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The nonlinear mean-field dynamo due to a shear-current effect in a nonhelical homogeneous
turbulence with a mean velocity shear is discussed. The transport of magnetic helicity as a dyna-
mical nonlinearity is taken into account. The shear-current effect is associated with the WTJ

term in the mean electromotive force, where W is the mean vorticity due to the large-scale shear
motions and J is the mean electric current. This effect causes the generation of large-scale mag-
netic field in a turbulence with large hydrodynamic and magnetic Reynolds numbers. The
dynamo action due to the shear-current effect depends on the spatial scaling of the correlation
time �(k) of the background turbulence, where k is the wave number. For Kolmogorov scaling,
�ðkÞ / k�2=3, the dynamo instability occurs, while when �ðkÞ / k�2 (small hydrodynamic and
magnetic Reynolds numbers) there is no the dynamo action in a sheared nonhelical turbulence.
The magnetic helicity flux strongly affects the magnetic field dynamics in the nonlinear stage of
the dynamo action. Numerical solutions of the nonlinear mean-field dynamo equations which
take into account the shear-current effect, show that if the magnetic helicity flux is not small,
the saturated level of the mean magnetic field is of the order of the equipartition field deter-
mined by the turbulent kinetic energy. Turbulence with a large-scale velocity shear is a universal
feature in astrophysics, and the obtained results can be important for elucidation of origin of
the large-scale magnetic fields in astrophysical sheared turbulence.

Keywords: Nonlinear shear-current dynamo; Sheared turbulent flow; Magnetic helicity
transport

1. Introduction

It is generally believed that one of the main reasons for the generation of large-scale
magnetic fields in turbulent flow is the � effect (see, e.g. books and reviews by
Moffatt 1978, Parker 1979, Krause and Rädler 1980, Zeldovich et al. 1983,
Ruzmaikin et al. 1988, Stix 1989, Roberts and Soward 1992, Ossendrijver 2003,
Brandenburg and Subramanian 2005a). However, the � effect caused by the helical
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random motions of conducting fluid, requires rotating inhomogeneous or density
stratified turbulence.

In a turbulence with a large-scale velocity shear and high hydrodynamic and mag-
netic Reynolds numbers there is a possibility for a mean-field dynamo (Rogachevskii
and Kleeorin 2003, 2004). Turbulence with a large-scale velocity shear is a universal
feature in astrophysical plasmas. The large-scale velocity shear creates anisotropic
turbulence with a nonzero background mean vorticity W. This can cause the WTJ

effect (or the shear-current effect), which creates the mean electric current along the
original mean magnetic field and produces the large-scale dynamo even in a nonrotating
and nonhelical homogeneous turbulence (Rogachevskii and Kleeorin 2003, 2004).
Here J is the mean electric current.

The mean-field dynamo instability is saturated by the nonlinear effects. A
dynamical nonlinearity in the mean-field dynamo which determines the evolution
of small-scale magnetic helicity, is of great importance due to the conservation
law for the total (large and small scales) magnetic helicity in turbulence with
very large magnetic Reynolds numbers (see, e.g. Kleeorin and Ruzmaikin 1982,
Gruzinov and Diamond 1994, 1996, Kleeorin et al. 1995, 2000, 2002, 2003a,
2003b, Kleeorin and Rogachevskii 1999, Blackman and Field 2000, Vishniac and
Cho 2001, Blackman and Brandenburg 2002, Brandenburg and Subramanian
2005a, Zhang et al. 2006). On the other hand, the effect of the mean magnetic
field on the motion of fluid and on the cross-helicity can cause quenching of
the mean electromotive force which determines an algebraic nonlinearity. The
combined effect of the dynamic and algebraic nonlinearities saturates the growth
of the mean magnetic field.

The mean-field dynamo is essentially nonlinear due to the evolution of the small-
scale magnetic helicity (Gruzinov and Diamond 1994, 1996). In particular, even for
very small mean magnetic field the magnetic � effect is not small. This is a reason
why we have to take into account the dynamical nonlinearity in the mean-field
dynamo. When we ignore the dynamical nonlinearity due to evolution of small-
scale magnetic helicity and take into account only algebraic nonlinearity caused by
the nonlinear shear-current effect, we obtain the saturated level of mean magnetic
field which is in several times larger than the equipartition field determined by the
turbulent kinetic energy (Rogachevskii et al. 2006). This result can be important
in view of astrophysical applications whereby the super-equipartition large-scale
magnetic fields are observed, e.g. in the outer parts of a few galaxies (Beck 2004,
2005). Note that it is a problem to reach a super-equipartition level of the large-
scale magnetic field in the �� dynamo.

The goal of this study is to investigate the nonlinear mean-field dynamo due to
the shear current effect. In this study, we have taken into account the dynamic non-
linearity caused by the evolution of the small-scale magnetic helicity. This article is
organized as follows. In section 2, we elucidate the physics of the shear-current
effect. In section 3, we consider kinematic dynamo problem due to this effect.
In section 4, we describe the results of numerical solutions of the nonlinear mean-
field dynamo equations which take into account the shear-current effect, the algebraic
and dynamic nonlinearities. Finally, the discussion and conclusions are given in
section 5. In Appendixes A, we compare the problem of generation of the mean mag-
netic field in a turbulence with a large-scale velocity shear with that of the generation
of mean vorticity in a sheared turbulence.
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2. The physics of the shear-current effect

In this section, we elucidate the mechanism of generation of large-scale magnetic field
due to the shear-current effect. To this end we first discuss the physics of the � effect
(see, e.g. Moffatt 1978, Parker 1979, Krause and Rädler 1980, Zeldovich et al. 1983,
Ruzmaikin et al. 1988). The � term in the mean electromotive force E ¼ huTbi in
a rotating inhomogeneous turbulence can be written in the form
E�

� �B / �l20 ð:E,u
ÞB (see, e.g., Krause and Rädler 1980, Rädler et al. 2003),

where u and b are fluctuations of the velocity and magnetic field, respectively, angular
brackets denote ensemble averaging, : is the angular velocity, the vector
,u

¼ Jhu2i=hu2i determines the inhomogeneity of the turbulence, B is the mean mag-
netic field and l0 is the maximum scale of turbulent motions (the integral turbulent
scale). The � effect is caused by the kinetic helicity �u / �

T
ð:E,u

Þ in an inhomogeneous
rotating turbulence, where �

T
/ l0 u0 is the turbulent magnetic diffusion and u0 is the

characteristic turbulent velocity in the maximum scale of turbulent motions l0. The
deformations of the magnetic field lines are caused by upward and downward rotating
turbulent eddies (figure 1). The inhomogeneity of the turbulence breaks a symmetry
between the upward and downward eddies. Therefore, the total effect of these eddies
on the mean magnetic field does not vanish, and it creates the mean electric current
along the original mean magnetic field due to the � effect.

