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Nonlinear evolution of the magnetic field generated by a prescribed deterministic flow of a 
conducting fluid in form of the Arnold-Beltrami-Childress (ABC) flow is studied numerically. The 
nonlinearity is caused by the Hall effect. After the linear regime, the Hall term in the induction 
equation becomes important, leading to saturation of the magnetic field. The oscillations of the 
magnetic field which characterize the linear regime fade away into a steady state regime. The 
structure of the magnetic field can be viewed as a sum of two components: a field of the integral 
scale and a small-scale field. The large-scale field contains most of the energy of the system, 
whereas the energy of the small-scale field is very small. These results demonstrate significant 
difference between the actions of two types of nonlinearity in terms of the magnetic field: the 
Ampere force and the Hall effect. 0 1994 American Institute of Physics. 

I. INTRODUCTION 

Investigations of dynamo mechanisms are important 
from the point of view of various cosmic and laboratory 
applications.‘-5 Studies on the dynamo have focused on 
random6-‘9 and deterministic’0-27 flows of conducting fluids. 
Many of the works are devoted to the generation of the mag- 
netic field in prescribed deterministic flows which can be 
chaotic.28-30 

However, most dynamo models are linear and predict a 
field that grows without limit. Hence they give no estimate of 
the magnitude for the generated magnetic field. To determine 
the magnitude of the field the nonlinear effects which limit 
the field growth must be taken into account. The saturation 
of the magnetic field may be due to two kinds of mecha- 
nisms: the first is caused by the influence of the magnetic 
field on the motion of the fluid, namely the action of the 
Ampere force in the Navier-Stokes equation.lm4 The second 
is a self-induced mechanism which results in saturation of 
the kinematic magnetic instability (dynamo).31’32 The latter is 
due to the Hall effect in two-fluid magnetohydrodynamics 
(MHD).33*34 It is notable that the Ampere force yields a cubic 
nonlinearity in terms of the magnetic field in the induction 
equation, whereas the Hall effect is a quadratic. This above 
basic difference is essential for the energy level at saturation 
of the magnetic field as well as its spatial structure. 

The saturation of the magnetic field by means of the 
Ampere force was investigated analytically and numerically 
for various situations. These studies can be divided into two 
classes: turbulent convective systems which are typical to 
astrophysical situations like the Sun and stars.‘-4*‘8*‘9,35,36 
The other class is in simpler conditions, like considering the 
incompressible Navier-Stokes equation together with the in- 
duction equation in a periodic domain.97’0Y26 

An interesting investigation of the second class is a nu- 
merical study of the nonlinear saturation of the magnetic 
field due to interaction with a velocity field generated by a 

deterministic body force.26 It was shown that when the body 
force acts at the integral scale of the system, the saturated 
magnetic field has much lower energy level than that of the 
velocity field. It is notable that this forcing generates an 
Arnold-Beltrami-Childress (ABC) flow in the absence of 
magnetic field and below a certain critical Reynolds 
number.37*38 

The nonlinearity caused by the Hall effect in the dynamo 
of magnetic fluctuations excited by a random flow has been 
considered earlier.31$2 A mechanism of amplification of mag- 
netic fluctuations in the presence of zero mean field, pro- 
posed by Zeldovich,8’5 was applied to the theory by means of 
a nonlinear equation derived from the induction equation; the 
nonlinearity was associated with the Hall effect. The local 
spatial distribution of the magnetic field is intermittent: the 
field is concentrated inside flux tubes separated by regions 
with weak fields. The theory yields the maximum magnitude 
of the magnetic field inside the flux tubes and the cross- 
section of the tubes.3’,32 The Hall effect is dominant in the 
ionosphere of Venus. In particular, on the basis of this 
theory3 ’ magnetic field observations in the ionosphere of 
Venus39 are explained. 

