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The mean electromotive force that occurs in the framework of mean-field magnetohydrodynamics is studied
for cases in which magnetic field fluctuations are not only due to the action of velocity fluctuations on the
mean magnetic field. The possibility of magnetic field fluctuations independent of a mean magnetic field,
as they may occur as a consequence of a small-scale dynamo, is taken into account. Particular attention is
paid to the effect of a mean rotation of the fluid on the mean electromotive force, although only small rotation
rates are considered. Anisotropies of the turbulence due to gradients of its intensity or its helicity are admitted.
The mean magnetic field is considered to be weak enough to exclude quenching effects. A t-approximation is
used in the equation describing the deviation of the cross-helicity tensor from that for zero mean magnetic
field, which applies in the limit of large hydrodynamic Reynolds numbers.

For the effects described by the mean electromotive force like a-effect, turbulent diffusion of magnetic
fields etc in addition to the contributions determined by the velocity fluctuations also those determined
by the magnetic field fluctuations independent of the mean magnetic field are derived. Several old results
are confirmed, partially under more general assumptions, and quite a few new ones are given. Provided
the kinematic helicity and the current helicity of the fluctuations have the same signs the a-effect is always
diminished by the magnetic fluctuations. In the absence of rotation these have, however, no influence on
the turbulent diffusion. Besides the diamagnetic effect due to a gradient of the intensity of the velocity fluc-
tuations there is a paramagnetic effect due to a gradient of the intensity of the magnetic fluctuations. In the
absence of rotation these two effects compensate each other in the case of equipartition of the kinetic
and magnetic energies of the fluctuations of the original turbulence, i.e. that with zero mean magnetic
field, but the rotation makes the situation more complex. The Q x J-effect works in the same way with velocity
fluctuations and magnetic field fluctuations. A contribution to the electromotive force connected with the
symmetric parts of the gradient tensor of the mean magnetic field, which does not occur in the absence of
rotation, was found in the case of rotation, resulting from velocity or magnetic fluctuations.

The implications of the results for the mean electromotive force for mean-field dynamo models are
discussed with special emphasis to dynamos working without «-effect.

The results for the coefficients defining the mean electromotive force which are determined by the velocity
fluctuations in the case of vanishing mean motion agree formally with the results obtained in the kinematic
approach, specified by second-order approximation and high-conductivity limit. However, their range of
validity is clearly larger.
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1. INTRODUCTION

The mean-field approach proved to be very useful in studying dynamo processes in
turbulently moving electrically conducting fluids (see, e.g., Moffatt, 1978; Parker,
1979; Krause and Rédler, 1980; Zeldovich et al., 1983). The crucial point of this
approach is the mean electromotive force which is determined by the fluctuations of
the fluid velocity and the magnetic field. It describes several physical effects like
a-effect, turbulent diffusion of the magnetic field or turbulent diamagnetism. In
many investigations on the kinematic level the magnetic fluctuations are understood
as caused by the action of the velocity fluctuations on the mean magnetic field. This
implies that they vanish if the mean magnetic field does so. The mean electromotive
force can then be considered as a quantity determined, apart from the mean velocity,
by the velocity fluctuations and the mean magnetic field.

There are, however, many realistic cases with magnetic fluctuations which exist inde-
pendent of the action of the velocity fluctuations on the mean magnetic field and do not
vanish if it does so. We recall here the numerous investigations showing the possibility
of small-scale dynamos with a zero mean magnetic field (see, e.g., Kazantsev, 1968;
Meneguzzi et al., 1981; Zeldovich et al., 1990; Nordlund et al., 1992; Childress and
Gilbert 1995; Brandenburg et al., 1996; Rogachevskii and Kleeorin, 1997; Kleeorin
et al. 2002a). As pointed out already by Pouquet ez al. (1976) in such cases the mean
electromotive force has in addition to the contributions mentioned above, which can
be ascribed to the velocity fluctuations, also others due to those magnetic fluctuations
which exist independent of the mean magnetic field.

Several investigations on the mean electromotive force comprising both kinds of con-
tributions have been carried out so far. We mention in particular those by Kichatinov
(1982) and by Vainshtein and Kichatinov (1983), in which an isotropic turbulence with
a scale-independent correlation time was assumed. Results concerning the a-effect, the
turbulent magnetic diffusivity and the turbulent diamagnetism or paramagnetism for an
originally isotropic turbulence subject to mean rotation have been derived using a
modified second-order correlation approximation by Kichatinov (1991), Ridiger and
Kichatinov (1993) and Kichatinov et al. (1994).

In this article we present an approach to the mean electromotive force which
reproduces such results under more general assumptions and reveals new ones, which
are of particular importance for astrophysical applications. We exclude mean motions
of the fluid other than a rigid body rotation with some small rotation rate. We further
consider only a weak mean magnetic field so that its energy density is small compared
to the kinetic energy density. In this way we do not consider quenching effects, i.e. reduc-
tions of the coefficients defining the mean electromotive force with growing mean mag-
netic field, which are important in view of the nonlinear behavior of dynamos and have
been discussed in a number of articles (see, e.g., Gruzinov and Diamond, 1994; Cattaneo
and Hughes, 1996; Sechafer, 1996; Field et al., 1999; Kulsrud, 1999; Kleeorin et al.,
2002b; Rogachevskii and Kleeorin, 2001; Blackman and Brandenburg, 2002).
We also do not deal with the evolution of the magnetic helicity, which implies
a constraint to the magnetic part of the wa-effect (see, e.g., Kleeorin et al., 1995;
Kleeorin and Rogachevskii, 1999; Kleeorin er al., 2000, 2002b; Blackman and
Brandenburg, 2002). Finally we use a t-approximation in the equations describing
the deviation of the cross-helicity tensor from that for zero magnetic field. In contrast
to the often used second-order correlation approximation it does not totally ignore
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higher than second-order correlations but considers their influence in some summary
way. The r-approximation in that sense applies in the limit of high hydrodynamic
Reynolds numbers.

In Section 2 we will explain the concept of mean-field magnetohydrodynamics for a
homogeneous incompressible fluid. In Section 3 we introduce a Fourier representation
of the velocity and magnetic fluctuations, define correlation tensors and express the
mean electromotive force by the cross-helicity tensor. After giving an equation for
this tensor in Section 4 we introduce in Section 5 the mentioned t-approximation,
which leads to closed equations for that part of the cross-helicity tensor which
determines the mean electromotive force. In Section 6 general relations for this mean
electromotive force are given, and in Section 7 more specific relations for the case
for small rotation rates. In Section 8 we restrict ourselves to the limit of weak mean
magnetic fields so that the mean electromotive force can be considered as linear in the
mean magnetic field and specify the correlation tensors for the “original’ turbulence,
that is, the turbulence for zero mean magnetic field. For zero rotation they are deter-
mined by simple assumptions concerning the deviations from a homogeneous isotropic
turbulence, and the influence of a slow rotation on the velocity fluctuations is calculated
by a perturbation procedure, again based on a r-approximation. We further introduce
Kolmogorov-type spectra of the relevant quantities. On this basis we deliver results for
the coefficients defining the mean electromotive force and discuss them with special
attention to the different effects of velocity and magnetic field fluctuations. Finally,
in Section 9 our results are compared with results of the kinematic approach in
the second-order correlation approximation, some remarks concerning their range of
validity are made, and some prospects are mentioned concerning the extension of the
approach of this article to related questions of mean-field magnetohydrodynamics.