The large-scale magnetic field can be generated even in a nonrotating and nonhelical
turbulence with a mean velocity shear due to the shear-current effect (Rogachevskii and

Figure 1. Mechanism for the � effect: (a) Interaction between uniform original mean magnetic field and
inhomogeneous rotating turbulence; (b) The deformations of the original magnetic field lines are caused
by the upward and downward turbulent eddies; (c) Formation of the mean electric current
E�

� �B / �l20 ð:E,u
ÞB / J opposite to the original mean magnetic field (for :E,u > 0Þ. Here, Ju and Jd

are the electric currents caused by the deformations of the original magnetic field lines by the upward and
downward turbulent eddies, respectively, and jJuj > jJdj.
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Kleeorin 2003, 2004). This effect is related to the WTJ term in the mean electromotive
force, and it can be written in the form E�

/ �l20 WTðJTBÞ / l20 ðWE,B
ÞB, where the

mean vorticity W ¼ JTU is caused by the mean velocity shear and ,B
¼ JB2=2B2

determines the inhomogeneity of the mean original magnetic field. In a sheared turbu-
lence the inhomogeneity of the original mean magnetic field breaks a symmetry between
the influence of upward and downward turbulent eddies on the mean magnetic field.
The deformations of the original magnetic field lines in the WTJ effect are caused
by the upward and downward turbulent eddies. This creates the mean electric current
along the mean magnetic field and produces the magnetic dynamo (figure 2).

In order to demonstrate how the shear-current dynamo operates, let us consider
a homogeneous turbulence with a mean velocity shear, U ¼ ð0,Sx, 0Þ and W ¼ ð0, 0,SÞ.
Let us assume that the mean magnetic field has a simple form B ¼ ðBxðzÞ,ByðzÞ, 0Þ.
The mean magnetic field in the kinematic approximation is determined by

@Bx

@t
¼ ��

B
S l20 B

00
y þ �

T
B00
x , ð1Þ

@By

@t
¼ SBx þ �

T
B00
y , ð2Þ

(Rogachevskii and Kleeorin 2003, 2004), where B00
i ¼ @2Bi=@z

2, �
T
is the coefficient

of turbulent magnetic diffusion and the dimensionless parameter �
B

determines
the WTJ effect (see equation (3)). The first term / SBx in the right-hand side

Figure 2. Mechanism for the WTJ effect: (a) Interaction between nonuniform original mean magnetic field
and homogeneous sheared turbulence; (b) The deformations of the original magnetic field lines are caused
by the upward and downward turbulent eddies; (c) Formation of the mean electric current
E�

/ �l20 WTðJTBÞ / l20 ðWE,B
ÞB / J along the original mean magnetic field (for WE,B > 0Þ. Here, Ju

and Jd are the electric currents caused by the deformations of the original magnetic field lines by the upward
and downward turbulent eddies, respectively, and jJuj > jJdj.

540 I. Rogachevskii et al.



of equation (2) determines the stretching of the magnetic field Bx by the shear motions,
which produces the field By (figure 3). On the other hand, the interaction of the non-
uniform magnetic field By with the background vorticity W (caused by the large-scale
shear) produces the electric current along the field By. This implies the generation of
the field component Bx (figure 4) due to the WTJ effect, which is determined by the
first term in the right-hand side of equation (1). This causes the dynamo instability.

3. Kinematic dynamo due to the shear-current effect

Let us consider the kinematic dynamo due to the shear-current effect. In this study, we
have derived a more general form of the parameter �

B
for arbitrary scaling of the cor-

relation time �(k) of turbulent velocity field. The generalized form of the parameter �
B

defining the shear-current effect, is derived using equation (A44) given in the paper by
Rogachevskii and Kleeorin (2004). The parameter �

B
entering in equation (1) is given by

�
B
¼

4I0
15

�
1þ

I

I0
þ 3 �

�
, ð3Þ

Figure 3. Mechanism for shear-induced generation of perturbations of the mean magnetic field By by
sheared stretching of the field Bx. This effect is determined by the first term ð/ SBxÞ in the right hand side
of equation (2), and it is similar to the differential rotation because JTðUTBÞ ¼ SBxey.

Figure 4. Mechanism for shear-current generation of perturbations of the mean magnetic field Bx from
the inhomogeneous magnetic field By. This effect is determined by the first term in right-hand side of
equation (1).

Nonlinear shear-current dynamo and magnetic helicity transport in sheared turbulence 541



where

I ¼

Z
�0ðkÞ k �ðkÞEðkÞ dk, I0 ¼

Z
�2ðkÞEðkÞ dk , ð4Þ

E(k) is the turbulent kinetic energy spectrum, �(k) is the scale-dependent correlation
time of turbulent velocity field, the parameter � ¼ Em lm=Ev l0, Em and Ev are the mag-
netic and kinetic energies per unit mass in the background turbulence (with a zero mean
magnetic field), lm is the scale of localization of the magnetic fluctuations generated by
the small-scale dynamo in the background turbulence and �0ðkÞ ¼ d�=dk. Equations (3)
and (4) are written in dimensionless form, where the turbulent time �(k) is measured
in the units of �0 ¼ l0=u0, the wave number k is measured in the units of l�1

0 , and the
turbulent kinetic energy spectrum E(k) is measured in the units of u20 l0.