In this paper we study by means of direct numerical 
simulation the nonlinear saturation of the magnetic field gen- 
eration caused by the Hall effect. The magnetic field is ex- 
cited by a prescribed deterministic flow of a conducting 
fluid. Our choice as a given velocity field is the ABC flow, 
since its properties are well studied,28-30,37 and leads to a 
generation of magnetic field. 2o-23,38 We are also interested to 
compare our results for the Hall-nonlinearity with those ob- 
tained with the Ampere force nonlinearity.26 Brief details of 
the physics of the Hall effect can be found in Sec. II. The 
numerical method and results of the study of the magnetic 
field evolution are in Sec. III. 
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II. THE HALL EFFECT 

The evolution of magnetic field can be described by the 
induction equation: 

&x(VxB)- ~VXB (1) 

where v=c*/4ra is the magnetic diffusivity, (T is the elec- 
trical conductivity, vi is the ion velocity, e is the electron 
charge, n is the electron number density, and c is the light 
speed. The second term in Eq. (I) describes the Hall effect, 
The induction equation (1) is derived from the Maxwell 
equations and the Ohm’s law. 

Let us discuss the Hall effect. We consider three-fluid 
MHD for electrons, ions, and neutral particles. The momen- 
tum equations for electrons and ions are given by3”*34 

+ y(ve-vi) + (2) 

= -VP,-enE- F(v,xB) 

(3) 

where 

dv av 
dt= at --+(v-V)v, 

v, , Vi, and u are the electron, ion, and neutral particle veloci- 
ties, respectively, m, and mi are the electron and ion masses, 
pe and pi are the electron and ion pressures, 7in, renr and 
7,i are the ion-neutral, electron-neutral, and electron-ion 
collision times, respectively, ze is the ion charge, ni is the 
ion number density. The relationship zni=n is due to the 
electrical quasineutrality of plasma, E is the electric tield. 

We neglect the inertia of electrons m,n(dv,ldt) in Eq. 
(3) because m,+mi. The Ohm’s law follows from Eq. (3): 

&BX(VxB)+ +i~B-; 32, , 
en (4) 

where the electric current is j=en(v,-Vi),V XB= (47rlc)j 
and we consider for simplicity the case reie ren _ So the 
conductivity is (T= e2n7,ilm,. The second term in the 
Ohm’s law describes the Hall effect. The sum of Eqs. (2)-(3) 
yields 

mitti =-VP+ -!(jxB)+ (5) 

where p=pi+p,, and we take into account that m,4mi. 
The second term in Eq. (5) describes the influence of the 

magnetic field on the motion of plasma. It follows from Eqs. 
(l), (4)-(S) that this term corresponds to a cubic nonlinearity 
( - B37i /4rrminiZ~) in terms of the magnetic field in the 
induction equation. Here ri is the characteristic time of ion 
component of the plasma, 2, is the characteristic scale of the 

magnetic field variations. In contrast, the nonlinearity in the 
induction equation caused by the Hall effect [the second term 
in Eq. (l)] is a quadratic nonlinearity in terms of the mag- 
netic field. 

Now let us compare these two kind of nonlinearities. 
First, we consider the case ~i,~ ri. It follows from Eq. (5) 
that a variation of the ion velocity Sui under the influence of 
the generated magnetic field is 

SVi- 5 IjXBI. 
The cubic nonlinearity is not as effective as the quadratic if 

[SViXBl+l &WxB)l. 

It leads to the following criterion: 

WHiTi< 1% (6) 

where o Hi= eB/(mg) is the ion gyrofrequency. Note that an 
external force can determine the characteristic time 7i of the 
ion component of plasma. 

Now we study the case when the ion characteristic time 
ri is much longer than Tin. Therefore, the solution of Eq. (5) 
is given by 

For an incompressible flow V *vi= V .u= 0, the pressure can 
be determined from Eq. (7): 

It follows from (7) that the variation of the ion velocity 
6Ui under the influence of the generated magnetic field is 

SVi- 2 IjXBl. 