2. FORMULATION OF THE PROBLEM
We consider a turbulent motion of an electrically conducting incompressible fluid

in interaction with a magnetic field. Let us assume that the fluid velocity U and the
magnetic field B are governed by the equations

ou vep 1

—+(UV)U=——4—(VxB)xB+1WU+2U x Q+F, (1)
ot p P
B
== V x (U x B) + nV*B, ()
V-U=V:-B=0, 3)

where P is a modified pressure and F an external force. We refer to a rotating frame
with Q being the angular velocity responsible for the Coriolis force. As usual v and 7
are the kinematic and magnetic viscosities, p is the mass density and u is the magnetic
permeability of the fluid, all considered as constants.
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We further assume that there is an averaging procedure which defines for each quan-
tity Q an average (Q) and satisfies the Reynolds rules. In the spirit of the mean-field
concept we split the fluid velocity U and the magnetic field B according to

U=U+u, B=B+b 4)

into mean parts, U = (U) and B = (B), and fluctuations, u and b. Analogously we split
Pinto P and p, and F into F and f, etc. The mean fields U and B satisfy the equations

U VP 1

EJF(U-V)U:—7+Mp(Vx§)x§+uvzﬁ+2ﬁx9+}'+i (5)
B _ o
E:Vx(UxB—l—é’)—i—nVB, (6)

V-U=V-B=0, (7)

with F and € being a pondermotive and an electromotive force due to fluctuations

F= —<(u-V)u>+i((be)xb>, (8)
wp
£ = (uxh). 9)

For the determination of F and £ we need information on the fluctuations u and b.
These have to obey the equations

_ _ 1 _
u_ —(U-V)u - (u-V)U—E+—[(VxB)xb
ot p P

+ (Vxb)xB] + T+ vV?u+ 2ux Q +f,

(10)

db _
E:Vx(uxB+Uxb)+nV2b+G, (11)

where T and G summarize terms nonlinear in u and b;

T = ((u-V)u) — (u-V)u+$[(bx (Vxb)) —bx (Vxb)], (12)

G=Vx(uxb— (uxb)). (13)
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3. FOURIER REPRESENTATION, CORRELATION TENSORS

Let us now represent quantities like u and b, or U and B, by Fourier integrals defined
according to

O(x,1) = / Ok, ) exp(i k- x) d°k. (14)

We may rewrite the Egs. (10) and (11) for u and b into equations for their components
u; and b; with respect to a Cartesian coordinate system, derive equations for their
Fourier transforms #; and b; and subject the equation for #; to a projection operator
P; = 8; — kik;/k*, with 8; being the Kronecker tensor, in order to eliminate the
pressure p. In this way we obtain

3;(K)/3t = —Py[L;(u, U; k) + Si(u, U; K)] + 2Py — 8;)L;(b, B; k)/up
+ 8i(b, B; K)/1ep + Dy(K)iyi(k) — vik*ii(K) — Py(Ty(k) — fi(k)/p,  (15)

bi(k, 1)/9t = Si(u, B; k) — Si(b, U; k) — L;(u, B; k) + L;(b, U; k)

— 1k2bi(k) + Gi(k), (16)
where
Lia,A; k) =i / aj(k — K)K;A:(K) °K, (17)
Si(a, A; k) = ik / ai(k — K)4;(K) °K, (18)
Dl](k) = 28ijmkm (k : Q)/kza (19)

and g is the Levi-Civita tensor. For the sake of simplicity the argument ¢ is dropped
everywhere. Concerning the derivation of (19) we refer to (Al).

We will use these equations for calculating the two-point correlation functions. Let us
consider, e.g., the correlation tensor (v;(x;)w;(X>)) of two vector fields v and w, where x
and x; denote two points in space but both fields are taken at the same time. Using the
definition (14) of the Fourier transformation and following a pattern introduced by
Roberts and Soward (1975) we write

(vix)wi(x2)) = /f(ﬁi(kl)ﬁ/j(kz))exp i(ki X1 + ko x2) d*ky dk
_ / (1t K) exp (K -R) d°K

= / @ik, R) exp (ik-1) d°k, (20)
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where
@;i(r,K) = f(f’i(k + K/2)w;(—k + K/2)) exp (ik *r) &k, (21)
v;i(k,R) = /(ﬁ,—(k + K/2)w;(—k + K/2)) exp (iK-R) &K, (22)

and R = (x; +x3)/2, r=x; — x5, K=Kk; +k;, k= (k; —k;)/2. We relate later r and
k to small scales and R and K to large scales in the physical space.

In the following we consider in particular the correlation tensors for the velocity and
magnetic fluctuations, (u;(X1)u;(X2)) and (b;(x1)b;j(x2)), and the cross-helicity tensor,
(ui(x1)bj(x2)), and we use the definitions

vij(k, R) = (i, i K, R),  m(k, R) = (s, by k, R)/ up, (23)
ik, R) = ®(&;, b; k, R), (24)

where
o, w; k,R) = / (v(k + K/2)w(—k + K/2)) exp(iK-R) d °K. (25)

The definition of v; implies
vii(k,R) = vi(—k,R) (26)
and
vii(k, R)k; = év,vi,(k, R), v;(k,R)k; = —%V,vi,(k, R). 27
Here and in the following V stands for 9/dR. A relation analogous to (26) applies to m;,
too, and relations analogous to (27) apply to m;; and even to x;.

If we know v;, my and x; we may calculate the pondermotive force F and the
electromotive force £. In this article, however, we will focus attention on £ only. Since

Ei = ¢ejk /X/k(k, R)d°k, (28)

we first deal with the cross-correlation tensor ;.

4. THE EQUATION FOR THE CROSS-HELICITY TENSOR

According to the definition (25) of yx; its time derivative is given by

oxj(kR) (o0 » . ob;
o =@ 5 bk R )+ (@ Lk R). (29)
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We evaluate this using Eqs. (15) and (16) and neglecting all contributions contain-
ing higher than first order terms in the operator V, independent on whether it acts
on vy, my, x;, U or B. With manipulations explained in Appendix B we obtain

AXij AXki
aly + Lijklm 87 + MijlclmeXkl + Nifk/Xkl + Cl] = Iij 5 (30)
where
szklm = _aiij/Up, mkps (31)

M[/‘klm =—i [Diks_/lkm - Sikmgjl(k'g) - Sikpkpa/'/szm]/kz

+ i(n — v)8ibjikm, (32)
Nyt = Ui 18 — 85 Us — 2kipy Uy 18 — D + (v + k88, (33)
Cy = ®[Pu(Ti — fo). b1 — @ (@, G, (34)

o 1
]U = —l(k‘B)(VI:]' — m,:,—) =+ EBPVP(VU =+ m,-j)

_ _ kik,— _
— B pvip + Bi pimy; — ZﬁBp,qmq/’ = By gkp(vijg + mijq), (35)

and Ei,j = Vjﬁia Ui,j = V/U,‘, furthermore k,"/ = k,‘kj/kz, Vijg = (1/2)8\711/8]([] and Mjjg =

5. THE -APPROXIMATION

When dealing with Eq. (30) for x; we are confronted with the difficulty that we
know nothing about the term Cj; which stands for couplings of x; with higher-order
correlation tensors. We assume now that we know the solution x; of Eq. (30) for
L. . . . 0)"
vanishing mean magnetic field, that is [; =0, denote it by X; » and the corre-
sponding Cj; by Cg-)). For the case with nonvanishing mean magnetic field we put
then y; = XS‘)) + ng ) and C; = Cf/-o) + Cff). Then we have
B
ang)
ot

aX(CB)
+ szklm Z)k# + Mljklmvmxg) + Niiklxggl[g) + CU('B) = Ii}'- (36)

At this level we introduce the t-approximation
P = 1P (k) (37

with some relaxation time t(k) (see, e.g., Orszag, 1970; Monin and Yaglom, 1975;
Pouquet et al., 1976; McComb, 1990, Kleeorin et al., 1990, 1996). This approximation
applies for large hydrodynamic Reynolds numbers, i.e. for fully developed turbulence.
In this case the relaxation time 7(k) is determined by the correlation time of the
turbulent velocity field only. The limit T — oo corresponds to cancelling all higher-order
correlations, that is, to some kind of second-order correlation approximation (see also
Section 9). Note that we do not introduce any closure assumption for the original
turbulence; Eq. (37) concerns only deviations from the original turbulence.



