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The mean electromotive force that occurs in the framework of mean-field magnetohydrodynamics is studied
for cases in which magnetic field fluctuations are not only due to the action of velocity fluctuations on the
mean magnetic field. The possibility of magnetic field fluctuations independent of a mean magnetic field,
as they may occur as a consequence of a small-scale dynamo, is taken into account. Particular attention is
paid to the effect of a mean rotation of the fluid on the mean electromotive force, although only small rotation
rates are considered. Anisotropies of the turbulence due to gradients of its intensity or its helicity are admitted.
The mean magnetic field is considered to be weak enough to exclude quenching effects. A �-approximation is
used in the equation describing the deviation of the cross-helicity tensor from that for zero mean magnetic
field, which applies in the limit of large hydrodynamic Reynolds numbers.
For the effects described by the mean electromotive force like �-effect, turbulent diffusion of magnetic

fields etc in addition to the contributions determined by the velocity fluctuations also those determined
by the magnetic field fluctuations independent of the mean magnetic field are derived. Several old results
are confirmed, partially under more general assumptions, and quite a few new ones are given. Provided
the kinematic helicity and the current helicity of the fluctuations have the same signs the �-effect is always
diminished by the magnetic fluctuations. In the absence of rotation these have, however, no influence on
the turbulent diffusion. Besides the diamagnetic effect due to a gradient of the intensity of the velocity fluc-
tuations there is a paramagnetic effect due to a gradient of the intensity of the magnetic fluctuations. In the
absence of rotation these two effects compensate each other in the case of equipartition of the kinetic
and magnetic energies of the fluctuations of the original turbulence, i.e. that with zero mean magnetic
field, but the rotation makes the situation more complex. The:TJ-effect works in the same way with velocity
fluctuations and magnetic field fluctuations. A contribution to the electromotive force connected with the
symmetric parts of the gradient tensor of the mean magnetic field, which does not occur in the absence of
rotation, was found in the case of rotation, resulting from velocity or magnetic fluctuations.
The implications of the results for the mean electromotive force for mean-field dynamo models are

discussed with special emphasis to dynamos working without �-effect.
The results for the coefficients defining the mean electromotive force which are determined by the velocity

fluctuations in the case of vanishing mean motion agree formally with the results obtained in the kinematic
approach, specified by second-order approximation and high-conductivity limit. However, their range of
validity is clearly larger.
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1. INTRODUCTION

The mean-field approach proved to be very useful in studying dynamo processes in
turbulently moving electrically conducting fluids (see, e.g., Moffatt, 1978; Parker,
1979; Krause and Rädler, 1980; Zeldovich et al., 1983). The crucial point of this
approach is the mean electromotive force which is determined by the fluctuations of
the fluid velocity and the magnetic field. It describes several physical effects like
�-effect, turbulent diffusion of the magnetic field or turbulent diamagnetism. In
many investigations on the kinematic level the magnetic fluctuations are understood
as caused by the action of the velocity fluctuations on the mean magnetic field. This
implies that they vanish if the mean magnetic field does so. The mean electromotive
force can then be considered as a quantity determined, apart from the mean velocity,
by the velocity fluctuations and the mean magnetic field.
There are, however, many realistic cases with magnetic fluctuations which exist inde-

pendent of the action of the velocity fluctuations on the mean magnetic field and do not
vanish if it does so. We recall here the numerous investigations showing the possibility
of small-scale dynamos with a zero mean magnetic field (see, e.g., Kazantsev, 1968;
Meneguzzi et al., 1981; Zeldovich et al., 1990; Nordlund et al., 1992; Childress and
Gilbert 1995; Brandenburg et al., 1996; Rogachevskii and Kleeorin, 1997; Kleeorin
et al. 2002a). As pointed out already by Pouquet et al. (1976) in such cases the mean
electromotive force has in addition to the contributions mentioned above, which can
be ascribed to the velocity fluctuations, also others due to those magnetic fluctuations
which exist independent of the mean magnetic field.
Several investigations on the mean electromotive force comprising both kinds of con-

tributions have been carried out so far. We mention in particular those by Kichatinov
(1982) and by Vainshtein and Kichatinov (1983), in which an isotropic turbulence with
a scale-independent correlation time was assumed. Results concerning the �-effect, the
turbulent magnetic diffusivity and the turbulent diamagnetism or paramagnetism for an
originally isotropic turbulence subject to mean rotation have been derived using a
modified second-order correlation approximation by Kichatinov (1991), Rüdiger and
Kichatinov (1993) and Kichatinov et al. (1994).
In this article we present an approach to the mean electromotive force which

reproduces such results under more general assumptions and reveals new ones, which
are of particular importance for astrophysical applications. We exclude mean motions
of the fluid other than a rigid body rotation with some small rotation rate. We further
consider only a weak mean magnetic field so that its energy density is small compared
to the kinetic energy density. In this way we do not consider quenching effects, i.e. reduc-
tions of the coefficients defining the mean electromotive force with growing mean mag-
netic field, which are important in view of the nonlinear behavior of dynamos and have
been discussed in a number of articles (see, e.g., Gruzinov and Diamond, 1994; Cattaneo
and Hughes, 1996; Seehafer, 1996; Field et al., 1999; Kulsrud, 1999; Kleeorin et al.,
2002b; Rogachevskii and Kleeorin, 2001; Blackman and Brandenburg, 2002).
We also do not deal with the evolution of the magnetic helicity, which implies
a constraint to the magnetic part of the �-effect (see, e.g., Kleeorin et al., 1995;
Kleeorin and Rogachevskii, 1999; Kleeorin et al., 2000, 2002b; Blackman and
Brandenburg, 2002). Finally we use a �-approximation in the equations describing
the deviation of the cross-helicity tensor from that for zero magnetic field. In contrast
to the often used second-order correlation approximation it does not totally ignore
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higher than second-order correlations but considers their influence in some summary
way. The �-approximation in that sense applies in the limit of high hydrodynamic
Reynolds numbers.
In Section 2 we will explain the concept of mean-field magnetohydrodynamics for a

homogeneous incompressible fluid. In Section 3 we introduce a Fourier representation
of the velocity and magnetic fluctuations, define correlation tensors and express the
mean electromotive force by the cross-helicity tensor. After giving an equation for
this tensor in Section 4 we introduce in Section 5 the mentioned �-approximation,
which leads to closed equations for that part of the cross-helicity tensor which
determines the mean electromotive force. In Section 6 general relations for this mean
electromotive force are given, and in Section 7 more specific relations for the case
for small rotation rates. In Section 8 we restrict ourselves to the limit of weak mean
magnetic fields so that the mean electromotive force can be considered as linear in the
mean magnetic field and specify the correlation tensors for the ‘‘original’’ turbulence,
that is, the turbulence for zero mean magnetic field. For zero rotation they are deter-
mined by simple assumptions concerning the deviations from a homogeneous isotropic
turbulence, and the influence of a slow rotation on the velocity fluctuations is calculated
by a perturbation procedure, again based on a �-approximation. We further introduce
Kolmogorov-type spectra of the relevant quantities. On this basis we deliver results for
the coefficients defining the mean electromotive force and discuss them with special
attention to the different effects of velocity and magnetic field fluctuations. Finally,
in Section 9 our results are compared with results of the kinematic approach in
the second-order correlation approximation, some remarks concerning their range of
validity are made, and some prospects are mentioned concerning the extension of the
approach of this article to related questions of mean-field magnetohydrodynamics.