Therefore, in this case the cubic nonlinearity is not as effec- 
tive as the quadratic if 

O&rinG 1. (81 
The effect of an external force F on plasma is reduced to an 
exchange of the ion velocity by a value TinlFl/miEi. It re- 
sults in the appearance of an additional external electromo- 
tive force in the induction equation (1). En the intermediate 
case, when Ti- Ti, , the criteria (6) and (8) are coincided. 

In this paper attention is restricted by taking into account 
the quadratic nonlinearity. Therefore, in the Ohm’s law (4) 
and in the induction equation (1) we replace the ion velocity 
Vi by the velocity u of a prescribed deterministic flow. 

III. NONLINEAR DYNAMO WITH ABC FLOW 

In nondimensional form the induction equation is given 
by: 

~=VX[UXB+BX(VXB)]+~~~*B, (9) 
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where coordinates and time are measured in the units 
lo=k, ’ = 1 and to= 1, the velocity U is measured in the 
units no= lo /to, the magnetic field B is measured in units of 
Bo=4men,l~lcto, and R,= louo Iv is magnetic Reynolds 
number. Nonlinear equation (9) has been solved numerically 
in a 2~ periodic domain. 

A. The numerical method 

Our numerical code utilizes a second-order Adams- 
Bashforth for time-marching scheme in which diffusion is 
treated exactly. The nonlinear terms are calculated using a 
Fourier (pseudo)-spectral method in space. The velocity field 
is given as an ABC flow: 

U=U,,o=(A sin(koz)+C cos(koy), 

B sin(kox)+A cos(koz), 

C sin( key) + B cos( kox)) (10) 

with A = B = C = 1 and the wave number k. = 1. The calcu- 
lation of the nonlinear terms is the core of the computation, 
and shares the major part of the total computation (see the 
results for Navier-Stokes equation4’). Therefore, the number 
of fast Fourier transforms (FET) should be minimized. Our 
code requires 9 FFT’s (6 inverse and 3 forward), and it seems 
to us to be the smallest number of FFT’s required for this 
problem. Equation (9) is normalized so we have only the 
magnetic Reynolds number R, as a control parameter. 

The computations have been tested (i) against the free 
decay of the solution B= U,,, which has a vanishing advec- 
tive term; (ii) by a verification of the results of Galloway and 
Frischz3 for the linear regime (i.e., by neglecting of the Hall 
term). 

The Hall nonlinear saturation was investigated by inte- 
gration of the equation, starting from weak seed of magnetic 
field. We considered three different magnetic Reynolds num- 
bers, namely R,= 12, 30, and 50 (hereafter referred to as 
Rl, R2, and R3 respectively). As follows from results22,23 of 
the linear problem the magnetic field is excited by the ABC 
flow within two windows of the magnetic Reynolds num- 
bers: the first one is for 9-K R,< 17.5 and the second one is 
for R,> 27. Therefore, for Rl, the magnetic Reynolds num- 
ber belongs to the first window of linear dynamo, while R2 
and R3 belong to the second window. 

Since the magnetic Reynolds establishes the smallest 
scale of the magnetic field, the number of modes in the 
present simulation is as much as necessary to resolve all 
existing scales. In particular, the number of modes for 
R,= 12 is 16” and for R,=30, 50 is 323. 

6. Results 

Figure 1 displays the time-evolution of the energy modes 
Eg= &ZI~I~~,]B~~~]~ in spherical shells CK={K- $ 
G 1 kl C K + i}. Here k is the wave number and K is the num- 
ber of the spherical shell. The most energetic shells are 
shown. At early times, starting from weak seed of magnetic 
field, the magnetic field, governed by the dynamo instability, 
grows exponentially with a growth rate found close to that of 

’ 0 200 400 600 
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50 100 

t 

FIG. 1. The time-evolution of the magnetic energy in spherical shells 
around the numbers K= 1,2,.. for the different magnetic Reynolds number: 
(a) R,= 12; (b) R,=30; (c) R,=SO. 

the pure linear case.23 When the Hall term becomes impor- 
tant, nonlinear effects are visible and the magnetic field starts 
to saturate. 