256 K.-H RADLER et al.
6. RELATIONS FOR THE MEAN ELECTROMOTIVE FORCE

Returning now to the electromotive force £ we first put in the above sense
E=EY 1+ gB We assume however that 8(0), if not at all equal to zero, becomes unim-
portant in comparison to £ when B grows and put therefore £ = 0. Thus the
electromotive force € is given by

E = e / X (k,R) d k. (38)

Let us assume that the time variations of 7, that is, of B, E-,j, v, and my, are
sufficiently weak, so that Xf.jB), apart from some initial time, can be considered as a
solution of the steady version of Eq. (36), that is, with Bxij) /0t being neglected. Thus
the dependence of Xf-jB) on B; and B; ;j 1s linear and homogeneous and, in addition,
instantaneous. So we may conclude that

& = ayB; + b Bj i (39)

with tensors a; and b; determined by v; and my;.

This relation can be rewritten in another form, which might be more suitable for some
discussions. To derive it we split a; in to a symmetric and an antisymmetric part and
express the latter by a vector. We further split the gradient tensor of B into a symmetric
part dB, defined by (3B); = (1/2)(B,; + B;.i), and an antisymmetric one, which can be
expressed by Vx B. We have then B; ; = (3B); — (1/2)e;x(V x B),.. Finally we express
the tensorial coefficient occurring then with V x B again by a symmetric tensor and a
vector. In this way we arrive at

£=—aB—yxB—B(VxB)—dx(VxB)—xiB (40)

(see Rédler, 1980, 1983), where « and B are symmetric tensors of the second rank, y and
d vectors, and « is a tensor of the third rank; x can be considered to be symmetric in the
indices connecting it with 3B, and contributions can be dropped which would produce
V-B. We have

aj = —Yay;+ap),  Bij =3 (Embin + eribir), (41)
Vi =38k, 8 =5 (i — big), ki = =5 (bjk + bigy)- (42)

For the sake of simplicity we restrict ourselves on the case U; = const. Thus XEJB) is
governed by the steady version of Eq. (36) with  Ljjy, =0
and Ny = —Dydy + (v+1n) k26,-k6,~/. Using (37) the equation for ng) can be written
in the form

Iikxif) +M z/klmexg)T* = [T, (43)

where

D~,-j =8 — Dy, ‘(*_1 =74 v+ r/)kz. (44)
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In deriving Eq. (30) we have neglected all contrlbu‘uons to [; of higher than first
order 1n V. In the same sense we may replace V,, Xk/ in Egs. (30), (36) and (43) by
Vi ng , Where Xl( B summarizes the contributions to X(B) which are of zero order in
V. We have then
Dixp? = Iz, 17 = —i(B-k)(v; — my), (45)
and consequently
X;(B) D,/ 11/] Ty (46)
where D! is the inverse of D, satisfying D~§<1D~k/‘ = §;, that is,

13;1 = (1 4+ &*k*) ' (8 + weiky + &kik)), (47)

where o = 27,(Q-k)/k*. Proceeding as described above we finally obtain the solution of
Eq. (43) in the form

Xﬁf)_D;j]k,-r* Dy, My Dy} Vil (48)

7. THE MEAN ELECTROMOTIVE FORCE AT SLOW ROTATION

(B)

We split the electromotive force £ according to

EB) — gB0) | (B (49)

into parts £8 and €59 the first of which does not depend on the rotation while the
second one does but vanishes with vanishing rotation. For 5530) we have simply

&7 = ey [ .00 d k. (50)

As for £BY we restrict ourselves to the case of slow rotation. More precisely, we neglect
terms of third and higher order in 7, in comparison to unity. So we find

B — / (2(1( Q)(k;I; — k1)

s

Kk
_4(k'g)2<8iﬂc+8ik! 122> [T — 2i(k- Q){ |:

(k-Q) o
ek Vil 1. k2d3k (51)

V) — (Q- V)}kil;l") k-Q)ViI — vjl,,-)}
(k-€Q)

—(Q- V)} g,,kﬂ o)
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In the integrand we have dropped terms of the structures ijkllij’) or ijkll(,f), which
would, by reason connected with (27), lead to contributions of the second order in V.
Moreover, for the sake of simplicity in both (50) and (51) we ignored terms containing
the factor (n — v)k*t,. We will later point out the consequences of that for our final
result.

In relation (39) for £ we split a;; and by, into parts corresponding to their dependence
on v; or my, e.g.,

a; = ag’) + ag"),

(52)

and each of them are splitted into one which is independent of © and a remaining
one, e.g.,

ag)) = aE})O) + agzﬂ), ag‘ﬂ) — agnO) + agnﬂ)' (53)
We note that the splitting of £® according to (49) and the splittings of “f‘,-v), af_;_n)’ -

according to (53) refer only to the dependencies on Q which occur explicitly in
this stage of our derivations. In general v; will depend on £, too, and then EBY and

5;'0), g”o), ... will have also contributions with €, and the dependencies of £ and
&', af;”m, ... on Q will be more complex.

i
A straightforward calculation yields

0 1 0 1
Clg ) = Eilm ng_)/s ag'n ) = _Eilmmgm)ja (547 55)
0 1 0 1 1
gk) = 8(/1‘}5/;)5 SZ ) = siﬂmgk) + 28[1,,1m§€lj)-m, (56, 57)

() _ (2) (2)
4 = [2Vppiﬂ = ViV

) @ L0 o) )
o+ Vo 29, (Vo ) = Vil |21 = deipg 5, 210,
(58)

ij ppijl 1741 ppil qqijlp ipjl 172 pgjlm
(59)

A [—2m(2) + V,-m(z)Al + ij(z) -2V, (m(z) + m? ) + V;m(z) ]Q; + 48,~Mm(3) Q2,

Q) _ (2) (2) (©)
ik = (2Vikjl — 2V + V;)pijkl)gl — 4ijpV i 2 S2m5 (60)

(o) _ @ @ @ @ @
bije = (=2 =+ 2y + 2,801 4 2,8 — Ay 1) U

3 3
— 4(8ijpm§€;lm + Zeipqn1§(13ilmq)§2/§2,,1. (61)
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Here we used the definitions

W / (—ik)* vy (K)ky T d >k, (62)
v;/klmn - /v[/(k)kk/mn(dfz/dk) kd3k’ (63)
where A =0 or A =1 for even or odd v, respectively, and ki, = ki ... k,/k", with v

being the rank of this last tensor, and analogous definitions for m(jk) oo and my,
with v; replaced by my;. With the help of (26) we find that the v(” ) w1th A =0 are
symmetric and those with A = 1 antisymmetric in i and j and moreover in both cases
symmetric in every pair of the remaining indices, and that vy, is symmetric in i
and j and again in every pair of the remaining indices. The same applies to mf’,i)
and to mlj,\,mn Furthermore in the case A =0 we may conclude from (27) thdt
Wity =~/ and Vi) = (1/2)V,5) . where the 7, (which will never
explicitly occur in the following) are defined like the v(") but with k;_,k=2 in the

integrand instead of kj; ,. In the case A =1 we have 81mp1y ,(,’;) = 1/2)V, v%) .

and vfl’f/) =0 /Z)V,,vfpf‘/) - All these statements apply again to m%)...np and mfp’;) e
()

too. We have used these properties of the Viik._.p> mﬁf,‘j P in deriving (54)—(61), and
we have ignored all terms which would result in contributions to £ of higher than
first order in V. Likewise we have cancelled contributions to b proportional to §j,
which cannot contribute to £ since V-B = 0.

