (27) 

The boundary between the ..%’ regime and xi regime can be 
obtained from (25) and (17): 

li-R;‘2. (28) 

Finally, the boundary between 3’ regime and 8’regime can 
be found by means of the condition TIU-Vii--R, ‘IAV,]. 
Therefore this boundary is determined by 

T-R;‘. (29) 
Criteria (27)-(29) as well as estimations of the level of the 
saturated magnetic field (16), (21) and (24) are in satisfac- 
tory agreement with the numerical simulations. 

IV. CONCLUSIONS 

The influence of nonlinearities (the Ampere force and 
the Hall effect) on the saturation of the magnetic field gen- 
erated by flows of conducting fluid is investigated numeri- 
cally. A three-fluid (i.e., ions, electrons, and neutral particles) 
model is considered. The velocity field of neutral particles is 
a prescribed deterministic incompressible three-dimensional 
field in the form of the ABC flow. The dynamics of charged 
components of fluid is determined by two-fluid MHD when 
taking into account ion-neutral particle collisions. Four dif- 
ferent regimes of the nonlinear evolution of the magnetic 
field corresponding to different types of nonlinearities (Am- 
pere force or Hall effect) and different types of collisions 
(ion-ion collisions or ion-neutral particle collisions) are 
found. The transitions between these regimes, structure of 
the saturated magnetic field, and evolution of the magnetic 
field in these regimes are studied. Analytical scalings for the 
level of the saturated magnetic field and derived conditions 

In this paper the Ampere and the Hall nonlinearities 
were investigated for constant magnetic (R,) and kinematic 
CR,) Reynolds numbers. Many interesting questions arise re- 
garding this problem. The main one is how the different re- 
gimes mentioned above (or new ones) take form in the limit 
of large magnetic and kinematic Reynolds numbers. It is well 
known that the velocity field undergoes several bifurcations 
and for sufficiently large R, it becomes fully turbulent. An- 
other possible approach is to investigate the problem for dif- 
ferent coefficients of the ABC flow or for other deterministic 
flows (which are kinematic dynamo too). It is known’0331 that 
the case where A = B = C is highly symmetrical compared to 
any other combination of ABC flow coefficients, thus we 
expect that some of the regimes will be absent or degenerate. 
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