Two important observations can at once be made: the 
oscillations which characterize the linear regime fade away, 
leading to a steady state solution; the magnetic field stabi- 
lizes at energy level of order 0( I) in nondimensional vari- 
ables. Although the generated magnetic field is due to a de- 
terministic velocity field, the level of the magnetic field is in 
agreement with that obtained for random conducting Aow.~~ 
Inspection of the detail picture of the distribution of the en- 
ergy in the different energy modes shows another important 
character: the energy in the first energy shell Et has much 
more significant magnitude than that of the remain E, for 
K> 1. Furthermore, the energy distribution in the different 
components is found equipartitioned among the three com- 
ponents. Most of the energy is concentrated in modes with 
the wave numbers 1 kl = 1 [i.e., for k= (O,O, t 1) and its cy- 
clic permutations]. The other modes in the first shell [i.e., for 
k= ( 2 1, + 1,O) and its cyclic permutations] have much lower 
energy. These above observed properties demonstrate the dif- 
ference between the Hall-nonlinearity and that determined by 
the Ampere force.26 In particular, the magnetic energy spec- 
trum decays relatively smooth26 and there is no energy gap 
between the scales as appears in the Hall-nonlinearity. 

As mentioned above, the magnetic field reaches a steady 
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: 
0 

FIG. 2. The dependence of the first energy shell E, and the total energy in 
higher shells E,, , as function of R, in log-log coordinates. 

state at a level of 0( 1). In order to study the dependence of 
the magnetic energy with the magnetic Reynolds number the 
following procedure was performed: starting with a saturated 
magnetic field, obtained with a certain magnetic Reynolds 
number, we change slightly the Reynolds number and let the 
system evolve until the magnetic field reaches its asymptotic 
state. This was carried out in the interval of magnetic Rey- 
nolds numbers 0 < R,,,~70, and moreover, enabled us to 
even obtain magnetic fields for Reynolds numbers in be- 
tween the windows of kinematic dynamo action. Figure 2 
shows in log-log scales the magnetic energy in the first shell 
E, and the total energy in higher shells E,, 1 versus R, . 
One can observe that the first energy shell El tends to a 
constant level whereas EK,, decays almost monotonically 
(except of a short interval which we think is due to the dif- 
ferent symmetries of the magnetic field). Although the range 
of the magnetic Reynolds number is rather limited, we find 
that the magnitude of the field of the smaller scales varies as 
R,‘O. However, we cannot claim that the steady state en- 
ergy level is independent of the magnetic Reynolds number 
for R,>70, because the maximum value of R, in our simu- 
lations is 70. 

FIG. 3. The time-evolution of the magnetic field structure (contour surface 
of IBI) for R,= 12; (a) linear regime (T=SOO); (b) transition (T=600); (c) 
saturation ( T = 7001. 

To study the evolution of the magnetic field structure as 
it develops from the linear regime to saturation, contour sur- 
faces of the magnetic field [B[ at different times are plotted 
(Figs. 3 and 4 for runs Rl and R3 respectively). Figures 3(a) 
and 4(a) show an instant during the linear regime. The four 
stars in Fig. 4(a)-4(c) represent the location of the four 
a-type stagnation points, near which the magnetic field is 
generated during the linear regime in cigarlike forms23 [see 
Fig. 4(a)]. 

pears to be away from the location of the regions of the 
magnetic field generation in the linear stage; see Fig. 4(c)]. 
Note that in saturation the concentration of the magnetic field 
is near the regions with maximal velocity. The field displays 
a very regular structure. This is due to the reason that the 
strong part of the magnetic field is associated with the first 
energy mode. Note that in Rl there are four blobs of strong 
magnetic field whereas in R3 there are six blobs. This is due 
to the arrangement of the energy in the various Fourier com- 
ponents in the first energy shell El. It is also notable that 
during the kinematic regime, the magnetic field has some 
symmetries due to the velocity field23 (depending on mag- 
netic Reynolds number). These are broken eventually when 
the magnetic field saturates and new symmetries are formed 
(see next subsection). 