Let us consider the representation (40) for £ and split each of the quantities «, y, f, &

and k after the pattern of (52) and (53) into four parts, e.g.,

oy = o) + ol

o, (64)

and

@)

The above remarks concerning the dependencies on Q apply here analogously. Using
(41)—(42) and (54)— (61) all these contributions to a, 7, B, é and k can be expressed
by the "f;k) » mf e . For the sake of simplicity we give here only the contributions
which do not depend on Q. They read

(]VO) 3 L (e, Vk/, + &jik Vub O‘gij) %(‘ka;\'ll/)‘ + af”‘mgf’)‘) (66)
B =10Ms; — v, Y = —LmDsy —ml) —2mi))), 67)
N B N )
"E‘jvlg) =2 (8ij/"1k) + Eikivy; i) ()
/c?/'.zo) =-1 (eijlmﬁ) + eikimy; Wy + 81/111("1;(1,3,,/ ﬁrln)kl) (70)

In order to derive (67) we have used (A2).
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8. THE MEAN ELECTROMOTIVE FORCE IN THE LIMIT OF
WEAK MEAN MAGNETIC FIELDS UNDER SPECIFIC
ASSUMPTIONS ON THE ORIGINAL TURBULENCE

In general the correlation tensors v; and m;; depend, of course, on the mean magnetic
field B. As a consequence the mean electromotive force £ depends in a nonlinear way
on B. We restrict ourselves now to the a proximation in which v; and my; are simply
replaced by the corresponding tensors WO i and m(jo) for the “original” turbulence, that
is the turbulence for zero mean magnetic field. Then, of course, £ is linear in B. This
implies that any quenching effects are excluded.

8.1 Nonrotating Turbulence

We first ignore any influence of a rotation of the fluid on the turbulence. As for the
correlation tensors vg-)) and mf-;)) for the original turbulence we assume that, as long it
is homogeneous, they are essentially determined by the kinetic and magnetic energy
densities, that is by m©®2?) and (b®?), and by the kinematic and current helicities,
@@+ (Vxu®)) and (b (V x b?)), and that inhomogeneities are only due to gradients
of these four quantities. With the notations u® and b instead of u and b we want to
stress that we are dealing with the original turbulence. Note that b is in general nonzero
even if b® = 0. Under the assumptions adopted the most general form of the correla-
tion tensor v(o)(k R) of the velocity fluctuations of the original turbulence is given by

W R) = ¢ 1k2 ([ ,,(k)+2k2 (k:iV; — kV)]W“’(k R)

1
2k2 [Sz/kkk |:2l +-5 k2 (k V)i| - P (kis_/lm + k/'gi/m)klvm]ﬂ(‘))(ka R)) . (71)

We note that v\ satisfies the requirements resulting from V-u® =0, and that
W O (k,R) and u(/)(k R) are spectrum functions depending on k via k only and posses-
sing the properties [ W (k,R)dk = (u©?) and [;° u®(k,R)dk = (u®-(V xu®)).
The definition of the correlation tensor m(0 of the magnetic fluctuations of the original
turbulence follows from (71) when replacmg P J W O and u® by m(jo) W and ™,
and we have [;° W ™) (k,R) dk = (b?)/pp and f w(k, R) dk = (b -(Vx b)) /1p.

Since we ignore here any influence of rotation the o, o, . .. coincide with the a(VO)
(mO)
o

t/’ ij i oo
i . given with (66)—(70). Calculating now the W with v; replaced by v(o)
spemfled by (71) we find

l}k P

1

(1) v

i 35171“)+--~, (72)
ool

vgfl’» (a’k — 8Vl Y — 884‘/1»'1( b, (73)

1 3 )
E/lk)l 5 (5z15k/ - gEff,),)ﬂ Dy (79)
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where
7O _ / WOk, Ryt dk, JOD = / 1Ok, R)z, dk, (75)
0 0

and Ef;,?, is a completely symmetric tensor, which we define with a view to the following
in a more general frame by

1
(2v) (2 2) (2v-2) (2v-2) (2 _
B sy = =7 (OB OB + 4 8B ED =8y (76

The terms in (72) and (74) indicated by - - - are without interest because they would lead

to contributions to £ which are of second order in V. For the mf,l), mf]lk) and mfjlk),
analogous relations apply with analogously defined 7 "V and J"V.
Using now (66)—(70) we obtain
(l) 18 J(xl) ag”) — _%Sl.j.](f”l)’ (77)
() _ 1 (11) (m) __
By =181 B =0, (78)
y = gVIOD, = v, (79)
50) = 5(m) = 0, K(V) = K(m) =0. (80)

8.2 Rotating Turbulence

In order to include the effect of a rotation of the fluid we have first to study how the

original turbulence, that is Vu chdnges with the rotation, that is with Q. We assume

here that in the absence of rotation the turbulence possesses no helicity. More precisely,

we assume that (71) applies with ) = 0 in the limit of vanishing , and we will now

calculate the effect of rotation by a perturbation procedure up to the second order in .
Proceeding as in the calculation of the cross-helicity x; we start from

9v;(k,R) o . o
— 0 KR)+ (i 22 kR 81
or (az a; >+ <“ or @1

but use the Eq. (15) for #; with B =0 and T = 0 so that v; turns into vf/ ), and put again
U = 0. So we arrive at

9 (0)

a— + Mz]klmvm VM + Nz/klvk/ + 2Vk2 (O) + C =0, (82)
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where
~ I
M@’/‘k/m = ﬁ Qp[Pmp(k)kq + qu(k)kp](gikqul - 8/1(]8[/()7 (83)
. k-Q)
Nijxi = —2(7(81'@5_/1 + g8 )k, (84)
Cy = —®(ili, Pic f;) — P(Pit fi ). (85)

We assume now that we know the solution v ) of (82) for Q@ = 0, denote it by v(OO)
and the corresponding C,J by C(O) For the case with nonvanishing Q we put then

E]O) = v(OO) + V(OQ) and C; = C(O) + C,(»jQ). So we find

o ;OQ) Liikin V)" + Ny + 20k3 0 + CP = 119 (86)
where
I = (M Vi + Niga)vy . (87)
At this level we introduce again a t-approximation,
G =i ik, ), (88)

where 7(k, Q) is a relaxation time analogous to ‘L’(k) introduced with (37). Now we
assume that the characteristic time of variations of v i %9 is much larger than 7 so that
we can drop the t1me derlvatlve 8v(09)/8t in (86). Thinking of slow rotation, that is
Q1 « 1, we expand v ) in the form

09 _ (01) 02)
Vij i (86)

where v(0 and v ] are of the first and second order in Q, respectively. We further
assume that 7 does not deviate markedly from z, that it does not depend on the sign
of ©Q and therefore its expansion with respect to £ possesses no linear term. In that
sense we put 7 = 7 + O(R?), where the last term is without interest for the following.
In this way we obtain

5]0 W= _f*(M[/klmvm + Nl‘i/\'l)vﬁcol’uil)a %*_] = T_l + Zsza w=12 (90)

Identifying now vg;o) with v(o) defined by (71) with u) = 0 and neglecting again terms of

higher than first order in V we find

ij 4k4 EijmKm

on_ ((" &2 vy - (@- V>)W“>(k R, =0 O
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With (91) we arrive at

1

(0) (k R) = 3 k2

(P,,(k)+ 50 iV = V)

2iT, (k-Q)

+ 7 Sijmkm |:

Interestingly enough this coincides with (71) if we replace there u by ", defined by

(k-V)— (Q-V):|>W(V)(k, R). 92)

Uy <(k D) k-v) (Q-V))W(")(k, R). ©3)

and cancel the terms with Vi), which are of second order in V. Note that the absence
of terms of higher than second order in € in the correlation tensor (92) is a consequence
of the fact that we restricted ourselves to small Q7 and used in that sense (89). The
absence of terms of the second order results from the assumption on the dependence
of T on Q.