The solution of equations (1) and (2) we seek for in the form / expð� tþ iKz zÞ,
where the growth rate, �, of the mean magnetic field due to the magnetic dynamo
instability is given by

� ¼ S l0
ffiffiffiffiffi
�

B

p
Kz � �

T
K2

z : ð5Þ

The necessary condition for the magnetic dynamo instability is �
B
> 0. The dynamo

action due to the shear-current effect depends strongly on the spatial scaling of the
correlation time �(k) of the turbulent velocity field. In particular, when �ðkÞ / k�	,
the ratio I=I0 ¼ �	, and the criterion for the dynamo instability reads

1� 	þ 3 � > 0: ð6Þ

For example, when �ðkÞ / k�2=3 (the Kolmogorov scaling), the parameter
�

B
¼ ð4=135Þ ð1þ 9�Þ. This case was considered by Rogachevskii and Kleeorin (2003,

2004). When �¼ 0 (there are no magnetic fluctuations in the background turbulence
due to the small-scale dynamo), the shear-current dynamo occurs for 	 < 1. The
boundary 	¼ 1 corresponds to the spatial scaling of the correlation time �ðkÞ / k�1.
For the Kolmogorov’s type turbulence (i.e. for a turbulence with a constant energy
flux over the spectrum), the energy spectrum which corresponds to the correlation
time �ðkÞ / k�1, is EðkÞ ¼ �d�=dk ¼ k�2. This implies that the velocity is dominated
by the large scales more strongly than for the turbulence with a purely Kolmogorov
spectrum EðkÞ / k�5=3.

For small hydrodynamic and magnetic Reynolds numbers, the turbulent time
�ðkÞ / 1=ð
k2Þ or �ðkÞ / 1=ð�k2Þ depending on the magnetic Prandtl number, i.e.
�ðkÞ / k�2. Then �

B
¼ ð4I0=15Þ ð�1þ 3 �Þ, where 	 ¼ 2, 
 is the kinematic viscosity

and � is the magnetic diffusivity due to electrical conductivity of the fluid. When
�¼ 0 the parameter �

B
< 0, and there is no dynamo action due to the shear-current

effect in agreement with the recent studies by Rädler and Stepanov (2006) and
Rüdiger and Kichatinov (2006). They have not found the dynamo action in nonrotating
and nonhelical shear flows with �¼ 0 in the framework of the second order correlation
approximation (SOCA). This approximation is valid for small hydrodynamic Reynolds
numbers. Even in a highly conductivity limit (large magnetic Reynolds numbers),
SOCA can be valid only for small Strouhal numbers, while for large hydrodynamic
Reynolds numbers (i.e. for fully developed turbulence), the Strouhal number is 1.
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When � > 1=3, the mean magnetic field can be generated due to the shear-current effect
even for small hydrodynamic and magnetic Reynolds numbers. However, the latter case
seems to be not realistic.

The effect of shear on the mean electromotive force and shear-current effect have
been studied by Rogachevskii and Kleeorin (2003, 2004) for large hydrodynamic and
magnetic Reynolds numbers using two different approaches: the spectral � approxima-
tion (the third-order closure procedure) and the stochastic calculus, i.e., the Feynman–
Kac path integral representation of the solution of the induction equation and
Cameron–Martin–Girsanov theorem.

Note that Ruderman and Ruzmaikin (1984) formally constructed an example of an
exponentially growing magnetic field in a fluid with shear and a homogeneous anisotro-
pic magnetic diffusivity. An essential condition for generation is that the vector defining
the anisotropy in this phenomenological model must be non-parallel and non-perpen-
dicular to the velocity. However, equations (1) and (2) are different from those given
by Ruderman and Ruzmaikin (1984) because they have not studied the effect of
shear on the mean electromotive force. The first (although incorrect) attempt to deter-
mine the effect of shear on the mean electromotive force has been made by Urpin
(1999a, 1999b) in the framework of SOCA.

In order to study the kinematic dynamo due to the shear current effect, let us rewrite
equations (1) and (2) for the mean magnetic field in the dimensionless form

@A

@t
¼ DB0

y þ A00 , ð7Þ

@By

@t
¼ �A0 þ B00

y , ð8Þ

where the mean magnetic field is B ¼ Byðt, zÞ ey þ S�1
� JT½AðzÞ ey�, i.e. Bxðt, zÞ ¼

�S�1
� A0ðzÞ, the parameter S� ¼ SL2=�

T
is the dimensionless shear number and

D ¼ ðl0 S�=LÞ
2 �

B
is the dynamo number. We consider the following boundary condi-

tions for a layer of thickness 2L in the z direction:

Byðt, jzj ¼ 1Þ ¼ 0, A0ðt, jzj ¼ 1Þ ¼ 0 , ð9Þ

i.e. Bðt, jzj ¼ 1Þ ¼ 0. In dimensionless equations (7) and (8) the length is measured
in units of L, the time is measured in units of the turbulent magnetic diffusion time
L2=�

T
, the mean magnetic field B is measured in units of the equipartition field

Beq ¼
ffiffiffiffiffiffiffiffi
4��

p
u0 determined by the turbulent kinetic energy and the turbulent magnetic

diffusion coefficient is measured in units of the characteristic value of �
T
¼ l0 u0=3.

The solution of equations (7) and (8) reads

Byðt, zÞ ¼ B0 expð� tÞ cosðKzzþ ’Þ , ð10Þ

Bxðt, zÞ ¼
l0
L

Kz
ffiffiffiffiffi
�

B

p
B0 expð� tÞ cosðKzzþ ’Þ: ð11Þ

The growth rate of the mean magnetic field in the dimensionless form is given by
� ¼

ffiffiffiffi
D

p
Kz � K2

z . The wave vector Kz is measured in units of L�1 and the growth
rate � is measured in units of the inverse turbulent magnetic diffusion time �

T
=L2.