As the magnetic field intensifies, the configuration of the Figures 5 and 6 show the contour surfaces of the mag- 
magnetic field is deformed and the so-called cigarlike struc- netic field IBI obtained after filtering out the magnetic field 
tures disappear [Figs. 3(b) and 4(b)]. The configuration of associated with the first energy shell for runs Rl and R3. 
the magnetic field is entirely different from that of the linear Figures 5(a) and 6(a) show an instant during the linear re- 
regime [Figs. 3(c) and 4(c)]. The positions of the strongest gime. The structures which appear are very similar to those 
parts of the magnetic field are pushed away from the regions obtained without filtering the magnetic field [see Figs. 3(a) 
of the stagnation points [i.e., the strong magnetic field ap- and 4(a)]. This is due to the fact the growth rate of the 

(b) 
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FIG. 4. The time-evolution of the magnetic field structure (contour surface 
of IBI) for R,= 50; (a) linear regime (T= 37.5); (b) transition (T= 62); (c) 
saturation (T= 117). 

FIG. 5. The time-evolution of the magnetic field structure (contour surface 
of IBI) for R,= 12 for the small-scale field (the modes K> 1): (a) linear 
regime (T= 500) ; (b) transition (T= 600) ; (c) saturation (T= 700). 

magnetic field in the linear regime is independent of the 
number of the shell. The next figures [5(b), 6(b)] show an 
intermediate instant during the nonlinear regime. It appears 
that the small-scale magnetic field ( K> 1) grows in other 
regions, different from the locations of the original ABC 
stagnation points. This is due to the fact that the effective 
velocity field has been changed. At saturation, the structure 
of the magnetic field differs considerably from that of the 
linear regime [Figs. 5(c) and 6(c)]. However, we can see that 
the magnetic field is very localized and concentrates in elon- 
gated structures. As for the large-scale magnetic field, here 
also the small-scale magnetic field is found in saturation 
away from the locations of the stagnation points [see Fig. 
W I. 

number R, . Let us construct an asymptotic solution for this 
mode. The steady induction equation is given by 

Vx{UxB,+B,x(VxB,)}=O. (11) 

Here we assume that for the main mode (K = 1) the magnetic 
diffusion term is negligibly small. Equation (11) is equiva- 
lent to find solution to the equation 

(U-VxB,)xB,=B,, W) 

where Bo= V@ and Q, is any scalar field. In order to sim- 
plify calculations (but with a loss of generality), we assume 
that B,,= 0. Having this assumption, it is easy’ to see that 

C. A particular class of steady solutions for the main 
mode (K= 1) 

U-VxB,=aB, (13) 

where u is any constant. Here U is an ABC flow as a given 
In the previous subsection it was shown that the mag- velocity field. It is determined by Eq. (lo), where A, BT and 

netic field reaches a steady state in which the first energy C are arbitrary coefficients. After some algebra we find a 
shell E i seems to be independent of the magnetic Reynolds class of steady solutions with the following form: 
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B,=[A,sin(kOz)+A,cos(kOz)+Casin(k~y) 

+(C-C,bs(k)Y) , 

B,sin(kOx)+BZcos(kon)+A&n(koz) 

+(A-A,)cos(k,,z) , 

C, sin( key) + Czcos( ksy ) + Bzsin(kax) 

+(B-B,)cos(~ox)l, (14) 

where A ,, A,, B ,, B2, C,, and C2 are arbitrary coefficients. 
Here we take into account that most of magnetic energy is 
concentrated in modes with the wave numbers 1 k] = 1 [i.e., 
for k= (O,O, 5 1) and its cyclic permutations] and the other 
modes in the first shell [i.e., for k= ( 5 l,+ l,O) and its cyclic 
permutations] have much lower energy (see the results of the 
numerical simulations in Sec. III B). To obtain a specific so- 
lution, it is necessary to find the unknown coefficients in Eq. 
(14). They can be determined by means of comparison with 

(b) 

FIG. 6. The time-evolution of the magnetic field structure (contour surface 
of IBI) for R,= 50 for the small-scale field (the modes K> 1) : (a) linear 
regime (T= 37.5): (b) transition CT= 62): (c) saturation (T= 117). 

the numerical solution for a given R, . In that sense, the 
obtained asymptotic solution can be regarded as a R, depen- 
dent solution for the main mode (K = 1). 