As for the magnetic fluctuations of the original turbulence we assume that they are
independent of the rotation of the fluid and show no helicity so that

i m
PR = L (P00 + 515055, = ki) I () 04
We calculate now the vf’,‘() P mf.;.,‘()_up, ... defined by (62)—(63) with v; replaced by v(o)
according to (92) and fmd
(M) 1 (vin)
Vi 3 S8l + - (95)
oy 1 ), 3 =00
VE-]"/LC) = E(aikv_/ - Sikvi)l( " — 584‘/‘11|: k(- VI ") - gE](;;{),mQ/V,,J ’ ’ (96)
1 3 '
Vi =g <8ij8k1 gEf,ii)ﬂ‘“’ 4o 97)
1 ) o)
( ) _ (4) (4) 4 ® (6)
I/lltdm _(EllslmV E/klmv')l o) — geijp I:Eplxlm(gz VI ) - ?E[)kll‘ﬂ([l Q \Z i| (98)
1 5
( ) 4) (6) v
ljlllclmp = 10 (8 Eklmp 7 Eljklmp)l( w +ee (99)

In accordance with (75) we have used here the definitions

10W = / WOk, Ry (k) dk, 1™ = / W Ok, R)y (k)T (k) d. (100)
0

0

()

ijkimp turns into v/

The expression for v if 70% is replaced by 7, where

ijkimp

70 = f W Ok, R)(d? i)k d. (101)
0
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Again terms indicated by --- correspond to contributions of second order i T In Vto €.
Relations analogous to (95)—(101) apply for mf]“), fj‘z), ..., too, but with "~ .

Calculating now the af]), ag") . according to (54)— (61) and finally the aﬁj‘), f]m), .

according to (41)—(42) we arrive at

2 4 ,
o) = [45,,(9 V) -V, — Vi IV + — [ §(Q-V) — (sz,v_, + sz_,vg]zoz)
+ 1_5 (8ilm Qj + Ejim Q,’)Q]Vm] (v3)’ (102)
1
ozf;”) =7 [ 8ii(Q-V) + Q:V; + Q;V; ]10“2) —(8,»1,,19_,' + &im Q) I ", (103)
() 15..[(v1) _2 5.2 _|_lQ.Q. 703 (104)
ﬁz} - 3 y 5 i 3 ALY s
B = —5(54‘1‘92 = 39,1, (103)
,o 1 8 , 1 o 2 ,
P =-VI O — QT 4@ x VI + ZQQ-VI M), (106)
6 5 6 15
g = _Ly(rom _3orpen) Lo wyron _ 2 gq.yrom, (107)
6 5 6 15
w_ _Lorm
0" = —EQI ; (108)
s — Larm (109)
6 b
; 1 a2 0\ 2 ,
k) = — £ Gy + aikgz_,)<1 AR A ) — 75 €SS + i) Y, (110)
. 7 2 0\ 2 .
= 750+ 5,-,@,)(1 v ) + 15 (€U + eI . (111)

8.3 Specification to Kolmogorov Type Turbulence Spectra

Let us now specify the original turbulence to be of Kolmogorov type, i.e., to possess
a constant energy flux through the spectrum, and consider the inertial range of wave
numbers, kg < k < ky, where ky ' = [, defines the largest length scale and kgl the dissi-
pative scale of the turbulence. In this range we have W = (g —1) ((u®?)/ko)x
(k/ko)™?, and W ™ analogously. Furthermore we put u” = (¢ — 1)((u@- (Vxu®))/
ko)(k/ko)™? but, by reasons connected with the conservation of the magnetic helicity
in the high-conductivity limit, £ = (b -(V x b@))8(k — k). Finally we assume that
1, = 7, = 219(k/ko)' 79, with 27y being a correlation (or turnover) time for k = k.
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In all cases ¢ is a constant constrained by 1 < ¢ < 3. Assuming that it is sufficient to
take the integrals in (75) and (100)-(101) over the inertial range only and that
ko/ky < 1 we obtain

oM
70w — i @y gD = @V x u®))1, (112)
"
IO =100 O = _2g— 11", (113)
2/L b(0)2 b(O) . V b(O)
](m;/.) — uf(’)ﬂ J(ml) :Mfm (114)
w+1 pp wp
1 = —2(qg — 1)1 ", (115)

Note that the 70®, JOD JOD 7m0 gand Jo) are independent of g.

By the way, with the above specification of u we have simply (b®-(V x b)) =
(a®-b®)/2. Here (a®-b®) is the magnetic helicity, where a® is the vector potential
of b, i. e., b = Vxa®. The factor §(k — ko) in the function p(?) is chosen in order
to meet the realizability condition for the magnetic helicity (see, e.g., Moffatt, 1978;
Zeldovich et al., 1983).

8.4 Specific Results for Nonrotating Turbulence

Let us now summarize and discuss our results. When speaking in this context simply of
contributions of velocity and magnetic field fluctuations we refer always to the original
turbulence and so to u® and b¥). Starting with the case of nonrotating turbulence we
specify now (77)—(80) by (112)—(115) and obtain

). (0)
oy —ady, @t <<u«>> LV xu®)) — “’(Z:"”) . (116)
1
By = B8y, =5 W), (117)
1 p©?2
)’:gv<<u(0)2> —%)TO, (118)
6=0, k=0 (119)

We have an isotropic a-effect, and « is a sum o + o of two contributions
determined by the kinematic helicity and the current helicity of the original turbulence.
Whereas the signs of o) and the kinematic helicity coincide, those of o and the
current helicity are opposite to each other. This is in agreement with results, e.g., by
Pouquet et al. (1976), by Zeldovich et al. (1983) or by Vainshtein and Kichatinov
(1983). The contributions of the kinematic and the current helicities to the a-effect,
acting in opposite directions, may even compensate each other.

We also have an isotropic mean-field diffusivity g8, and this is determined only by the
intensity of the velocity fluctuations of the original turbulence. There is no contribution
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of the magnetic fluctuations of the original turbulence. This again agrees with results by
Vainshtein and Kichatinov (1983).

An inhomogeneity of the original turbulence leads to a transport of mean magnetic
flux which corresponds to that by a mean velocity —y. The expulsion of flux from
regions with high intensity of the velocity fluctuations has been sometimes discussed
as “turbulent diamagnetism” see, e.g., Zeldovich (1957), Rédler (1968, 1970, 1976) or
Krause and Rédler (1971, 1980). Our result shows, again in agreement with
Vainshtein and Kichatinov (1983), that magnetic fluctuations act in the opposite
sense, that is, in the sense of a “turbulent paramagnetism’. The magnetic flux is
expelled from regions where (u®2) — (1/up)(b®?) is higher, and pushed into regions
where it is lower compared to the surroundings. With equipartition of kinetic and mag-
netic energy, (u®?) = (1/up)(b®?), this effect vanishes.