2. FORMULATION OF THE PROBLEM

We consider a turbulent motion of an electrically conducting incompressible fluid
in interaction with a magnetic field. Let us assume that the fluid velocity U and the
magnetic field B are governed by the equations

@U

@t
þ ðUEJÞU ¼ �

JP

�
þ
1

��
ðJTBÞTBþ �r2Uþ 2U�:þ F, ð1Þ

@B

@t
¼ JTðUTBÞ þ �r2B, ð2Þ

JEU ¼ JEB ¼ 0; ð3Þ

where P is a modified pressure and F an external force. We refer to a rotating frame
with : being the angular velocity responsible for the Coriolis force. As usual � and �
are the kinematic and magnetic viscosities, � is the mass density and � is the magnetic
permeability of the fluid, all considered as constants.
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We further assume that there is an averaging procedure which defines for each quan-
tity Q an average hQi and satisfies the Reynolds rules. In the spirit of the mean-field
concept we split the fluid velocity U and the magnetic field B according to

U ¼ Uþ u, B ¼ Bþ b ð4Þ

into mean parts, U ¼ hUi and B ¼ hBi, and fluctuations, u and b: Analogously we split
P into P and p, and F into F and f, etc. The mean fields U and B satisfy the equations

@U

@t
þ ðUEJÞU ¼ �

JP

�
þ
1

��
ðJTBÞTBþ �r2Uþ 2UT:þF þ F; ð5Þ

@B

@t
¼ JTðUTBþ EÞ þ �r2B; ð6Þ

JEU ¼ JEB ¼ 0; ð7Þ

with F and E being a pondermotive and an electromotive force due to fluctuations

F ¼ �hðuEJÞui þ
1

��
hðJTbÞTbi, ð8Þ

E ¼ huTbi: ð9Þ

For the determination of F and E we need information on the fluctuations u and b:
These have to obey the equations

@u

@t
¼ �ðUEJÞu� ðuEJÞU�

Jp

�
þ
1

��
½ðJTBÞTb

þ ðJTbÞTB� þ Tþ �r2uþ 2uT:þ f,

ð10Þ

@b

@t
¼ JTðuTBþUTbÞ þ �r2bþG, ð11Þ

where T and G summarize terms nonlinear in u and b;

T ¼ hðuEJÞui � ðuEJÞuþ
1

��
½hbTðJTbÞi � bTðJTbÞ�, ð12Þ

G ¼ JTðuTb� huTbiÞ: ð13Þ
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3. FOURIER REPRESENTATION, CORRELATION TENSORS

Let us now represent quantities like u and b, or U and B, by Fourier integrals defined
according to

Qðx, tÞ ¼

Z
Q̂Qðk, tÞ expði kExÞ d3k: ð14Þ

We may rewrite the Eqs. (10) and (11) for u and b into equations for their components
ui and bi with respect to a Cartesian coordinate system, derive equations for their
Fourier transforms ûui and b̂bi and subject the equation for ûui to a projection operator
Pij ¼ 
ij � kikj=k

2, with 
ij being the Kronecker tensor, in order to eliminate the
pressure p: In this way we obtain

@ûuiðkÞ=@t ¼ �Pij½L̂Ljðu,U; kÞ þ ŜSjðu,U; kÞ� þ ð2Pij � 
ijÞL̂Ljðb,B; kÞ=��

þ ŜSiðb,B; kÞ=��þDijðkÞûujðkÞ � �k2ûuiðkÞ � PijðT̂TjðkÞ � f̂fjðkÞÞ=�, ð15Þ

@b̂biðk, tÞ=@t ¼ ŜSiðu,B; kÞ � ŜSiðb,U; kÞ � L̂Liðu,B; kÞ þ L̂Liðb,U; kÞ

� �k2b̂biðkÞ þ ĜGiðkÞ, ð16Þ

where

L̂Liða,A; kÞ ¼ i

Z
ajðk� KÞKjAiðKÞ d

3K , ð17Þ

ŜSiða,A; kÞ ¼ ikj

Z
aiðk� KÞAjðKÞ d

3K , ð18Þ

DijðkÞ ¼ 2"ijmkmðkE:Þ=k2, ð19Þ

and "ijk is the Levi–Civita tensor. For the sake of simplicity the argument t is dropped
everywhere. Concerning the derivation of (19) we refer to (A1).
We will use these equations for calculating the two-point correlation functions. Let us

consider, e.g., the correlation tensor hviðx1Þwjðx2Þi of two vector fields v and w, where x1
and x2 denote two points in space but both fields are taken at the same time. Using the
definition (14) of the Fourier transformation and following a pattern introduced by
Roberts and Soward (1975) we write

hviðx1Þwjðx2Þi ¼

Z Z
hv̂viðk1Þŵwjðk2Þi exp iðk1Ex1 þ k2Ex2Þ d

3k1 d
3k2

¼

Z
~’’ijðr,KÞ exp ðiKERÞ d

3K

¼

Z
’ijðk,RÞ exp ðikErÞ d

3k, ð20Þ

MEAN ELECTROMOTIVE FORCE FOR MHD TURBULENCE 253



where

~’’ijðr,KÞ ¼

Z
hv̂viðkþ K=2Þŵwjð�kþ K=2Þi exp ðikErÞ d3k, ð21Þ

’ijðk,RÞ ¼

Z
hv̂viðkþ K=2Þŵwjð�kþ K=2Þi exp ðiKERÞ d3K , ð22Þ

and R ¼ ðx1 þ x2Þ=2, r ¼ x1 � x2, K ¼ k1 þ k2, k ¼ ðk1 � k2Þ=2: We relate later r and
k to small scales and R and K to large scales in the physical space.
In the following we consider in particular the correlation tensors for the velocity and

magnetic fluctuations, huiðx1Þujðx2Þi and hbiðx1Þbjðx2Þi, and the cross-helicity tensor,
huiðx1Þbjðx2Þi, and we use the definitions

vijðk,RÞ ¼ �ðûui, ûuj;k,RÞ, mijðk,RÞ ¼ �ðb̂bi, b̂bj; k,RÞ=��, ð23Þ

�ijðk,RÞ ¼ �ðûui, b̂bj; k,RÞ, ð24Þ

where

�ðv,w;k,RÞ ¼

Z
hvðkþ K=2Þwð�kþ K=2Þi expðiKERÞ d 3K : ð25Þ

The definition of vij implies

vijðk,RÞ ¼ vjið�k,RÞ ð26Þ

and

vijðk,RÞki ¼
i

2
rivijðk,RÞ, vijðk,RÞkj ¼ �

i

2
rjvijðk,RÞ: ð27Þ

Here and in the following J stands for @=@R. A relation analogous to (26) applies to mij,
too, and relations analogous to (27) apply to mij and even to �ij .
If we know vij , mij and �ij we may calculate the pondermotive force F and the

electromotive force E: In this article, however, we will focus attention on E only. Since

Ei ¼ "ijk

Z
�jkðk,RÞ d

3k, ð28Þ

we first deal with the cross-correlation tensor �ij :

4. THE EQUATION FOR THE CROSS-HELICITY TENSOR

According to the definition (25) of �ij its time derivative is given by

@�ij ðk,RÞ

@t
¼ �

�
@ûui
@t
, b̂bj; k,R

�
þ�

�
ûui,

@b̂bj
@t

; k,R

�
: ð29Þ
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We evaluate this using Eqs. (15) and (16) and neglecting all contributions contain-
ing higher than first order terms in the operator J, independent on whether it acts
on vij, mij, �ij , U or B: With manipulations explained in Appendix B we obtain

@�ij

@t
þ Lijklm

@�kl

@km
þMijklmrm�kl þNijkl�kl þ Cij ¼ Iij , ð30Þ

where

Lijklm ¼ �
ik
jlUp,mkp, ð31Þ

Mijklm ¼ �i ½Dik
jlkm � "ikm
jlðkE:Þ � "ikpkp
jl�m�=k
2

þ ið�� �Þ
ik
jlkm, ð32Þ

Nijkl ¼ Ui, k
jl � 
ikUj, l � 2kipUp, k
jl �Dik
jl þ ð�þ �Þk2
ik
jl , ð33Þ

Cij ¼ �½PikðT̂Tk � f̂fkÞ, b̂bj� ��ðûui, ĜGjÞ, ð34Þ

Iij ¼ �iðkEBÞðvij �mijÞ þ
1

2
Bprpðvij þmijÞ

� Bj, pvip þ Bi, pmpj � 2
kikp

k2
Bp, qmqj � Bp, qkpðvijq þmijqÞ, ð35Þ

and Bi, j ¼ rjBi, Ui, j ¼ rjUi, furthermore kij ¼ kikj=k
2, vijq ¼ ð1=2Þ@vij=@kq and mijq ¼

ð1=2Þ@mij=@kq:

5. THE �-APPROXIMATION

When dealing with Eq. (30) for �ij we are confronted with the difficulty that we
know nothing about the term Cij which stands for couplings of �ij with higher-order
correlation tensors. We assume now that we know the solution �ij of Eq. (30) for
vanishing mean magnetic field, that is Iij ¼ 0, denote it by �ð0Þ

ij , and the corre-
sponding Cij by C

ð0Þ
ij : For the case with nonvanishing mean magnetic field we put

then �ij ¼ �ð0Þ
ij þ �ðBÞ

ij and Cij ¼ C
ð0Þ
ij þ C

ðBÞ
ij : Then we have

@�ðBÞ
ij

@t
þ Lijklm

@�ðBÞ
kl

@km
þMijklmrm�

ðBÞ
kl þNijkl�

ðBÞ
kl þ C

ðBÞ
ij ¼ Iij : ð36Þ

At this level we introduce the �-approximation

C
ðBÞ
ij ¼ �ðBÞ

ij =�ðkÞ ð37Þ

with some relaxation time �ðkÞ (see, e.g., Orszag, 1970; Monin and Yaglom, 1975;
Pouquet et al., 1976; McComb, 1990, Kleeorin et al., 1990, 1996). This approximation
applies for large hydrodynamic Reynolds numbers, i.e. for fully developed turbulence.
In this case the relaxation time �ðkÞ is determined by the correlation time of the
turbulent velocity field only. The limit � ! 1 corresponds to cancelling all higher-order
correlations, that is, to some kind of second-order correlation approximation (see also
Section 9). Note that we do not introduce any closure assumption for the original
turbulence; Eq. (37) concerns only deviations from the original turbulence.
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6. RELATIONS FOR THE MEAN ELECTROMOTIVE FORCE