The assumptions above were verified numerically. The 
first one, that the diffusion is negligible, was checked by 
computing the PDF of the ratio q=R,‘]AB]IjVX(U 
XB,) 1. Figure 7(a) shows the distribution of the ratio q for 
R,= 50. It is clear that the contribution of the diffusive term 
is very small. Next assumption, namely that ]Ba] = 0, was 
checked by the calculation of LHS of Eq. (12). Figure 7(b) 
shows the PDF of the LHS of Eq. (12). It indicates that BO 
can be regarded negligible small. Finally, we verified if LY is 
constant. Figure 7(c) shows the PDF of a. It confirms that 
LY is nearly constant. Similar results are found for R,= 12 
and 30. 

IV. DISCUSSION 

This paper presents numerical simulations of the mag- 
netic field evolution excited by a prescribed deterministic 
ABC flow of a conducting fluid. We have found that the Hall 
nonlinearity results in a saturation of the growth of the mag- 
netic field. The magnetic field in the saturation in all consid- 
ered cases (for R&70) reaches a steady state with the en- 
ergy level and seems to be independent of the magnetic 
Reynolds number R, . 

Moreover, the magnetic field structure may be regarded 
as composed from two components: a field of the integral 
scale and a small-scale field. Most of the magnetic energy is 
concentrated in the former, whereas in the latter it is much 
smaher. Comparison with saturation obtained by Ampere 
forcez6 shows that there is no energy gap between the scales 
as appear in the Ha&nonlinearity. These results demonstrate 
a difference between the actions of two types of nonlinearity 
in terms of the magnetic field: the Ampere force and the Hall 
effect. In the case of Ampere nonlinearity, the Ampere force 
changes the hydrodynamic flow of the conducting fluid. As 
to the Hall nonlinearity, it does not affect the hydrodynamic 
flow. It only changes the topology of the field and electric 
current. The maximum of the field in saturation is far from 
the region of the generation. 

In the case of the Hall-nonlinearity we have obtained 
that in nondimensional variables the magnetic energy is of 
the order of the hydrodynamic energy in the saturation. How- 
ever, in dimensional variables the ratio of magnetic 
Ws = B2/8 IT and hydrodynamic W, = pu2/2 energy is given 
by 

WL? 0pi1O * 

w,- c * i-i 
Here ~~i=(4~z2e2nlmi)“2 is the plasma frequency of ions. 
It is seen from here that the level of generated magnetic field 
depends on both the plasma density and the size of the sys- 
tem in the case of the Hall-nonlinearity. Substitution of the 
obtained magnitude of the magnetic field in the criterion (6) 
yields 
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FIG. 7. Numerical verification of the assumptions for the particular class of 
steady solutions (for R,=50): (a) the PDF of the ratio 
q=R,‘lABIIIVX(UXB,)I; (b) the PDF of lBa[; (c) the PDF of a. 

It follows from here that when rj+to and 7in~to (see Sec. 
II) the magnetic energy can be of the order of the hydrody- 
namic energy in the saturation. 

We have found that the spatial distribution of the small- 
scale field is intermittent: the field is concentrated within 
magnetic structures separated by the regions with very small 
field. The length of the structures is of the scale of the sys- 
tem. The properties of the small-scale field seem to be simi- 
lar to that of magnetic fluctuations with zero mean field ex- 
cited by a random flow of conducting fluid.5V’*“2 

Future studies will be concentrated on the evolution of 
the magnetic field in random and deterministic flow after 
accounting for the cubic nonlinearity (two-fluid magnetohy- 
drodynamics) for the higher magnetic Reynolds number. 
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