8.5 Specific Results for Rotating Turbulence

In the case of the rotating turbulence in which helicity occurs only due to inhomo-
geneity and rotation we have

16 1%\ 11 3 (b2
= 8; % V[ (0 — 1) — —(Q'V; + Q'Y 2y 4 =
% 15[-’ <<“ ) =3 ) TGV GVl W A

1 N f O )2 (b?)
+§(3ilm91 Qj + Eﬂmgl Q,')vm (™) ———) |, (120)

1 12 4 (0)2 4 (0)2
Bi =3 {515,[(11(0)2) <1 - ?Q*2> 4 el q - gQ;sz;((u<°>2> + 3M> }ro,

5 no uo
(121)
0)2 0)2
N {V<(u<0>z> _M>(1 _ EQﬂ) P V(<u<0>2> +M>
6 wp 5 3 wp
A (b0%) (122)
+—Q*[Q*-V((u(0)2) — —)} }ro,
5 no
(0)2
52_2<<u<0>2>_<" >>m0, (123)
9 wno
2 7% 4g-1) (b©?)
o= =2 4 8,00 @@y L8 _FET Doy B
Kijic 9{( 7§ + Oik ‘,)|:(ll ) +3 y 5 ((ll )+ Y >]
6 * O * O (0)2 (b(O)z) 124
+§(8ile/Qk+8ik[Q]Qj) (u >_M—,0 7. (124)

Here Q* stands for Q7,. Our approximations are justified for |Q2*| <« 1 only. We recall
that we have ignored all terms containing factors (n — v)k>t, in (50) and (51). The only
influence of these terms on the above result would consist in the occurrence of contri-
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butions to «;; which, in comparison to others, are smaller by a factor of the order of
the small quantity (n — v)k37y. As far as contributions of the velocity fluctuations are
concerned the result (120)—(124) is in qualitative agreement with earlier results (e.g.,
Rédler, 1980).

The a-effect occurs now as a consequence of the simultaneous presence of a rotation
of the fluid and gradients in the intensities of the velocity or magnetic fluctuations, and
it is clearly anisotropic. A rough measure of the a-effect is the trace of «;;. For this
quantity we have

02
= 2O(Q*-V)<<u<°>2) - 3“’)) 7. (125)
9 5 up

At least with this quantity the effect of the velocity fluctuations is again diminished by
the magnetic fluctuations.

Like the a-effect the mean-field diffusivity, too, is in general anisotropic. Interestingly
enough, in contrast to the case of nonrotating turbulence g; is now no longer indepen-
dent of the magnetic fluctuations. For equipartition of kinetic and magnetic energy,
@2y = (1/up)(d@?), the mean-field diffusivity is again isotropic. Even in the general
case the tensor gj; has no other nonzero elements than diagonal ones. If Q* is parallel to
the x3-axis we have

1 12 4 (b2
— — — (02 1 — _Q*Z s 9*2
B = B 3<U >< 5 >+15 D ,
1 16 8 (b2
B3 =3<u<°>2><1 —59*2> —E<Mp)sz*2. (126)

In the absence of magnetic fluctuations not caused by the mean magnetic field, i.e.
b©® =0, all elements of Bii decrease with growing |Q*|.

Compared to the case of nonrotating turbulence, the vector y describing the
transport of mean magnetic flux has an additional term perpendicular to the rotation
axis. This term contains no longer the gradient of (u©®2) — (1/up)(b®?) but that of
@2y + (1/wp)(d@?), that is, it does not vanish with (u®2) = (1/up)(b?).

In contrast to the case of nonrotating turbulence even in the absence of gradients
of the turbulence intensities, the vector 4 is no longer equal to zero. So we rediscover
the contribution to the mean electromotive force proportional to Q x (V x B), which
has been sometimes discussed as “QxJ-effect”. We note that Qx(VxB)=
—(Q+V)B + V(Q+B) and that the term V(- B) plays no part in the induction equation
for B as long as the coefficient connecting é and © does not depend on space-coordi-
nates. We recall that an electromotive force proportional to Qx (V x B) is, even in
the absence of an w-effect, in combination with a differential rotation capable of
dynamo action; see, e.g., Ridler, 1969, 1970, 1980, 1986, Roberts, 1972 and Moffatt
and Proctor, 1982. With respect to ¢ velocity and magnetic fluctuations act again in
the opposite sense, and & vanishes with (u©®?) = (1/up)(b®?). For a rotating turbu-
lence, again even in the absence of gradients of the turbulence intensities, also ki is
unequal to zero.
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We recall that we determined the correlation tensor vfp) used for the calculation of
(120)—(124) under the assumption that the expansion of the relaxation time 7 with
respect to € has no linear term. As a consequence vf.;)) contains no terms of second
order in Q. It can be followed up easily, however, that a deviation from this assumption
would change in (120)—(124) nothing else than numerical factors of the terms of second
order in Q*, and it would leave (125) unchanged.

Our results (120)-(124) differ in some details from those given in the articles by
Kichatinov (1991), Riidiger and Kichatinov (1993) and Kichatinov et al. (1994).
There the second-order correlation approximation, or some modification of it,
was used. This implies that the nonlinear terms in the equations for the velocity and
magnetic field fluctuations are dropped from the very beginning. Of course, the
ranges of validity of this approximation and our t-approximation are different. The
second-order correlation approximation can only be justified for a certain range of
parameters like the hydrodynamic and magnetic Reynolds numbers and the Strouhal
number. Simple special cases in which it applies are small Reynolds numbers, or
large Reynolds numbers but a small Strouhal number. In the articles mentioned,
however, it was at least partially assumed that v=n=1 %/rc, where v and 75 are
again kinematic viscosity and magnetic diffusivity, and /. and . correlation length
and time of the turbulent velocity field. This corresponds to hydrodynamic and
magnetic Reynolds numbers of the order of unity, for which the conditions of the
applicability of the second-order correlation approximation cannot easily be given.
Our t-approximation requires, as already mentioned, large hydrodynamic Reynolds
numbers.

8.6 Implications for Mean-field Dynamo Models

Let us add some remarks on the possibilities of dynamo action of the induction effects
described by (120)—(124). For the sake of simplicity we consider an axisymmetric
dynamo model. We use corresponding cylindrical co-ordinates r, ¢ and z. The mean
motion is assumed to consist in a differential rotation

U=uwe.xr (127)

where the angular velocity w may depend on r and z, e; is the unit vector in z-direction
and r the radius vector. Further, again for simplicity, only the contributions to £ which
are linear in ©* and independent of b® are taken into account. We write

E=—a(g Q)B+0a[(QB)g+(g'B)Q"] - BV xB
—gXxB—y[(Q"B)g— (g-B) Q"]
— 8o[(Q* V) B — V(Q*B)] + xo[(@* V) B + V(@*-B)], (128)

where ag = (24/1 D = (16/15)(u*?) 79, o = (1/3) (V) 79, yy = (3/4)y1 = (1/6) (w7,
8o = (2/NW) w0, Ko = (2/9[1 —4(g — D/5Hu)7 and g =V@EP?)/@?). Q" is
assumed to be parallel to the z-axis, Q* = Q*e, with Q* > 0.
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We split B into its poloidal and toroidal part, B’ and B', and represent them in
the form

B =Vx(4e,), B’ =Be, (129)

where 4 and B are two functions of r, z and ¢, and e,, is the unit vector in ¢-direction.
We assume that the differential rotation is so strong that concerning the generation of
B’ from B’ all contributions to £ except the By-term can be neglected. Considering
n again as constant and starting from the induction Eq. (6) for B we arrive at

oB 04
nmAA_aOQ*gLB_’_ g V(rA)_(SO_KO)Q*__EZ()a
Z
ow d Ow 0
wAB— (== 24— = =0, 1
i (ar 0z oz E)r)(r )= =0 (130)
where 1, = n+ By and
, 32/‘
xf =g |1 |+ (131
r|ror

Let us restrict ourselves to a local analysis of these equations, that is, to an investiga-
tion in some finite region of the rz-plane only. For this purpose we assume that there
the coefficients «g, o, 8o and «o as well as g are constant. In the sense of a simple
example we further assume that there w has a logarithmic dependence on r, that is, varies
like wy + w log(r/ry) with r, where wy, w; and ry are constants, and is independent of z.
Then the quantity G = row/dr is also constant, and dw/dz = 0. We use the ansatz

(A4, B) = Re[(A4y, By)J1 (k1) exp(ik.z + A1)], (132)

where Ay, and By are complex constants, J; is the first-order Bessel function of first
kind, k, and k. are real constants and A is a complex constant. If g, = 0 this ansatz
reduces (130) to a system of two linecar homogeneous algebraic equations for 4y and
By. We are interested in nontrivial solutions only and have therefore to require that
the determinant of this system vanishes. This leads to

k- -2\
h =k — i \/GQ*[iaog:kz—(lSo—Ko)k?]—(yoi) (133)

with k* = k> + k2. If g, # 0 this reduction works only in the limit k, — 0, and then
(133) applles with k2 = k2.