Returning now to the electromotive force E we first put in the above sense
E ¼ Eð0Þ

þ EðBÞ:We assume however that Eð0Þ, if not at all equal to zero, becomes unim-
portant in comparison to EðBÞ when B grows and put therefore Eð0Þ

¼ 0: Thus the
electromotive force E is given by

Ei ¼ "ijk

Z
�ðBÞ
jk ðk,RÞ d 3k: ð38Þ

Let us assume that the time variations of Iij, that is, of Bi, Bi, j, vij, and mij , are
sufficiently weak, so that �ðBÞ

ij , apart from some initial time, can be considered as a
solution of the steady version of Eq. (36), that is, with @�ðBÞ

ij =@t being neglected. Thus
the dependence of �ðBÞ

ij on Bi and Bi, j is linear and homogeneous and, in addition,
instantaneous. So we may conclude that

Ei ¼ aijBj þ bijkBj, k ð39Þ

with tensors aij and bijk determined by vij and mij :
This relation can be rewritten in another form, which might be more suitable for some

discussions. To derive it we split aij in to a symmetric and an antisymmetric part and
express the latter by a vector. We further split the gradient tensor of B into a symmetric
part @B, defined by ð@BÞij ¼ ð1=2ÞðBi, j þ Bj, iÞ, and an antisymmetric one, which can be
expressed by JTB. We have then Bi, j ¼ ð@BÞij � ð1=2Þ"ijkðJTBÞk. Finally we express
the tensorial coefficient occurring then with JTB again by a symmetric tensor and a
vector. In this way we arrive at

E ¼ �aB� cTB� bðJTBÞ � dTðJTBÞ � j@B ð40Þ

(see Rädler, 1980, 1983), where a and b are symmetric tensors of the second rank, c and
d vectors, and j is a tensor of the third rank; j can be considered to be symmetric in the
indices connecting it with @B, and contributions can be dropped which would produce
JEB. We have

�ij ¼ � 1
2
ðaij þ ajiÞ, �ij ¼

1
4
ð"iklbjkl þ "jklbiklÞ, ð41Þ

�i ¼
1
2
"ijkajk, 
i ¼

1
4
ðbjji � bjijÞ, �ijk ¼ � 1

2
ðbijk þ bikjÞ: ð42Þ

For the sake of simplicity we restrict ourselves on the case Ui ¼ const. Thus �ðBÞ
ij is

governed by the steady version of Eq. (36) with Lijklm ¼ 0

and Nijkl ¼ �Dik
jl þ ð�þ �Þ k2
ik
jl. Using (37) the equation for �
ðBÞ
ij can be written

in the form

~DDik�
ðBÞ
kj þMijklmrm�

ðBÞ
kl �� ¼ Iij��, ð43Þ

where

~DDij ¼ 
ij �Dij��, ��1� ¼ ��1 þ ð�þ �Þk2: ð44Þ
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In deriving Eq. (30) we have neglected all contributions to Iij of higher than first
order in J: In the same sense we may replace rm�

ðBÞ
kl in Eqs. (30), (36) and (43) by

rm�
oðBÞ
kl , where �

oðBÞ
ij summarizes the contributions to �ðBÞ

ij which are of zero order in
J: We have then

~DDik�
oðBÞ
kj ¼ Ioij��, Ioij ¼ �iðBEkÞðvij �mijÞ, ð45Þ

and consequently

�o ðBÞ
ij ¼ ~DD�1

il I o
lj ��, ð46Þ

where ~DD�1 is the inverse of ~DD, satisfying ~DD�1
ik

~DDkj ¼ 
ij , that is,

~DD�1
ij ¼ ð1þ !2k2Þ�1ð
ij þ !"ijkkk þ !2kikjÞ, ð47Þ

where ! ¼ 2��ð:EkÞ=k2: Proceeding as described above we finally obtain the solution of
Eq. (43) in the form

�ðB Þ

ij ¼ ~DD�1
ik Ikj�� � ~DD�1

ip Mpjklm
~DD�1
kq rmI

o
ql�

2
�: ð48Þ

7. THE MEAN ELECTROMOTIVE FORCE AT SLOW ROTATION

We split the electromotive force EðBÞ according to

EðBÞ
¼ EðB0Þ

þ EðB�Þ ð49Þ

into parts EðB0Þ and EðB�Þ, the first of which does not depend on the rotation while the
second one does but vanishes with vanishing rotation. For E

ðB0Þ
i we have simply

E
ðB0Þ
i ¼ "ijk

Z
IjkðkÞ��ðkÞ d

3k: ð50Þ

As for EðB�Þ we restrict ourselves to the case of slow rotation. More precisely, we neglect
terms of third and higher order in ��� in comparison to unity. So we find

E
ðB�Þ

i ¼

Z �
2ðkE:ÞðkiIjj � kjIijÞ

þ i 2
ðkE:Þ

k2
ðkEJÞ � ð:EJÞ

� �
kiI

ðoÞ
jj � ðkE:ÞðriI

ðoÞ
jj � rjIijÞ

� �

� 4ðkE:Þ
2 "ijk þ "ikl

klkj

k2

� �
Ijk�� � 2iðkE:Þ 2

ðkE:Þ

k2
ðkEJÞ � ð:EJÞ

� �
"ijkI

ðoÞ
jk

�

þ
ðkE:Þ

k2
"ijkkjrlI

ðoÞ
lk

�
��

�
�2�
k2

d3k: ð51Þ
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In the integrand we have dropped terms of the structures rjkkI
ðoÞ
kl or rjkkI

ðoÞ
lk , which

would, by reason connected with (27), lead to contributions of the second order in r.
Moreover, for the sake of simplicity in both (50) and (51) we ignored terms containing
the factor ð�� �Þk2��. We will later point out the consequences of that for our final
result.
In relation (39) for E we split aij and bijk into parts corresponding to their dependence

on vij or mij , e.g.,

aij ¼ a
ðvÞ
ij þ a

ðmÞ

ij , ð52Þ

and each of them are splitted into one which is independent of � and a remaining
one, e.g.,

a
ðvÞ
ij ¼ a

ðv0Þ
ij þ a

ðv�Þ

ij , a
ðmÞ

ij ¼ a
ðm0Þ
ij þ a

ðm�Þ

ij : ð53Þ

We note that the splitting of EðBÞ according to (49) and the splittings of a
ðvÞ
ij , a

ðmÞ

ij , . . .
according to (53) refer only to the dependencies on : which occur explicitly in
this stage of our derivations. In general vij will depend on :, too, and then EðB0Þ and
a
ðv0Þ
ij , a

ðm0Þ
ij , . . . will have also contributions with :, and the dependencies of EðB�Þ and

a
ðv�Þ

ij , a
ðm�Þ

ij , . . . on : will be more complex.