Nonlinear shear-current dynamo and magnetic helicity transport in sheared turbulence 543



For the symmetric mode the angle ’ ¼ � n, the wave number Kz ¼ ð�=2Þð2mþ 1Þ
and the mean magnetic field is generated when the dynamo number D > Dcr ¼

ð�2=4Þð2mþ 1Þ2, where n,m ¼ 0, 1, 2, . . . . For this mode, the mean magnetic field is
symmetric relative to the middle plane z¼ 0. For the antisymmetric mode, the angle
’ ¼ ð�=2Þ ð2nþ 1Þ with n ¼ 0, 1, 2, . . . , the wave number Kz ¼ �m and the magnetic
field is generated when the dynamo number D > Dcr ¼ �2 m2, where m ¼ 1, 2, 3, . . .
Note that for the shear-current dynamo, the ratio of the field components Bx=By is
small [i.e. Bx=By � ðl0=LÞKz

ffiffiffiffiffi
�

B

p
� 1 when Kz is not very large], see equations (10)

and (11). This feature is similar to that for the �� dynamo, whereby the poloidal
component of the mean magnetic field is much smaller than the toroidal field. The
maximum growth rate of the mean magnetic field, �max ¼ D=4, is attained at
Kz ¼ Km ¼

ffiffiffiffi
D

p
=2. This corresponds to the characteristic scale of the mean magnetic

field variations LB ¼ 2�L=Km ¼ ð4�=
ffiffiffiffi
D

p
ÞL.

4. Nonlinear dynamo due to the shear-current effect

Kinematic dynamo models predict a field that grows without limit, and they give
no estimate of the magnitude for the generated magnetic field. In order to find the
magnitude of the field, the nonlinear effects which limit the field growth must be
taken into account. The nonlinear theory of the shear-current effect was developed
by Rogachevskii and Kleeorin (2004, 2006).

4.1. The algebraic nonlinearity

First, let us start with the algebraic nonlinearity which is determined by the effects of
the mean magnetic field on the motion of fluid and on the cross-helicity. These effects
cause quenching of the mean electromotive force.

Below we outline the procedure of the derivation of the equations for the nonlinear
coefficients defining the mean electromotive force in a homogeneous turbulence with a
mean velocity shear (for details, Rogachevskii and Kleeorin 2004). We use the momen-
tum equation and the induction equation for the turbulent fields written in a Fourier
space. We derive equations for the correlation functions of the velocity field
fij ¼ huiuji, the magnetic field hij ¼ hbibji and the cross-helicity gij ¼ hbiuji, where the
angular brackets denote ensemble averaging. We split the tensors fij, hij and gij into
nonhelical, hij, and helical, h

ðHÞ

ij , parts. The helical part of the tensor h
ðHÞ

ij for magnetic
fluctuations depends on the magnetic helicity, and it is determined by the
dynamic equation which follows from the magnetic helicity conservation arguments
(section 4.2). Then we split the nonhelical parts of the correlation functions fij, hij and
gij into symmetric and antisymmetric tensors with respect to the wave vector k.

The second-moment equations include the first-order spatial differential operators N̂
applied to the third-order momentsMðIIIÞ. A problem arises how to close the system, i.e.
how to express the set of the third-order terms N̂MðIIIÞ through the lower moments
MðIIÞ (see, e.g. Orszag 1970, Monin and Yaglom 1975, McComb 1990). Various approx-
imate methods have been proposed in order to solve it. A widely used spectral � approx-
imation (see, e.g. Orszag 1970, Pouquet et al. 1976, Kleeorin et al. 1990, Kleeorin et al.
1996, Blackman and Field 2002, Rogachevskii and Kleeorin 2004, Brandenburg et al.
2004, Brandenburg and Subramanian 2005a) postulates that the deviations of the
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third-moment terms, N̂MðIIIÞðkÞ, from the contributions to these terms afforded by the
background turbulence, N̂M

ðIIIÞ
0 ðkÞ, are expressed through the similar deviations of the

second moments, MðIIÞðkÞ �M
ðIIÞ
0 ðkÞ:

N̂MðIIIÞðkÞ � N̂M
ðIIIÞ
0 ðkÞ ¼ �

MðIIÞðkÞ �M
ðIIÞ
0 ðkÞ

�ðkÞ
, ð12Þ

where �(k) is the characteristic relaxation time, which can be identified with the correla-
tion time of the turbulent velocity field. The background turbulence is determined by
the budget equations and the general structure of the moments is obtained by symmetry
reasoning. In the background turbulence, the mean magnetic field is zero. We applied
the spectral �-approximation only for the nonhelical part hij of the tensor of magnetic
fluctuations. We consider an intermediate nonlinearity which implies that the mean
magnetic field is not enough strong in order to affect the correlation time of turbulent
velocity field. The theory for a very strong mean magnetic field can be corrected after
taking into account a dependence of the correlation time of the turbulent velocity field
on the mean magnetic field.

We assume that the characteristic time of variation of the mean magnetic field B is
substantially larger than the correlation time �(k) for all turbulence scales (which cor-
responds to the mean-field approach). This allows us to get a stationary solution for
the equations for the second moments fij, hij and gij. For the integration in k-space of
these second moments we have to specify a model for the background turbulence
(with B ¼ 0Þ. We use a simple model for the background homogeneous and isotropic
turbulence. Using the derived equations for the second moments fij, hij and gij we
calculate the mean electromotive force Ei ¼ "imn

R
gnmðkÞ dk. This procedure allows us

to derive equations for the nonlinear coefficients defining the mean electromotive
force in a homogeneous turbulence with a mean velocity shear (for details,
Rogachevskii and Kleeorin 2004, 2006).