Solutions of the Egs. (130) with a A possessing a nonnegative real part correspond
to nondecaying mean magnetic fields. We first consider the case g # 0, in which we
have an «a-effect. As can be casily seen from (133) values of A with nonnegative
real part and nonvanishing imaginary part occur if k is sufficiently small. They
correspond to undamped dynamo waves traveling parallel to the z-axis. Let us further
proceed to the case g = 0, in which there is no wa-effect. If then —GQ*(§) — o) > 0,
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the quantity A is real, and it takes nonnegative values for sufficiently small k. That is,
even in the absence of an a-effect dynamo action proves be possible due to combination
of differential rotation with the § or k-effect. This includes the possibility of such dyna-
mos with §-effect mentioned above. We see now that § and x-effect are in competition
and that they compensate each other if §) = xy. We note that under our assumptions
8o — ko = (8/45)(g — 1)(u®?). Since ¢ > 1 we may conclude that the dynamo requires
G < 0, that is dw/0r < 0.

Of course, the results of the local analysis of the dynamo equations should be
confirmed by solving them in all conducting space using proper boundary conditions.
This has been done so far in the investigations referred to above for dynamo models
involving differential rotation and §-effect.

9. CONCLUDING REMARKS

In this article we have shown a procedure to calculate the mean electromotive force £
for a magnetohydrodynamic turbulence. The bounds of its applicability result mainly
from the use of a closure assumption for the deviation of the turbulence from that
for zero magnetic field and zero rotation. As explained above it can only be justified
for sufficiently small mean magnetic fields and small rotation rates of the fluid. For
simplicity we have restricted ourselves to the case in which there is, apart from
the rotation, no mean motion. Specific results have been derived for the limit in
which the mean electromotive force is linear in the mean magnetic field and a
Kolmogorov-type turbulence.

Let us compare results obtained in the kinematic approach on the basis of the
second-order correlation approximation, or first-order smoothing, for the high-
conductivity limit with results of our procedure. Take as a simple example the case
of homogeneous and isotropic turbulence. Then we have &= —aB — gV xB for
sufficiently weak variations of B in space and in time. In the kinematic approach
under the conditions mentioned we have

o :;/Ooo(u(x, 0-[Vxux,t—1)])dr, (134)
B= %/Ooo(u(x, t)-ulx, t — 1)) dr. (135)

This is often expressed in the form

a=1u(Vxu)r?)

corr? ﬁ = % (u2>r(()§2‘r’ (1 36)
with properly defined correlation times 7' and 7). The validity of these results can
only be readily justified under the condition ut// « 1, where u, /, and t are typical
values of the velocity and of the length and time scales of the velocity field. This condi-
tion, however, is problematic in view of applications to realistic situations, and the
validity of these results beyond this condition is questionable. Basically it is possible to
improve the approximation by including higher-order terms in u but this is very tedious.
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The results (136) have the structure of our result given by (116), specified by b® = 0,
and our result (117). The validity of our results, however, is not restricted by a
condition like ut/l <« 1, but only by the applicability of the r-approximation (37).
That is, we have in any case a much wider range of validity.

We point out that despite the formal similarity of the mentioned results gained in the
kinematic approach and those derived here, there is a basic difference between them. In
the first case we have originally, that is in (134) and (135), correlations between values
of u taken at different times, which are often as in (136) expressed by u at a given time
and a correlation time, but in the second case we consider from the very beginning only
correlations between values of u at the same time. In that sense there is no simple
connection between the two kind of results.

We may use the framework explained above also beyond the limit of very small mean
magnetic fields and study, for example, « or f-quenching at least for not too strong
fields. Then, of course, v; and m;; can no longer be replaced by vg(-)) and mg-)) . Instead
we have to derive equations for v; and mj corresponding to Eq. (30) for y;, insert
their solutions depending on B in ; in (35) and follow the above pattern of the deter-
mination of a; and by, or a, B,.... By the way, then even in the case b©® = 0 there are
contributions of my; to these coefficients which, of course, vanish like mf;)) with B.

In this context it suggests itself to study in addition to the mean electromotive force
£ also the mean pondermotive force . It has a part independent of B, which can be
calculated with the help of vﬁj” and mgl(-)) only. Its general form can be derived on the
basis of solutions of the equations for v; and m; mentioned.

Acknowledgment

We thank Dr. M. Rheinhardt for inspiring discussions. We are grateful to the two
anonymous referees for their helpful comments. We acknowledge support from
INTAS Program Foundation (Grant No. 99-348). N.K. and I.R. also thank the
Astrophysical Institute of Potsdam for its hospitality.

References

Blackman, E.G. and Brandenburg, A. “Dynamic nonlinearity in large scale dynamos with shear”, Astrophys
J. 579, 359-373 (2002).

Brandenburg, A., Jennings, R.L., Nordlund, A., Rieutord, M., Stein, R.F. and Tuominen, 1. “Magnetic
structures in a dynamo simulation”, J. Fluid Mech. 306, 325-352 (1996).

Cattaneo, F. and Hughes, D.W., “Nonlinear saturation of the turbulent « effect”, Phys. Rev. E 54, R4532—
R4535 (1996).

Childress, S. and Gilbert, A., Stretch, Twist, Fold: The Fast Dynamo, Springer-Verlag, Berlin (1995).

Field, G.B., Blackman, E.G. and Chou, H., “Non-linear alpha effect in dynamo theory”, Astrophys. J. 513,
638-651 (1999).

Gruzinov, A. and Diamond, P.H., “‘Self-consistent theory of mean-field electrodynamics™, Phys. Rev. Lett.
72, 1651-1653 (1994).

Kazantsev, A.P., “Enhancement of a magnetic field by a conducting fluid”, Sov. Phys. JETP, Engl. Transl.,
26, 1031-1039 (1968).

Kichatinov, L.L., “On mean-field magnetohydrodynamics in an inhomogeneous medium”, Magnitnaya
Gidrodinamika 3, 67-73 (1982) (in Russian).

Kichatinov, L. L., “Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar
cycle”, Astron. Astrophys. 243, 483-491 (1991).

Kichatinov, L.L., Riidiger, G. and Pipin V. V., “Turbulent viscosity, magnetic diffusivity, and heat
conductivity under the influence of rotation and magnetic field”, Astron. Nachr. 315, 157-170 (1994).



272 K.-H RADLER et al.

Kleeorin, N., Mond, M. and Rogachevskii, 1., “Magnetohydrodynamic turbulence in the solar
convective zone as a source of oscillations and sunspots formation”, Astron. Astrophys. 307, 293-309
(1996).

Kleeorin, N. and Rogachevskii, 1., ““Magnetic helicity tensor for an anisotropic turbulence”, Phys. Rev. E 59,
6724-6729 (1999).

Kleeorin, N., Rogachevskii, I. and Ruzmaikin, A., “Magnetic force reversal and instability in a plasma with
advanced magnetohydrodynamic turbulence”, Soviet Physics-JETP 70, 878-883 (1990).

Kleeorin, N., Rogachevskii, I. and Ruzmaikin, A., “Magnitude of dynamo-generated magnetic field in solar-
type convective zones”, Astron. Astrophys. 297, 159-167 (1995).