A straightforward calculation yields

a
ðv0Þ
ij ¼ "ilmv

ð1Þ
lmj , a

ðm0Þ
ij ¼ �"ilmm

ð1Þ
lmj , ð54; 55Þ

b
ðv0Þ
ijk ¼ "ijlv

ð1Þ
lk , b

ðm0Þ
ijk ¼ "ijlm

ð1Þ
lk þ 2"ilmm

ð1Þ
kljm, ð56; 57Þ

a
ðv�Þ

ij ¼ 2v
ð2Þ
ppijl � riv

ð2Þ
ppjl þ rjv

ð2Þ
ppil þ 2rp

�
v
ð2Þ
qqijlp þ v

ð2Þ
ipjl

	
� rlv

ð2Þ
ppij

h i
�l � 4"ipqv

ð3Þ
pqjlm�l�m,

ð58Þ

a
ðm�Þ

ij ¼ �2m
ð2Þ
ppijl þrim

ð2Þ
ppjl þrjm

ð2Þ
ppil �2rp

�
m

ð2Þ
qqijlpþm

ð2Þ
ipjl

	
þrlm

ð2Þ
ppij

h i
�l þ4"ipqm

ð3Þ
pqjlm�l�m,

ð59Þ

b
ðv�Þ

ijk ¼
�
2v

ð2Þ
ikjl � 2v

ð2Þ
jkil þ v0ppijkl



�l � 4"ijpv

ð3Þ
pklm�l�m, ð60Þ

b
ðm�Þ

ijk ¼
�
�2m

ð2Þ
ikjl þ 2m

ð2Þ
jkil þ 2m

ð2Þ
ppij
kl þ 2m

ð2Þ
ppjl
ik � 4m

ð2Þ
ppijkl þm0

ppijkl



�l

� 4ð"ijpm
ð3Þ
kplm þ 2"ipqm

ð3Þ
kpjlmqÞ�l�m: ð61Þ
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Here we used the definitions

v
ð�Þ
ijk...p ¼

Z
ð�ikÞ�vijðkÞkk...p�

�
� d 3k, ð62Þ

v0ijklmn ¼

Z
vijðkÞkklmnðd�

2
�=dkÞ kd

3k, ð63Þ

where � ¼ 0 or � ¼ 1 for even or odd �, respectively, and kk...p ¼ kk . . . kp=k
�, with �

being the rank of this last tensor, and analogous definitions for m
ð�Þ
ijk...p, and m0

ijklmn

with vij replaced by mij : With the help of (26) we find that the v
ð�Þ
ijk...p with � ¼ 0 are

symmetric and those with � ¼ 1 antisymmetric in i and j and moreover in both cases
symmetric in every pair of the remaining indices, and that v0ijklmn is symmetric in i
and j and again in every pair of the remaining indices. The same applies to m

ð�Þ
ijk...p

and to m0
ijklmn. Furthermore in the case � ¼ 0 we may conclude from (27) that

v
ð�Þ
pij...np ¼ �ð1=2Þrp ~vv

ð�Þ
pij...n and v

ð�Þ
ipj...np ¼ ð1=2Þrp ~vv

ð�Þ
ipj...n, where the ~vv

ð�Þ
ij...p (which will never

explicitly occur in the following) are defined like the v
ð�Þ
ij...p but with kij...pk

�2 in the
integrand instead of kij...p. In the case � ¼ 1 we have simply v

ð�Þ
pij...np ¼ ð1=2Þrpv

ð�Þ
pij...n

and v
ð�Þ
ipj...np ¼ �ð1=2Þrpv

ð�Þ
ipj...n. All these statements apply again to m

ð�Þ
pij...np and m

ð�Þ
ipj...np,

too. We have used these properties of the v
ð�Þ
ijk...p, m

ð�Þ
ijk...p, . . . in deriving (54)–(61), and

we have ignored all terms which would result in contributions to E of higher than
first order in J. Likewise we have cancelled contributions to bijk proportional to 
jk,
which cannot contribute to E since JEB ¼ 0.
Let us consider the representation (40) for E and split each of the quantities a, c, b, d

and j after the pattern of (52) and (53) into four parts, e.g.,

�ij ¼ �ðvÞ
ij þ �ðmÞ

ij , ð64Þ

and

�ðvÞ
ij ¼ �ðv0Þ

ij þ �ðv�Þ

ij , �ðmÞ

ij ¼ �ðm0Þ
ij þ �ðm�Þ

ij : ð65Þ

The above remarks concerning the dependencies on : apply here analogously. Using
(41)–(42) and (54)–(61) all these contributions to a, c, b, d and j can be expressed
by the v

ð�Þ
ijk...p, m

ð�Þ
ijk...p, . . . . For the sake of simplicity we give here only the contributions

which do not depend on :. They read

�ðv0Þ
ij ¼ 1

2
ð"ilkv

ð1Þ
klj þ "jlkv

ð1Þ
kli Þ, �ðm0Þ

ij ¼ � 1
2
ð"ilkm

ð1Þ
klj þ "jlkm

ð1Þ
kli Þ, ð66Þ

�ðv0Þ
ij ¼ 1

2 ðv
ð1Þ
pp 
ij � v

ð1Þ
ij Þ, �ðm0Þ

ij ¼ � 1
2 ðm

ð1Þ
pp 
ij �m

ð1Þ
ij � 2m

ð1Þ
ppijÞ, ð67Þ

�ðv0Þi ¼ 1
2
riv

ð1Þ
ij , �ðm0Þ

i ¼ � 1
2
rim

ð1Þ
ij , 
ðv0Þi ¼ 
ðm0Þi ¼ 0, ð68Þ

�ðv0Þijk ¼ � 1
2
ð"ijlv

ð1Þ
lk þ "iklv

ð1Þ
lj Þ, ð69Þ

�ðm0Þijk ¼ � 1
2
ð"ijlm

ð1Þ
lk þ "iklm

ð1Þ
lj Þ þ "ilmðm

ð1Þ
kmjl þm

ð1Þ
jmklÞ: ð70Þ

In order to derive (67) we have used (A2).
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8. THE MEAN ELECTROMOTIVE FORCE IN THE LIMIT OF

WEAK MEAN MAGNETIC FIELDS UNDER SPECIFIC

ASSUMPTIONS ON THE ORIGINAL TURBULENCE

In general the correlation tensors vij and mij depend, of course, on the mean magnetic
field B. As a consequence the mean electromotive force E depends in a nonlinear way
on B. We restrict ourselves now to the approximation in which vij and mij are simply
replaced by the corresponding tensors v

ð0Þ
ij and m

ð0Þ
ij for the ‘‘original’’ turbulence, that

is the turbulence for zero mean magnetic field. Then, of course, E is linear in B. This
implies that any quenching effects are excluded.

8.1 Nonrotating Turbulence

We first ignore any influence of a rotation of the fluid on the turbulence. As for the
correlation tensors v

ð0Þ
ij and m

ð0Þ
ij for the original turbulence we assume that, as long it

is homogeneous, they are essentially determined by the kinetic and magnetic energy
densities, that is by huð0Þ2i and hbð0Þ2i, and by the kinematic and current helicities,
huð0ÞEðJTuð0ÞÞi and hbð0ÞEðJTbð0ÞÞi, and that inhomogeneities are only due to gradients
of these four quantities. With the notations uð0Þ and bð0Þ instead of u and b we want to
stress that we are dealing with the original turbulence. Note that b is in general nonzero
even if bð0Þ ¼ 0. Under the assumptions adopted the most general form of the correla-
tion tensor v

ð0Þ
ij ðk,RÞ of the velocity fluctuations of the original turbulence is given by

v
ð0Þ
ij ðk,RÞ ¼

1

8�k2

�h
PijðkÞ þ

i

2k2
ðkirj � kjriÞ

i
W ðvÞðk,RÞ

�
1

2k2
"ijkkk 2i þ

1

k2
ðkEJÞ

� �
�
1

k2
ðki"jlm þ kj"ilmÞklrm

� �
�ðvÞðk,RÞ

�
: ð71Þ

We note that v
ð0Þ
ij satisfies the requirements resulting from JEuð0Þ ¼ 0, and that

W ðvÞðk,RÞ and �ðvÞðk,RÞ are spectrum functions depending on k via k only and posses-
sing the properties

R1

0
W ðvÞðk,RÞ dk ¼ huð0Þ2i and

R1

0
�ðvÞðk,RÞ dk ¼ huð0ÞEðJTuð0ÞÞi.