For simplicity in this study, we do not take into account a quenching of the turbulent
magnetic diffusion. This facet is discussed in details by Rogachevskii and Kleeorin
(2004, 2006). We consider the nonlinear dynamo problem with the algebraic nonlinear-
ity �

N
ðBÞ which determines the nonlinear shear-current effect. The mean magnetic field

is determined by the following nonlinear equations

@A

@t
¼ D �

N
ðBÞB0

y þ A00 , ð13Þ

@By

@t
¼ �A0 þ B00

y , ð14Þ

(Rogachevskii and Kleeorin 2004, Rogachevskii et al. 2006), where B ¼ jBj. The
function �

N
ðBÞ defining the nonlinear shear-current effect (which is normalized by

�
B
Þ, is shown in figure 5 for different values of the parameter �. The asymptotic

formulas for the nonlinear function �
N
ðBÞ are given by �

N
ðBÞ ¼ 1 for a weak

mean magnetic field ðB � Beq=4Þ and �
N
ðBÞ ¼ �11ð1þ �Þ=4ð1þ 9�Þ for B � Beq=4

(figure 5). This implies that the nonlinear function �
N
ðBÞ defining the shear-current

effect changes its sign at some value of the mean magnetic field B ¼ B�.
Here B� ¼ 1:2Beq for �¼ 0 and B� ¼ 1:4Beq for �¼ 1. However, there is no quenching
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of the nonlinear shear-current effect contrary to the quenching of the nonlinear
alpha effect, the nonlinear turbulent magnetic diffusion, etc. The background magnetic
fluctuations (caused by the small-scale dynamo and described by the parameter �Þ,
affect the nonlinear function �

N
ðBÞ.

Numerical solutions of equations (13) and (14) for the nonlinear problem with
the algebraic nonlinearity �

N
ðBÞ are plotted in figures 6–8. In particular, these

figures show the nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the
shear-current effect for different values of the dynamo number D and the parameter
�. The magnitude of the saturated mean magnetic field is several times larger than
the equipartition field depending on the dynamo number. Inspection of figures 7
and 8 shows that there is a range in the dynamo number D ¼22.8–59 where the
nonlinear oscillations of mean magnetic field are observed at �¼ 0.

0 1 2 3

−2

−1

0

1

2

3

B/Beq

σN

Figure 5. The dimensionless nonlinear coefficient �
N
ðBÞ defining the shear-current effect for different values

of the parameter �: � ¼ 0 (solid); �¼ 1 (dashed).

0 5 10 15 t

0.5

1

1.5

2

B/Beq

Figure 6. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect with
the algebraic nonlinearity for �¼ 0 (thin curve) and �¼ 1 (thick curve) and different near-threshold values
of the dynamo number: D ¼ 1:45Dcr (solid); D ¼ 1:3Dcr (dashed); D ¼ 1:15Dcr (dashed-dotted).
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4.2. The algebraic and dynamic nonlinearities

In this study, we consider nonhelical and nonrotating homogeneous turbulence. This
implies that the kinetic helicity and the hydrodynamic � effect are zero. However,
the magnetic � effect caused by the small-scale magnetic helicity is not zero even in
nonhelical turbulence. In particular, the magnetic helicity conservation implies the
growth of a magnetic alpha effect independent of whether kinetic helicity is driven
into the system. In section 4.1, we have concentrated on the nonlinear shear-current
effect (the algebraic nonlinearity) and have not discussed the effect of small-scale
magnetic helicity (the dynamic nonlinearity) on the nonlinear saturation of the mean
magnetic field. In this subsection, we study joint action of the algebraic and dynamic
nonlinearities.

3

2.5

2

1.5

1

0.5

0 1 2 3 4 5 t

3.5

B/Beq

Figure 7. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect with
the algebraic nonlinearity for �¼ 0 (thin curve) and �¼ 1 (thick curve) and different values of the dynamo
number: D ¼ 10 (solid); D¼ 30 (dashed); D¼ 50 (dashed-dotted).

B/Beq

t7 7.5 8 8.5
1.6

2

2.4

t7 98 10 11 12

B/Beq

2

2.4

b

a

B/Beq

t2 3 4 5
2

2.4

c

Figure 8. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect with
the algebraic nonlinearity for �¼ 0 and different values of the dynamo number: (a) D¼ 47 (solid), D¼ 52
(dashed), D¼ 59 (dashed-dotted); (b) D¼ 31 (solid), D¼ 35 (dashed); (c) D¼ 28 (solid); D¼ 22.77 (dashed);
D ¼ 22:765 (dashed-dotted).
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The small-scale magnetic helicity causes the magnetic � effect which is given by
�m ¼ �

N
ðBÞ�cðBÞ, where �

N
ðBÞ is the quenching function of the magnetic � effect

given below by equation (19). The function �cðBÞ � ð�0=12��ÞhbEðJTbÞi is related to
the small-scale current helicity hbEðJTbÞi. For a weakly inhomogeneous turbulence
ðl0 � LÞ, the function �c is proportional to the small-scale magnetic helicity,
�c ¼ �m=ð18��T

�Þ (Kleeorin and Rogachevskii 1999), where �m ¼ haEbi is the small-
scale magnetic helicity and a is the vector potential of small-scale magnetic field. The
function �cðBÞ entering the magnetic � effect is determined by the following dynamical
dimensionless equation (which is derived using arguments based on the magnetic
helicity conservation law):

@�c

@t
þ JEFþ

�c

��
¼ �

�
2L

l0

�2

ðEEBÞ, ð15Þ

(see, e.g. Kleeorin and Ruzmaikin 1982, Gruzinov and Diamond 1994, 1996, Kleeorin
et al. 1995, 2000, 2002, 2003a, 2003b, Kleeorin and Rogachevskii 1999, Blackman and
Field 2000, Blackman and Brandenburg 2002, Brandenburg and Subramanian 2005a,
Zhang et al. 2006), where �� ¼ ð1=3Þðl0=LÞ

2Rm is the characteristic relaxation time of
the small-scale magnetic helicity, Rm is the magnetic Reynolds number and F is related
to the flux of the small-scale magnetic helicity.

The simplest form of the magnetic helicity flux is the turbulent diffusive flux of the
magnetic helicity, F ¼ �


T
J�c (Kleeorin et al. 2002, 2003b), where the turbulent diffu-

sivity coefficient 

T
is measured in units of �

T
and the function �c is measured in units of

�
T
=L. In real systems, the flux of small-scale magnetic helicity can be accompanied by

some flux of large-scale magnetic helicity. However, the flux of large-scale magnetic
helicity does not explicitly enters in the dynamical equation (15) for the evolution
of the small-scale magnetic helicity. This flux mostly affects the large-scale magnetic
helicity. It can also introduce an additional anisotropy of turbulence, which can
affect the dynamics of the mean magnetic field.