Kleeorin, N., Rogachevskii, I. and Sokoloff, D., “Magnetic fluctuations with zero mean field in a random
fluid flow with a finite correlation time and a small magnetic diffusion”, Phys. Rev. E 65, 036303,
1-7 (2002a).

Kleeorin, N., Moss, D., Rogachevskii, I. and Sokoloff, D., ““Helicity balance and steady-state strength of
dynamo generated galactic magnetic field”, Astron. Astrophys. 361, L5-L8 (2000).

Kleeorin, N., Moss, D., Rogachevskii, I. and Sokoloff, D., “The role of magnetic helicity transport in non-
linear galactic dynamos”, Astron. Astrophys. 387, 453-462 (2002b).

Krause, F. and Rédler, K.-H., “Elektrodynamik der mittleren Felder in turbulenten leitenden Medien und
Dynamotheorie”. In: Ergebnisse der Plasmaphysik und Gaselektronik (Eds. R. Rompe and M.
Steebeck), Akademie-Verlag, Berlin, 1-154 (1971).

Krause, F. and Rédler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press,
Oxford (1980).

Kulsrud, R., “A critical review of galactic dynamos™, Ann. Rev. Astron. Astrophys. 37, 37-64 (1999).

McComb, W.D., The Physics of Fluid Turbulence, Clarendon Press, Oxford (1990).

Meneguzzi, M., Frisch, U. and Pouquet, A., “Helical and nonhelical turbulent dynamos”, Phys. Rev. Lett.,
41, 1060-1064 (1981).

Moftatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ. Press,

New York (1978).

Moffatt, H.K. and Proctor, M.R.E., “The role of the helicity spectrum function in turbulent dynamo theory”,
Geophys. Astrophys. Fluid Dynam. 21, 265-283 (1982).

Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, 2, MIT Press, Cambridge/Massachusetts
(1975).

Nordlund, A., Brandenburg, A., Jennings, R.L., Rieutord, M., Ruokolainen, J., Stein, R.F. and Tuominen, I.,
“Dynamo action in stratified convection with overshoot”, Astrophys. J. 392, 647-652 (1992).

Orszag, S.A., “Analytical theories of turbulence”, J. Fluid Mech. 41, 363-386 (1970).

Parker, E., Cosmical Magnetic Fields, Oxford Univ. Press, New York (1979).

Pouquet, A., Frisch, U. and Leorat, J., “Strong MHD turbulence and the nonlinear dynamo effect”, J. Fluid
Mech. 77, 321-354 (1976).

Riadler, K.-H., “Zur Elektrodynamik turbulenter bewegter leitender Medien II. Turbulenzbedingte
Leitfahigkeits- und Permeabilitidtsinderungen”, Z. Naturforsch. 23a, 1851-1860 (1968).

Radler, K.-H., “Uber eine neue Moglichkeit eines Dynamomechanismus in turbulenten leitenden Medien”,
Monatsber. Dtsch. Akad. Wiss. Berlin 11, 272-279 (1969).

Rédler, K.-H., “Untersuchung eines Dynamomechanismus in leitenden Medien”, Monatsber. Dtsch. Akad.
Wiss. Berlin 12, 468-472 (1970).

Rédler, K.-H., “Mean—field magnetohydrodynamics as a basis of solar dynamo theory”. In: Basic
Mechanisms of Solar Activity (Eds. V. Bumba and J. Kleczek), D. Reidel Publ. Company, Dordrecht,
pp- 323-344 (1976).

Rédler, K.-H., “Mean-field approach to spherical dynamo models”, Astron. Nachr. 301, 101-129 (1980).

Rédler, K.-H., “On the mean-field approach to spherical dynamo models”. In: Stellar and Planetary
Magnetism (Ed. A.M. Soward), Gordon and Breach Publ., New York (1983).

Rédler, K.-H., “Investigations of spherical kinematic mean-field dynamo models”, Astron. Nachr. 307,
89—113 (1986).

Roberts, P.H., “Kinematic dynamo models”, Phil. Trans. R. Soc. London Ser. A 272, 663-703 (1972).

Roberts, P.H. and Soward, A.M., “A unified approach to mean field electrodynamics”, Astron. Nachr. 296,
49-64 (1975).

Rogachevskii, I. and Kleeorin, N., “Intermittency and anomalous scaling for magnetic fluctuations”, Phys.
Rev. E 56, 417-426 (1997).

Rogachevskii, 1. and Kleeorin, N., “Nonlinear turbulent magnetic diffusion and mean-field dynamo”, Phys.
Rev. E 64, 056307, 1-14 (2001).

Ridiger, G. and Kichatinov, L.L., ““Alpha-effect and alpha-quenching”, Astron. Astrophys. 269, 581-588
(1993).

Sechafer, N., “Nature of the « effect in magnetohydrodynamics”, Phys. Rev. E 53, 1283-1286 (1996).

Vainshtein, S. I. and Kichatinov, L. L., “The macroscopic magnetohydrodynamics of inhomogeneously
turbulent cosmic plasmas”, Geophys. Astrophys. Fluid Dynam. 24, 273-298 (1983).



MEAN ELECTROMOTIVE FORCE FOR MHD TURBULENCE 273

Zeldovich, Ya. B., “The magnetic field in the two-dimensional motion of a conducting turbulent fluid”,
Sov. Phys. JETP 4, 460-462 (1957).

Zeldovich, Ya. B., Ruzmaikin, A. A. and Sokoloff, D. D., Magnetic Fields in Astrophysics, Gordon and
Breach, New York (1983).

Zeldovich, Ya. B., Ruzmaikin, A. A. and Sokoloff, D. D., The Almighty Chance, Word Scientific Publ.,
Singapore (1990).

APPENDIX A: RELATIONS WITH g

For the derivation of (19) it is useful to know the relation

ki Q2 (k-Q
ik + (eirk; — S/k/ki)% = ki 7), (A1)
which applies to arbitrary vectors k and Q.
In view of the derivation of (67) we recall the identity
Ejjk€Imn = 6[/8_jm8kn + 5[}16_/’1(Skm + 8[}718_jn8k1 - 8in8jm8kl - 8[18jn8km - (Simajlakn- (Az)

APPENDIX B: DERIVATION OF EQUATION (30)

In the calculations of dy;; /9t on the basis of the Egs. (15) and (16) contributions to this
quantity occur which have, e.g., the form of

X;(k.R) = f (Si(u, B; k + K/2)ii,(—k + K/2)) exp(iK*R) d *K

= / (ki + Ki/2)(ai(k + K/2 — Q)i(—k + K/2))§,C(Q) exp((K-R)d3K d>Q.
(B1)

In the last expression we may change the sequence of integration so that the inner inte-
gral is over K and the outer integral is over Q. In the inner integral we may further
change the integratjon variable K into K — Q, denoted by K’ in the following. In this
way, and using Q; B, = 0, we obtain
Xk, R) = i/(kk + K. /2)(ni(k — Q/2 +K'/2)u;(—k + Q/2
+K'/2))Bi(Q) expli(K' R + Q-R)]d K d>0. (B2)

Remembering the definition of v;(k, R) we can rewrite this into

X;(k,R) = f |:ikkv,»j(k —Q/2,R)+ % (Mﬂ ;

R BuQexp(iQR) d Q.

(B3)
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The fact that B varies only on large scales, that is, B is only nonzero for certain small
|Q|, suggests to use the Taylor expansion

1 (ov;(k,R
vii(k — Q/2,R) =~ v;(k,R) — 3 (%) i +0(QY). (B4)
This yields
X;i(k,R) >~ [i(k*B) + %(E-V)]vi,»(k, R) — kyvi(k, R) By 1, (B5)

where vy = (1/2)9v;;/0k;. According to our assumption a term of the second-order in V
was neglected. The contributions to the Taylor expansion indicated by O(Q?) only lead
to terms of higher order in V and need not to be considered.