The definition of the correlation tensor m
ð0Þ
ij of the magnetic fluctuations of the original

turbulence follows from (71) when replacing v
ð0Þ
ij , W

ðvÞ and �ðvÞ by m
ð0Þ
ij , W

ðmÞ and �ðmÞ,
and we have

R1

0 W ðmÞðk,RÞ dk ¼ hbð0Þ2i=�� and
R1

0 �ðmÞðk,RÞ dk ¼ hbð0ÞEðJTbð0ÞÞi=��.
Since we ignore here any influence of rotation the �ðvÞ

ij , �
ðmÞ

ij , . . . coincide with the �
ðv0Þ
ij ,

�ðm0Þ
ij , . . . given with (66)–(70). Calculating now the v

ð1Þ
ijk���p with vij replaced by v

ð0Þ
ij as

specified by (71) we find

v
ð1Þ
ij ¼

1

3

ijI

ðv1Þ þ � � � , ð72Þ

v
ð1Þ
ijk ¼

1

12
ð
ikrj � 
jkriÞI

ðv1Þ �
1

6
"ijkJ

ðv1Þ, ð73Þ

v
ð1Þ
ijkl ¼

1

6

ij
kl �

3

5
E

ð4Þ
ijkl

� �
I ðv1Þ þ � � � , ð74Þ
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where

I ðv1Þ ¼

Z 1

0

W ðvÞðk,RÞ�� dk, J ðv1Þ ¼

Z 1

0

�ðvÞðk,RÞ�� dk, ð75Þ

and E
ð4Þ
ijkl is a completely symmetric tensor, which we define with a view to the following

in a more general frame by

E
ð2�Þ
ijkl���pq ¼

1

2�� 1

ijE

ð2��2Þ
kl���pq þ 
ikE

ð2��2Þ
jl���pq þ � � � þ 
iqE

ð2��2Þ
jkl���p Þ, E

ð2Þ
ij ¼ 
ij :

�
ð76Þ

The terms in (72) and (74) indicated by � � � are without interest because they would lead
to contributions to E which are of second order in J. For the m

ð1Þ
ij , m

ð1Þ
ijk and m

ð1Þ
ijkl

analogous relations apply with analogously defined I ðm1Þ and Jðm1Þ.
Using now (66)–(70) we obtain

�ðvÞ
ij ¼ 1

3

ijJ

ðv1Þ, �ðmÞ

ij ¼ � 1
3

ijJ

ðm1Þ, ð77Þ

�ðvÞ
ij ¼ 1

3

ijI

ðv1Þ, �ðmÞ

ij ¼ 0, ð78Þ

cðvÞ ¼ 1
6
JI ðv1Þ, cðmÞ ¼ � 1

6
JI ðm1Þ, ð79Þ

dðvÞ ¼ dðmÞ
¼ 0, jðvÞ ¼ jðmÞ ¼ 0: ð80Þ

8.2 Rotating Turbulence

In order to include the effect of a rotation of the fluid we have first to study how the
original turbulence, that is v

ð0Þ
ij changes with the rotation, that is with :. We assume

here that in the absence of rotation the turbulence possesses no helicity. More precisely,
we assume that (71) applies with �ðvÞ ¼ 0 in the limit of vanishing :, and we will now
calculate the effect of rotation by a perturbation procedure up to the second order in :.
Proceeding as in the calculation of the cross-helicity �ij we start from

@vijðk,RÞ

@t
¼ �

@ûui
@t
, ûuj;k,R

� �
þ� ûui,

@ûuj
@t

; k,R

� �
, ð81Þ

but use the Eq. (15) for ûui with B ¼ 0 and T ¼ 0 so that vij turns into v
ð0Þ
ij , and put again

U ¼ 0. So we arrive at

@vð0Þij

@t
þ ~MMijklmrmv

ð0Þ
kl þ ~NNijklv

ð0Þ
kl þ 2�k2vð0Þij þ ~CCij ¼ 0, ð82Þ
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where

~MMijklm ¼
i

k2
�p½PmpðkÞkq þ PmqðkÞkp�ð"ikq
jl � "jlq
ikÞ, ð83Þ

~NNijkl ¼ �2
ðkE:Þ

k2
ð"ikp
jl þ "jlp
ikÞkp, ð84Þ

~CCij ¼ ��ðûui,Pik f̂fjÞ ��ðPik f̂fk, ûujÞ: ð85Þ

We assume now that we know the solution v
ð0Þ
ij of (82) for : ¼ 0, denote it by v

ð00Þ
ij

and the corresponding ~CCij by ~CC
ð0Þ
ij . For the case with nonvanishing : we put then

v
ð0Þ
ij ¼ v

ð00Þ
ij þ v

ð0�Þ

ij and ~CCij ¼ ~CC
ð0Þ
ij þ ~CC

ð�Þ

ij : So we find

@vð0�Þ

ij

@t
þ ~MMijklmrmv

ð0�Þ

kl þ ~NNijklv
ð0�Þ

kl þ 2�k2vð0!Þij þ ~CC
ð�Þ

ij ¼ I
ð�Þ

ij , ð86Þ

where

I
ð�Þ

ij ¼ �ð ~MMijklmrm þ ~NNijklÞv
ð00Þ
kl : ð87Þ

At this level we introduce again a �-approximation,

~CC
ð�Þ

ij ¼ v
ð0�Þ

ij = ���ðk,:Þ, ð88Þ

where ���ðk,:Þ is a relaxation time analogous to �ðkÞ introduced with (37). Now we
assume that the characteristic time of variations of v

ð0�Þ

ij is much larger than ��� so that
we can drop the time derivative @vð0�Þ

ij =@t in (86). Thinking of slow rotation, that is
���� � 1, we expand v

ð0�Þ

ij in the form

v
ð0�Þ

ij ¼ v
ð01Þ
ij þ v

ð02Þ
ij , ð86Þ

where v
ð01Þ
ij and v

ð02Þ
ij are of the first and second order in :, respectively. We further

assume that ��� does not deviate markedly from �, that it does not depend on the sign
of � and therefore its expansion with respect to : possesses no linear term. In that
sense we put ��� ¼ � þOð�2Þ, where the last term is without interest for the following.
In this way we obtain

v
ð0, �Þ
ij ¼ � ~���ð ~MMijklmrm þ ~NNijklÞv

ð0,��1Þ
kl , ~���

�1
¼ ��1 þ 2�k2, � ¼ 1, 2: ð90Þ

Identifying now v
ð00Þ
kl with v

ð0Þ
kl defined by (71) with �

ðvÞ ¼ 0 and neglecting again terms of
higher than first order in J we find

v
ð01Þ
ij ¼

i ~���
4�k4

"ijmkm

�
ðkE:Þ

k2
ðkEJÞ � ð:EJÞ

�
W ðvÞðk,RÞ, v

ð02Þ
ij ¼ 0: ð91Þ

262 K.-H RÄDLER et al.



With (91) we arrive at

v
ð0Þ
ij ðk,RÞ ¼

1

8�k2

�
PijðkÞ þ

i

2k2
ðkirj � kjriÞ

þ
2i ~���
k2

"ijmkm
ðkE:Þ

k2
ðkEJÞ � ð:EJÞ

� ��
W ðvÞðk,RÞ: ð92Þ

Interestingly enough this coincides with (71) if we replace there �ðvÞ by ~��ðvÞ, defined by

~��ðvÞ ¼ �2 ~���

�
ðkE:Þ

k2
ðkEJÞ � ð:EJÞ

�
W ðvÞðk,RÞ, ð93Þ

and cancel the terms with J ~��ðvÞ, which are of second order in J. Note that the absence
of terms of higher than second order in: in the correlation tensor (92) is a consequence
of the fact that we restricted ourselves to small : ��� and used in that sense (89). The
absence of terms of the second order results from the assumption on the dependence
of ��� on :.
As for the magnetic fluctuations of the original turbulence we assume that they are

independent of the rotation of the fluid and show no helicity so that

m
ð0Þ
ij ðk,RÞ ¼

1

8�k2

�
PijðkÞ þ

i

2k2
ðkjri � kirjÞ

�
W ðmÞðk,RÞ: ð94Þ

We calculate now the v
ð�Þ
ijk���p, m

ð�Þ
ijk���p, . . . defined by (62)–(63) with vij replaced by v

ð0Þ
ij

according to (92) and find

v
ð�Þ
ij ¼

1

3

ijI

ðv�Þ þ � � � , ð95Þ

v
ð�Þ
ijk ¼

1

12
ð
ikrj � 
jkriÞI

ðv�Þ �
1

3
"ijp 
pkð:EJ ~II

ðv�Þ
Þ �

3

5
E

ð4Þ
pklm�lrm

~II
ðv�Þ

� �
, ð96Þ

v
ð�Þ
ijkl ¼

1

6

ij
kl �

3

5
E

ð4Þ
ijkl

� �
I ðv�Þ þ � � � , ð97Þ

v
ð�Þ
ijklm ¼

1

20
ðE

ð4Þ
iklmrj � E

ð4Þ
jklmriÞI

ðv�Þ �
1

5
"ijp E

ð4Þ
pklmð:EJ

~II
ðv�Þ

Þ �
5

7
E

ð6Þ
pklmqr�qrr

~II
ðv�Þ

� �
, ð98Þ

v
ð�Þ
ijklmp ¼

1

10

ijE

ð4Þ
klmp �

5

7
E

ð6Þ
ijklmp

� �
I ðv�Þ þ � � � : ð99Þ

In accordance with (75) we have used here the definitions

I ðv�Þ ¼

Z 1

0

W ðvÞðk,RÞ��� ðkÞ dk,
~II
ðv�Þ

¼

Z 1

0

W ðvÞðk,RÞ��� ðkÞ ~���ðkÞ dk: ð100Þ

The expression for v
ð�Þ
ijklmp turns into v0ijklmp if I

ðv�Þ is replaced by I ðvÞ0, where

I ðvÞ0 ¼

Z 1

0

W ðvÞðk,RÞðd�2�=dkÞk dk: ð101Þ
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Again terms indicated by � � � correspond to contributions of second order in J to E.
Relations analogous to (95)–(101) apply for m