Equation (15) determines the dynamics of the small-scale magnetic helicity, i.e. its
production, dissipation and transport. For very large magnetic Reynolds numbers
(which are typical for many astrophysical situations), the relaxation term �c=�� is
very small, and it is very often dropped in equation (15) in spite of the fact that the
small yet finite magnetic diffusion is required for the reconnection of magnetic field
lines. In particular, the magnetic Reynolds number, Rm does not enter into the
steady state solution of equation (15) in the limit of very large Rm due to the effect
of the magnetic helicity flux (Kleeorin et al. 2003b).

The account for the dynamics of the small-scale magnetic helicity results in that the
mean magnetic field is determined by the following dimensionless equations

@Aðt, zÞ

@t
¼ D �

N
ðBÞB0

y þ By �N
ðBÞ�cðt, zÞ þ A00 , ð16Þ

@Byðt, zÞ

@t
¼ �A0 þ B00

y , ð17Þ

@�cðt, zÞ

@t
� 


T
�00
c þ

�c

��
¼ C

�
A0 B0

y � By ½D �
N
ðBÞB0

y þ By �N
ðBÞ�cðt, zÞ þ A00�

�
, ð18Þ
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where �m ¼ S�1
� �

N
ðBÞ�cðt, zÞ is the magnetic � effect and the parameter C ¼ ð2L=l0Þ

2.
In equations (17) and (18), we have neglected small terms �OðS�2

� Þ � 1. The algebraic
function �

N
ðBÞ in these equations is given by

�
N
ðBÞ ¼

3

8B2

�
1�

arctanð
ffiffiffi
8

p
BÞffiffiffi

8
p

B

�
, ð19Þ

(see, e.g. Rogachevskii and Kleeorin 2000), where �
N
ðBÞ ¼ 1� ð24=5ÞB2 for B � 1=

ffiffiffi
8

p

and �
N
ðBÞ ¼ 3=ð8B2Þ for B � 1=

ffiffiffi
8

p
. Here the mean magnetic field B is measured

in units of the equipartition field Beq determined by the turbulent kinetic energy.
In equations (16)–(18) there are four parameters: the dynamo number D ¼ 4S2

� �B
=C,

the turbulent diffusivity of the small-scale magnetic helicity 

T
(measured in units of

�
T
), the parameter C ¼ ð2L=l0Þ

2 and the relaxation time of the small-scale magnetic heli-
city �� ¼ ð4=3ÞRm=C. Consider the simple boundary conditions for a layer of thickness
2L in the z direction: Byðt, jzj ¼ 1Þ ¼ 0, A0ðt, jzj ¼ 1Þ ¼ 0 and �cðt, jzj ¼ 1Þ ¼ 0, where z
is measured in units of L. The initial conditions for the symmetric mode are chosen in
the form: Byðt ¼ 0, zÞ ¼ B0 cosð�z=2Þ, Aðt ¼ 0, zÞ ¼ 0 and �cðt ¼ 0, zÞ ¼ 0.

Numerical solutions of equations (16)–(18) for the nonlinear problem with the
algebraic and dynamic nonlinearities are plotted in figures 9–13. In particular, the non-
linear evolution of the mean magnetic field Bðt, z ¼ 0Þ for different values of the param-
eters 


T
, C, the dynamo numbers D and very large magnetic Reynolds numbers Rm is

shown in figures 9–13. Inspection of figures 9–10 shows that the saturated level of the
mean magnetic field depends strongly on the value of the turbulent diffusivity of the
magnetic helicity 


T
. The saturated level of the mean magnetic field changes from

very small value for 

T
¼ 0:1 to the super-equipartition field for 


T
¼ 10. This is an indi-

cation of very important role of the transport of the magnetic helicity for the saturated
level of the mean magnetic field. Indeed, during the generation of the mean magnetic
field, the product EEB is positive, and this produces negative contribution to the
small-scale magnetic helicity (and negative magnetic � effect, see equation (15)).
Therefore, this reduces the rate of generation of large-scale magnetic field because
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Figure 9. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect with
the algebraic and dynamic nonlinearities for �¼ 0, D ¼ 2Dcr, C ¼ 100 and different values of the parameter


T
: 


T
¼ 0:5 (solid); 


T
¼ 0:3 (dashed); 


T
¼ 0:1 (dashed-dotted).
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Figure 10. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect
with the algebraic and dynamic nonlinearities for �¼ 0, D ¼ 2Dcr, C ¼ 100 and different values of the
parameter 


T
: 


T
¼ 10 (solid); 


T
¼ 1 (dashed); 


T
¼ 0:1 (dashed-dotted).
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Figure 11. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect
with the algebraic and dynamic nonlinearities for �¼ 0, 


T
¼ 10, D ¼ 2Dcr and different values of the

parameter C: C ¼ 100 (solid); C ¼ 300 (dashed); C ¼ 900 (dashed-dotted); C ¼ 2700 (dotted).
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Figure 12. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect
with the algebraic and dynamic nonlinearities for �¼ 0, 


T
¼ 1, C ¼ 100 and different values of the dynamo

number: (a) D ¼ 2Dcr (thick solid); D ¼ 1:7Dcr (dashed); D ¼ 1:5Dcr (dashed-dotted); D ¼ 1:43Dcr

(dotted); D ¼ 1:1Dcr (thin solid).
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the first and the second terms in the right-hand side of equation (16) have opposite
signs. The first term in equation (16) describes the shear-current effect, while the
second term in equation (16) determines the magnetic � effect. If the magnetic helicity
does not effectively transported out from the generation region, the mean magnetic field
is saturated even at small value of the magnetic field. Increase of the magnetic helicity
flux (by increasing the turbulent diffusivity 


T
of magnetic helicity) results in increase

of the saturated level of the mean magnetic field above the equipartition field
(figures 9–10). Note that the increase in the parameter C decreases the saturated level
of the mean magnetic field (figure 11). Actually the ratio 