ð�Þ
ij , m

ð�Þ
ijk , . . ., too, but with

~II
ðm�Þ

¼ 0.
Calculating now the a

ðvÞ
ij , a

ðmÞ

ij , . . . according to (54)–(61) and finally the �
ðvÞ
ij , �

ðmÞ

ij , . . .
according to (41)–(42) we arrive at

�ðvÞ
ij ¼

2

15
4
ijð:EJÞ ��irj ��jri

� �
~II ðv1Þ þ

4

15

ijð:EJÞ �

7

8
ð�irj þ�jriÞ

� �
I ðv2Þ

þ
2

15
ð"ilm�j þ "jlm�iÞ�lrmI

ðv3Þ, ð102Þ

�ðmÞ

ij ¼ �
1

10

8

3

ijð:EJÞ þ�irj þ�jri

� �
I ðm2Þ �

2

15
ð"ilm�j þ "jlm�iÞ�lrmI

ðm3Þ, ð103Þ

�ðvÞ
ij ¼

1

3

ijI

ðv1Þ �
2

5

ij�

2 þ
1

3
�i�j

� �
I ðv3Þ, ð104Þ

�ðmÞ

ij ¼
2

15
ð
ij�

2 � 3�i�jÞI
ðm3Þ, ð105Þ

cðvÞ ¼
1

6
JðI ðv1Þ �

8

5
�2I ðv3ÞÞ þ

1

6
:TJI ðv2Þ þ

2

15
:ð:EJI ðv3ÞÞ, ð106Þ

cðmÞ ¼ �
1

6
J I ðm1Þ �

8

5
�2I ðm3Þ

� �
þ
1

6
:TJI ðm2Þ �

2

15
:ð:EJI ðm3ÞÞ, ð107Þ

dðvÞ ¼ �
1

6
:I ðv2Þ, ð108Þ

dðmÞ
¼
1

6
:I ðm2Þ, ð109Þ

�ðvÞijk ¼ �
1

6
ð
ij�k þ 
ik�jÞ I ðv2Þ þ

2

5
I ðvÞ0

� �
�
2

15
ð"ijl�l�k þ "ikl�l�jÞI

ðv3Þ, ð110Þ

�ðmÞ

ijk ¼ �
7

30
ð
ij�k þ 
ik�jÞ I ðm2Þ þ

2

7
I ðmÞ0

� �
þ
2

15
ð"ijl�l�k þ "ikl�l�jÞI

ðm3Þ: ð111Þ

8.3 Specification to Kolmogorov Type Turbulence Spectra

Let us now specify the original turbulence to be of Kolmogorov type, i.e., to possess
a constant energy flux through the spectrum, and consider the inertial range of wave
numbers, k0 � k � kd , where k

�1
0 ¼ l0 defines the largest length scale and k�1d the dissi-

pative scale of the turbulence. In this range we have W ðvÞ ¼ ðq� 1Þ ðhuð0Þ2i=k0Þ�
ðk=k0Þ

�q, and W ðmÞ analogously. Furthermore we put �ðvÞ ¼ ðq� 1Þðhuð0ÞE ðJTuð0ÞÞi=
k0Þðk=k0Þ

�q but, by reasons connected with the conservation of the magnetic helicity
in the high-conductivity limit, �ðmÞ ¼ hbð0ÞEðJTbð0ÞÞi
ðk� k0Þ. Finally we assume that
�� ¼ ~��� ¼ 2�0ðk=k0Þ

1�q, with 2�0 being a correlation (or turnover) time for k ¼ k0.
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In all cases q is a constant constrained by 1 < q < 3. Assuming that it is sufficient to
take the integrals in (75) and (100)–(101) over the inertial range only and that
k0=kd � 1 we obtain

I ðv�Þ ¼
2�

�þ 1
huð0Þ2i��0 , J ðv1Þ ¼ huð0ÞEðJTuð0ÞÞi�0, ð112Þ

~II ðv1Þ ¼ I ðv2Þ, I ðvÞ0 ¼ �2ðq� 1ÞI ðv2Þ, ð113Þ

I ðm�Þ ¼
2�

�þ 1

hbð0Þ2i

��
��0 , J ðm1Þ ¼

hbð0ÞEðJTbð0ÞÞi

��
�0, ð114Þ

I ðmÞ0 ¼ �2ðq� 1ÞI ðm2Þ: ð115Þ

Note that the I ðv�Þ, Jðv1Þ, ~II ðv1Þ, I ðm�Þ and Jðm1Þ are independent of q.
By the way, with the above specification of �ðmÞ we have simply hbð0ÞEðJTbð0ÞÞi ¼

hað0ÞEbð0Þi=l20. Here ha
ð0ÞEbð0Þi is the magnetic helicity, where að0Þ is the vector potential

of bð0Þ, i. e., bð0Þ ¼ JTað0Þ. The factor 
ðk� k0Þ in the function �ðbÞ is chosen in order
to meet the realizability condition for the magnetic helicity (see, e.g., Moffatt, 1978;
Zeldovich et al., 1983).

8.4 Specific Results for Nonrotating Turbulence

Let us now summarize and discuss our results. When speaking in this context simply of
contributions of velocity and magnetic field fluctuations we refer always to the original
turbulence and so to uð0Þ and bð0Þ. Starting with the case of nonrotating turbulence we
specify now (77)–(80) by (112)–(115) and obtain

�ij ¼ �
ij , � ¼
1

3

�
huð0ÞEðJTuð0ÞÞi �

hbð0ÞEðJTbð0ÞÞi

��

�
�0, ð116Þ

�ij ¼ �
ij , � ¼
1

3
huð0Þ2i�0, ð117Þ

c ¼
1

6
J

�
huð0Þ2i �

hbð0Þ2i

��

�
�0, ð118Þ

d ¼ 0, j ¼ 0: ð119Þ

We have an isotropic �-effect, and � is a sum �ðvÞ þ �ðmÞ of two contributions
determined by the kinematic helicity and the current helicity of the original turbulence.
Whereas the signs of �ðvÞ and the kinematic helicity coincide, those of �ðmÞ and the
current helicity are opposite to each other. This is in agreement with results, e.g., by
Pouquet et al. (1976), by Zeldovich et al. (1983) or by Vainshtein and Kichatinov
(1983). The contributions of the kinematic and the current helicities to the �-effect,
acting in opposite directions, may even compensate each other.
We also have an isotropic mean-field diffusivity �, and this is determined only by the

intensity of the velocity fluctuations of the original turbulence. There is no contribution
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of the magnetic fluctuations of the original turbulence. This again agrees with results by
Vainshtein and Kichatinov (1983).
An inhomogeneity of the original turbulence leads to a transport of mean magnetic

flux which corresponds to that by a mean velocity ��. The expulsion of flux from
regions with high intensity of the velocity fluctuations has been sometimes discussed
as ‘‘turbulent diamagnetism’’ see, e.g., Zeldovich (1957), Rädler (1968, 1970, 1976) or
Krause and Rädler (1971, 1980). Our result shows, again in agreement with
Vainshtein and Kichatinov (1983), that magnetic fluctuations act in the opposite
sense, that is, in the sense of a ‘‘turbulent paramagnetism’’. The magnetic flux is
expelled from regions where huð0Þ2i � ð1=��Þhbð0Þ2i is higher, and pushed into regions
where it is lower compared to the surroundings. With equipartition of kinetic and mag-
netic energy, huð0Þ2i ¼ ð1=��Þhbð0Þ2i, this effect vanishes.

8.5 Specific Results for Rotating Turbulence

In the case of the rotating turbulence in which helicity occurs only due to inhomo-
geneity and rotation we have

�ij ¼
16

15

ij:

?EJ huð0Þ2i �
1

3

hbð0Þ2i

��

� �
�
11

24
ð�?

irj þ�?
jriÞ huð0Þ2i þ

3

11

hbð0Þ2i

��

� ��

þ
1

3
ð"ilm�

?
l�

?
j þ "jlm�

?
l�

?
i Þrm huð0Þ2i �

hbð0Þ2i

��

� ��
�0, ð120Þ

�ij ¼
1

3

ij huð0Þ2i 1�

12

5
�?2

� �
þ
4

5
�?2 hb

ð0Þ2i

��

� �
�
4

5
�?

i�
?
j huð0Þ2i þ 3

hbð0Þ2i

��

� �� �
�0,

ð121Þ

c ¼
1

6

�
J huð0Þ2i �

hbð0Þ2i

��

� �
1�

16

5
�?2

� �
þ
4

3
:?TJ huð0Þ2i þ

hbð0Þ2i

��

� �

þ
8

5
:? :?EJ huð0Þ2i �

hbð0Þ2i

��

� �� ��
�0,

ð122Þ

d ¼ �
2

9
huð0Þ2i �

hbð0Þ2i

��

� �
:?�0, ð123Þ

�ijk ¼ �
2

9

�
ð
ij�

?
k þ 
ik�

?
j Þ huð0Þ2i þ

7

5

hbð0Þ2i

��
�
4ðq� 1Þ

5
huð0Þ2i þ

hbð0Þ2i

��

� �� �

þ
6

5
ð"ijl�

?
l�

?
k þ "ikl�

?
l�

?
j Þ huð0Þ2i �

hbð0Þ2i

��

� ��
�0: ð124Þ

Here :? stands for :�0. Our approximations are justified for j�
?j � 1 only. We recall

that we have ignored all terms containing factors ð�� �Þk2�� in (50) and (51). The only
influence of these terms on the above result would consist in the occurrence of contri-

266 K.-H RÄDLER et al.



butions to �ij which, in comparison to others, are smaller by a factor of the order of
the small quantity ð�� �Þk20�0. As far as contributions of the velocity fluctuations are
concerned the result (120)–(124) is in qualitative agreement with earlier results (e.g.,
Rädler, 1980).
The �-effect occurs now as a consequence of the simultaneous presence of a rotation

of the fluid and gradients in the intensities of the velocity or magnetic fluctuations, and
it is clearly anisotropic. A rough measure of the �-effect is the trace of �ij. For this
quantity we have

�ii ¼
20

9
ð:?EJÞ

�
huð0Þ2i �

3

5

hbð0Þ2i

��

�
�0: ð125Þ

At least with this quantity the effect of the velocity fluctuations is again diminished by
the magnetic fluctuations.
Like the �-effect the mean-field diffusivity, too, is in general anisotropic. Interestingly

enough, in contrast to the case of nonrotating turbulence �ij is now no longer indepen-
dent of the magnetic fluctuations. For equipartition of kinetic and magnetic energy,
huð0Þ2i ¼ ð1=��Þhbð0Þ2i, the mean-field diffusivity is again isotropic. Even in the general
case the tensor �ij has no other nonzero elements than diagonal ones. If :

? is parallel to
the x3-axis we have

�11 ¼ �22 ¼
1

3
huð0Þ2i 1�

12

5
:?2

� �
þ
4

15

hbð0Þ2i

��
:?2,

�33 ¼
1

3
huð0Þ2i 1�

16

5
:?2

� �
�
8

15

hbð0Þ2i

��
:?2: ð126Þ

In the absence of magnetic fluctuations not caused by the mean magnetic field, i.e.
bð0Þ ¼ 0, all elements of �ij decrease with growing j:?

j.
Compared to the case of nonrotating turbulence, the vector c describing the

transport of mean magnetic flux has an additional term perpendicular to the rotation
axis. This term contains no longer the gradient of huð0Þ2i � ð1=��Þhbð0Þ2i but that of
huð0Þ2i þ ð1=��Þhbð0Þ2i, that is, it does not vanish with huð0Þ2i ¼ ð1=��Þhbð0Þ2i.
In contrast to the case of nonrotating turbulence even in the absence of gradients

of the turbulence intensities, the vector d is no longer equal to zero. So we rediscover
the contribution to the mean electromotive force proportional to :TðJTBÞ, which
has been sometimes discussed as ‘‘:TJ-effect’’. We note that :TðJTBÞ ¼

�ð:EJÞBþ Jð:EBÞ and that the term Jð:EBÞ plays no part in the induction equation
for B as long as the coefficient connecting d and : does not depend on space-coordi-
nates. We recall that an electromotive force proportional to :TðJTBÞ is, even in
the absence of an �-effect, in combination with a differential rotation capable of
dynamo action; see, e.g., Rädler, 1969, 1970, 1980, 1986, Roberts, 1972 and Moffatt
and Proctor, 1982. With respect to d velocity and magnetic fluctuations act again in
the opposite sense, and d vanishes with huð0Þ2i ¼ ð1=��Þhbð0Þ2i. For a rotating turbu-
lence, again even in the absence of gradients of the turbulence intensities, also �ijk is
unequal to zero.
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We recall that we determined the correlation tensor v
ð0Þ
ij used for the calculation of

(120)–(124) under the assumption that the expansion of the relaxation time ��� with
respect to : has no linear term. As a consequence v

ð0Þ
ij contains no terms of second

order in :. It can be followed up easily, however, that a deviation from this assumption
would change in (120)–(124) nothing else than numerical factors of the terms of second
order in :?, and it would leave (125) unchanged.
Our results (120)–(124) differ in some details from those given in the articles by

Kichatinov (1991), Rüdiger and Kichatinov (1993) and Kichatinov et al. (1994).
There the second-order correlation approximation, or some modification of it,
was used. This implies that the nonlinear terms in the equations for the velocity and
magnetic field fluctuations are dropped from the very beginning. Of course, the
ranges of validity of this approximation and our �-approximation are different. The
second-order correlation approximation can only be justified for a certain range of
parameters like the hydrodynamic and magnetic Reynolds numbers and the Strouhal
number. Simple special cases in which it applies are small Reynolds numbers, or
large Reynolds numbers but a small Strouhal number. In the articles mentioned,
however, it was at least partially assumed that � ¼ � ¼ l 2c=�c, where � and � are
again kinematic viscosity and magnetic diffusivity, and lc and �c correlation length
and time of the turbulent velocity field. This corresponds to hydrodynamic and
magnetic Reynolds numbers of the order of unity, for which the conditions of the
applicability of the second-order correlation approximation cannot easily be given.
Our �-approximation requires, as already mentioned, large hydrodynamic Reynolds
numbers.

8.6 Implications for Mean-field Dynamo Models

Let us add some remarks on the possibilities of dynamo action of the induction effects
described by (120)–(124). For the sake of simplicity we consider an axisymmetric
dynamo model. We use corresponding cylindrical co-ordinates r, ’ and z. The mean
motion is assumed to consist in a differential rotation

U ¼ !ezTr ð127Þ

where the angular velocity ! may depend on r and z, ez is the unit vector in z-direction
and r the radius vector. Further, again for simplicity, only the contributions to E which
are linear in :? and independent of bð0Þ are taken into account. We write

E ¼ ��0ðgE:
?
ÞBþ �1

�
ð:?EBÞ gþ ðgEBÞ:?

�
� �0JTB

� �0 gTB� �1
�
ð:?EBÞ g� ðgEBÞ:?

�
� 
0

�
ð:?EJÞB� Jð:?EBÞ

�
þ �0

�
ð:?EJÞBþ Jð:?EBÞ

�
, ð128Þ

where �0¼ ð24=11Þ�1¼ ð16=15Þhuð0Þ2i�0, �0¼ ð1=3Þhuð0Þ2i�0, �0¼ ð3=4Þ�1¼ ð1=6Þ huð0Þ2i�0,

0 ¼ ð2=9Þhuð0Þ2i�0, �0 ¼ ð2=9Þ½1� 4ðq� 1Þ=5�huð0Þ2i�0 and g ¼ Jhuð0Þ2i=huð0Þ2i. :? is
assumed to be parallel to the z-axis, :?

¼ �?ez with �? > 0.
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We split B into its poloidal and toroidal part, B
P
and B

T
, and represent them in

the form

B
P
¼ JTðAe’Þ , B

T
¼ Be’, ð129Þ

where A and B are two functions of r, z and t, and e’ is the unit vector in ’-direction.
We assume that the differential rotation is so strong that concerning the generation of
B
T
from B

P
all contributions to E except the �0-term can be neglected. Considering

� again as constant and starting from the induction Eq. (6) for B we arrive at

�m�
0A� �0�

?gzBþ
�0
r
gEJðrAÞ � ð
0 � �0Þ�

? @B

@z
�
@A

@t
¼ 0,

�m�
0B�

@!

@r

@

@z
�
@!