T
=C determines the saturated

level of the mean magnetic field in a steady-state.
For the cases shown in figures 9–13, we drop the small relaxation term �c=�� in

equation (15) due to very large magnetic Reynolds numbers. Now we consider moder-
ate magnetic Reynolds numbers, when the relaxation term �c=�� in equation (15) is not
small but the flux of magnetic helicity is weak (e.g., 


T
¼ 0:1�0:3Þ. In this case, the

small-scale magnetic helicity does not effectively transported out from the generation
region by the helicity flux. In table 1, we demonstrate the effect of the moderate
magnetic Reynolds numbers on the saturated level of the mean magnetic field.
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Figure 13. The nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ due to the shear-current effect
with the algebraic and dynamic nonlinearities for �¼ 0, 


T
¼ 1, C ¼ 100 and different values of the dynamo

number: (a) D ¼ 7Dcr (solid); D ¼ 5Dcr (dashed); D ¼ 3Dcr (dashed-dotted); D ¼ 2Dcr (dotted).

Table 1. The saturated mean magnetic field versus the magnetic
Reynolds number.



T
¼ 0.1 


T
¼ 0.3

Rm B/Beq B/Beq

7.5 1.16 1.2
15 0.89 1
16.5 0.37 0.97
17 0.2 0.967
30 0.1 0.83
36 0.085 0.35
50 0.076 0.16
102 0.05 0.12
106 0.03 0.096
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The decrease of the magnetic Reynolds numbers (and the relaxation time ��Þ increases
the saturated level of the mean magnetic field (table 1), because the relaxation term
�c=�� in equation (15) decreases the small-scale magnetic helicity in the generation
region. On the other hand, for larger flux of small-scale magnetic helicity ð


T
� 0:5Þ,

the effect of the magnetic Reynolds numbers on the saturated level of the mean
magnetic field is very small. Note that the moderate magnetic Reynolds numbers
Rm¼ 10–50 are irrelevant for astrophysical applications, although they are of an inter-
est for the direct numerical simulations.

Figures 12–13 show the nonlinear evolution of the mean magnetic field Bðt, z ¼ 0Þ
for different values of the dynamo numbers D. The saturated level of the mean magnetic
field increases with the increase of the dynamo numbers D within the range
Dcr < D < 2Dcr, and it decreases with the increase of the dynamo number for
D > 2Dcr. This is a new feature in the nonlinear mean-field dynamo. For example,
in the �� dynamo the saturated level of the mean magnetic field usually increases
with the increase the dynamo numbers.

Generation of the large-scale magnetic field in a nonhelical turbulence with an
imposed mean velocity shear has been recently investigated by Brandenburg (2005)
and Brandenburg et al. (2005) using direct numerical simulations. The results of
these numerical simulations are in a good agreement with the numerical solutions
of the nonlinear dynamo equations (16)–(18) discussed in section 4.

Now let us compare the results of the numerical solutions of the nonlinear dynamo
equations (16)–(18) with the numerical study by Brandenburg and Subramanian
(2005b) of the mean-field dynamo with a large-scale shear. In our study, we use the
expression for the nonlinear electromotive force determined by Rogachevskii and
Kleeorin (2004, 2006), which includes the nonlinear shear-current effect. On the other
hand, Brandenburg and Subramanian (2005b) use very simplified form of the mean
electromotive force, neglecting e.g., the 
 effect related to the symmetric parts of the
gradient tensor of the mean magnetic field. This effect contributes to the shear-current
effect (Rogachevskii and Kleeorin 2003, 2004). Brandenburg and Subramanian (2005b)
have not taken into account the properties of the nonlinear shear-current effect found
by Rogachevskii and Kleeorin (2004, 2006). In particular, there is no quenching of the
nonlinear shear-current effect contrary to the quenching of the nonlinear alpha effect,
the nonlinear turbulent magnetic diffusion, etc. During the nonlinear growth of the
mean magnetic field, the shear-current effect only changes its sign at some value of
the mean magnetic field which affects the level of the saturated mean magnetic field
(Rogachevskii and Kleeorin 2004, 2006). In our study, we neglect small terms
� OðS�2

� Þ � 1 in equations (16)–(18), i.e., we do not consider �2
m effect because the

parameter S� should be very large (section 3). In addition, we do not consider �2 S
effect because we neglected the small terms � O½ðl0=LÞ

2
� in equation (17). Here, the

parameter � determines the WTJ term in the mean electromotive force. In our numer-
ical solutions of the nonlinear mean-field dynamo equations, we use the simplest form
of the magnetic helicity flux (i.e., we use the turbulent diffusive flux of the magnetic
helicity, F ¼ �


T
J�c, where 


T
is not small), while Brandenburg and Subramanian

(2005b) use the current helicity flux of Vishniac and Cho (2001) and a very small
turbulent diffusive flux of the magnetic helicity (with 


T
¼ 10�2Þ.

The parameter range in the study by Brandenburg and Subramanian (2005b) is
different from that used in our study, and the maximum saturated level of the
mean magnetic field obtained in the study by Brandenburg and Subramanian (2005b)
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is B ¼ 0:6Beq at Rm ¼ 102, which strongly decreases with increase the magnetic
Reynolds number Rm (see table 4 of Brandenburg and Subramanian 2005b). On the
other hand, in our numerical solutions of the nonlinear mean-field dynamo equations
which take into account the shear-current effect, the saturated level of the mean mag-
netic field reaches the super-equipartition field. These are the reasons why our numer-
ical results discussed in this section are different from those obtained by Brandenburg
and Subramanian (2005b). Note, however, that increase of the saturated level of the
mean magnetic field with the decrease of the magnetic Reynolds numbers in the case
of very weak flux of small-scale magnetic helicity (found by Brandenburg and
Subramanian 2005b), is confirmed by our numerical study (table 1).