@z

@

@r

� �
ðrAÞ �

@B

@t
¼ 0, ð130Þ

where �m ¼ �þ �0 and

�0f ¼
@

@r

1

r

@

@r
ðrf Þ

� �
þ
@2f

@z2
: ð131Þ

Let us restrict ourselves to a local analysis of these equations, that is, to an investiga-
tion in some finite region of the rz-plane only. For this purpose we assume that there
the coefficients �0, �0, 
0 and �0 as well as g are constant. In the sense of a simple
example we further assume that there ! has a logarithmic dependence on r, that is, varies
like !0 þ !1 logðr=r0Þ with r, where !0, !1 and r0 are constants, and is independent of z.
Then the quantity G ¼ r@!=@r is also constant, and @!=@z ¼ 0. We use the ansatz

ðA,BÞ ¼ Re ðA0,B0ÞJ1ðkrrÞ expðikzzþ �tÞ½ �, ð132Þ

where A0 and B0 are complex constants, J1 is the first-order Bessel function of first
kind, kr and kz are real constants and � is a complex constant. If gr ¼ 0 this ansatz
reduces (130) to a system of two linear homogeneous algebraic equations for A0 and
B0. We are interested in nontrivial solutions only and have therefore to require that
the determinant of this system vanishes. This leads to

� ¼ ��mk
2 � i

�0gzkz
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�?

�
i�0gzkz � ð
0 � �0Þk2z

�
�

�0gzkz
2

� �2s
ð133Þ

with k2 ¼ k2r þ k2z . If gr 6¼ 0 this reduction works only in the limit kr ! 0, and then
(133) applies with k2 ¼ k2z .
Solutions of the Eqs. (130) with a � possessing a nonnegative real part correspond

to nondecaying mean magnetic fields. We first consider the case g 6¼ 0, in which we
have an �-effect. As can be easily seen from (133) values of � with nonnegative
real part and nonvanishing imaginary part occur if k is sufficiently small. They
correspond to undamped dynamo waves traveling parallel to the z-axis. Let us further
proceed to the case g ¼ 0, in which there is no �-effect. If then �G�?ð
0 � �0Þ > 0,
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the quantity � is real, and it takes nonnegative values for sufficiently small k. That is,
even in the absence of an �-effect dynamo action proves be possible due to combination
of differential rotation with the 
 or �-effect. This includes the possibility of such dyna-
mos with 
-effect mentioned above. We see now that 
 and �-effect are in competition
and that they compensate each other if 
0 ¼ �0. We note that under our assumptions

0 � �0 ¼ ð8=45Þðq� 1Þhuð0Þ2i. Since q > 1 we may conclude that the dynamo requires
G < 0, that is @!=@r < 0.
Of course, the results of the local analysis of the dynamo equations should be

confirmed by solving them in all conducting space using proper boundary conditions.
This has been done so far in the investigations referred to above for dynamo models
involving differential rotation and 
-effect.

9. CONCLUDING REMARKS

In this article we have shown a procedure to calculate the mean electromotive force E
for a magnetohydrodynamic turbulence. The bounds of its applicability result mainly
from the use of a closure assumption for the deviation of the turbulence from that
for zero magnetic field and zero rotation. As explained above it can only be justified
for sufficiently small mean magnetic fields and small rotation rates of the fluid. For
simplicity we have restricted ourselves to the case in which there is, apart from
the rotation, no mean motion. Specific results have been derived for the limit in
which the mean electromotive force is linear in the mean magnetic field and a
Kolmogorov-type turbulence.
Let us compare results obtained in the kinematic approach on the basis of the

second-order correlation approximation, or first-order smoothing, for the high-
conductivity limit with results of our procedure. Take as a simple example the case
of homogeneous and isotropic turbulence. Then we have E ¼ ��B� �JTB for
sufficiently weak variations of B in space and in time. In the kinematic approach
under the conditions mentioned we have

� ¼
1

3

Z 1

0

huðx, tÞE½JTuðx, t� �Þ�i d�, ð134Þ

� ¼
1

3

Z 1

0

huðx, tÞEu½x, t� ��Þi d�: ð135Þ

This is often expressed in the form

� ¼ 1
3
huEðJTuÞi�ð�Þcorr, � ¼ 1

3
hu2i�ð�Þcorr, ð136Þ

with properly defined correlation times �ð�Þcorr and �ð�Þcorr: The validity of these results can
only be readily justified under the condition u�=l � 1, where u, l, and � are typical
values of the velocity and of the length and time scales of the velocity field. This condi-
tion, however, is problematic in view of applications to realistic situations, and the
validity of these results beyond this condition is questionable. Basically it is possible to
improve the approximation by including higher-order terms in u but this is very tedious.
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The results (136) have the structure of our result given by (116), specified by bð0Þ ¼ 0,
and our result (117). The validity of our results, however, is not restricted by a
condition like u�=l � 1, but only by the applicability of the �-approximation (37).
That is, we have in any case a much wider range of validity.
We point out that despite the formal similarity of the mentioned results gained in the

kinematic approach and those derived here, there is a basic difference between them. In
the first case we have originally, that is in (134) and (135), correlations between values
of u taken at different times, which are often as in (136) expressed by u at a given time
and a correlation time, but in the second case we consider from the very beginning only
correlations between values of u at the same time. In that sense there is no simple
connection between the two kind of results.
We may use the framework explained above also beyond the limit of very small mean

magnetic fields and study, for example, a or b-quenching at least for not too strong
fields. Then, of course, vij and mij can no longer be replaced by v

ð0Þ
ij and m

ð0Þ
ij . Instead

we have to derive equations for vij and mij corresponding to Eq. (30) for �ij, insert
their solutions depending on B in Iij in (35) and follow the above pattern of the deter-
mination of aij and bijk, or a, b, . . . . By the way, then even in the case bð0Þ ¼ 0 there are
contributions of mij to these coefficients which, of course, vanish like m

ð0Þ
ij with B.

In this context it suggests itself to study in addition to the mean electromotive force
E also the mean pondermotive force F . It has a part independent of B, which can be
calculated with the help of v

ð0Þ
ij and m

ð0Þ
ij only. Its general form can be derived on the

basis of solutions of the equations for vij and mij mentioned.
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APPENDIX A: RELATIONS WITH eijk

For the derivation of (19) it is useful to know the relation

"ijk�k þ ð"iklkj � "jklkiÞ
kk�l

k2
¼ "ijkkk

ðkE:Þ

k2
, ðA1Þ

which applies to arbitrary vectors k and :.
In view of the derivation of (67) we recall the identity

"ijk"lmn ¼ 
il
jm
kn þ 
in
jl
km þ 
im
jn
kl � 
in
jm
kl � 
il
jn
km � 
im
jl
kn: ðA2Þ

APPENDIX B: DERIVATION OF EQUATION (30)

In the calculations of @�ij=@t on the basis of the Eqs. (15) and (16) contributions to this
quantity occur which have, e.g., the form of

Xijðk,RÞ ¼

Z
hŜSiðu,B; kþ K=2Þûujð�kþ K=2Þi expðiKERÞ d 3K

¼ i

Z
ðkk þ Kk=2Þhûuiðkþ K=2�QÞûujð�kþ K=2ÞiB̂BkðQÞ expðiKERÞ d 3K d 3Q:

ðB1Þ

In the last expression we may change the sequence of integration so that the inner inte-
gral is over K and the outer integral is over Q: In the inner integral we may further
change the integration variable K into K�Q, denoted by K0 in the following. In this
way, and using QkB̂Bk ¼ 0, we obtain

Xijðk,RÞ ¼ i

Z
ðkk þ K 0

k=2Þhûuiðk�Q=2þ K0=2Þûujð�kþQ=2

þ K0=2ÞiB̂BkðQÞ exp½iðK0ERþQERÞ� d 3K 0 d 3Q: ðB2Þ

Remembering the definition of vijðk,RÞ we can rewrite this into

Xijðk,RÞ ¼

Z
ikkvijðk�Q=2,RÞ þ

1

2

@vijðk�Q=2,RÞ

@Rk

� �� �
B̂BkðQÞ expðiQERÞ d 3Q:

ðB3Þ
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The fact that B varies only on large scales, that is, B̂B is only nonzero for certain small
jQj, suggests to use the Taylor expansion

vijðk�Q=2,RÞ ’ vijðk,RÞ �
1

2

@vijðk,RÞ

@kk

� �
Qk þOðQ

2Þ: ðB4Þ

This yields

Xijðk,RÞ ’ ½iðkEBÞ þ
1

2
ðBEJÞ�vijðk,RÞ � kkvijlðk,RÞBk, l, ðB5Þ

where vijl ¼ ð1=2Þ@vij=@kl: According to our assumption a term of the second-order in J

was neglected. The contributions to the Taylor expansion indicated by OðQ2Þ only lead
to terms of higher order in J and need not to be considered.
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