5. Discussion

In this study, we show that in a sheared nonhelical homogeneous turbulence, the large-
scale magnetic field can grow due to the shear-current effect from a very small seeding
magnetic field. The shear-current dynamo strongly depends on the spatial scaling of the
correlation time �(k) of the background turbulence. In particular, for Kolmogorov
scaling, �ðkÞ / k�2=3, the dynamo instability due to the shear-current effect occurs,
while when �ðkÞ / k�2 (for small hydrodynamic and magnetic Reynolds numbers)
there is no dynamo action in a sheared nonhelical turbulence. The dynamo instability
is saturated by the nonlinear effects, and the dynamical nonlinearity due to the evolu-
tion of small-scale magnetic helicity, plays a crucial role in nonlinear saturation of the
large-scale magnetic field. The magnetic helicity flux strongly affects the saturated level
of the mean magnetic field in the nonlinear stage of the dynamo action. In particular,
our numerical solutions of the nonlinear mean-field dynamo equations which take into
account the shear-current effect, show that if the magnetic helicity flux is not small, the
saturated level of the mean magnetic field is of the order of the equipartition field deter-
mined by the turbulent kinetic energy.

The shear-current dynamo acts also in inhomogeneous turbulence. However, in
inhomogeneous turbulence with a large-scale velocity shear the kinetic helicity and
the hydrodynamic � effect are not zero (Rogachevskii and Kleeorin 2003, 2006,
Rädler and Stepanov 2006). In this case, the shear-current dynamo acts together with
the �-shear dynamo (which is similar to the �� dynamo). The joint action of the
shear-current and the �-shear dynamo has been recently discussed by Rogachevskii
and Kleeorin (2006) and Pipin (2006).

Turbulence with a large-scale velocity shear is a universal feature in astrophysics,
and the obtained results can be important for explanation of the large-scale magnetic
fields generated in astrophysical sheared turbulence. Rogachevskii et al. (2006) have
suggested that the shear-current effect might be considered as an origin for the large-
scale magnetic fields in colliding protogalactic clouds and in merging protostellar
clouds.

Note that the problem of the generation of themeanmagnetic field in a turbulence with
large-scale velocity shear is similar to that for generation of mean vorticity in a sheared
turbulence. The instability of the perturbations of the mean vorticity in a turbulence with
a large-scale linear velocity shear was studied by Elperin et al. (2003). This instability is
caused by a combined effect of the large-scale shear motions (skew-induced deflection of
equilibrium mean vorticity due to the shear) and Reynolds-stress-induced generation
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of perturbations of mean vorticity. In Appendix A, we compare the problem of
generation of the mean magnetic field in a turbulence with a large-scale velocity shear
with that of the generation of mean vorticity in a sheared turbulence.
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APPENDIX

A. Threshold for generation of mean vorticity in a sheared turbulence

The problem of generation of the mean magnetic field in a turbulence with large-
scale velocity shear is similar to that of generation of mean vorticity in a sheared
turbulence. Indeed, let us discuss the generation of the mean vorticity in a turbu-
lence with a large-scale linear velocity shear, U ¼ ð0,Sx, 0Þ and W ¼ ð0, 0,SÞ.
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Perturbations of the mean vorticity ~W ¼ ð ~WxðzÞ, ~WyðzÞ, 0Þ are determined by the fol-
lowing equations:

@ ~Wx

@t
¼ S ~Wy þ 


T
~W00
x , ðA:1Þ

@ ~Wy

@t
¼ ��

W
S l20

~W00
x þ 


T
~W00
y , ðA:2Þ

(see for details Elperin et al. 2003), where 

T
is the turbulent viscosity, ~W00

i ¼ @2 ~Wi=@z
2

and the parameter �
W
is given by equation (A.4) below. The first term, S ~Wy, in the

right- hand side of equation (A.1) determines a skew-induced generation of perturba-
tions of the mean vorticity ~Wx by deflection of the equilibrium mean vorticity W,
where ~U are the perturbations of the mean velocity. In particular, the mean vorticity
~Wxex is generated from ~Wyey by equilibrium shear motions with the mean vorticity
W ¼ S ez, i.e., S ~Wyex / ðWEJÞ ~Uxex / ~WyeyTW. Here ex, ey and ez are the unit vec-
tors along x, y and z axis, respectively. On the other hand, the first term,
��

W
S l20

~W00
x, in the right hand side of equation (A.2) determines a Reynolds-stress-

induced generation of perturbations of the mean vorticity ~Wy by turbulent Reynolds
stresses. This implies that the mean vorticity ~Wyey is generated by an effective anisotro-
pic viscous term / �l20 � ð ~WxexEJÞUðxÞey / �l20 S

~W00
xey: This mechanism of the genera-

tion of perturbations of the mean vorticity ~Wyey can be interpreted as a stretching of the
perturbations of the mean vorticity ~Wxex by the equilibrium shear motions U ¼ Sx ey
during the turnover time of turbulent eddies (Elperin et al. 2003).

Note that equations (A.1) and (A.2) for the perturbations of the mean vorticity are
very similar to equations (1)-(2) for the perturbations of the mean magnetic field in a
sheared turbulence. The growth rate � of the instability of the perturbations of the
mean vorticity is given by

� ¼ S l0 Kz
ffiffiffiffiffiffi
�

W

p
� 


T
K2

z : ðA:3Þ

The form of the growth rate (A.3) of the perturbations of the mean vorticity is also very
similar to the growth rate (5) of the mean magnetic field due to the shear-current effect.
On the other hand, the magnetic dynamo instability is different from the instability of
the perturbations of the mean vorticity although they are governed by similar equa-
tions. The mean vorticity ~W ¼ JT ~U is directly determined by the velocity field ~U,
while the magnetic field depends on the velocity field through the induction equation
and Navier–Stokes equation.

In the present study, we derived a more general form of the parameter �
W
for an arbi-

trary scaling of the correlation time �(k) of the turbulent velocity field. The parameter
�

W
is derived using equation (21) of the article by Elperin et al. (2003). It is given by

�
W
¼

4I0
45

�
2
I2

I20
þ 43

I

I0
þ 63

�
, ðA:4Þ

where I and I0 are determined by equation (4). The instability depends on the correla-
tion time �(k). In particular, when �ðkÞ / k�	, the ratio I=I0 ¼ �	, and the criterion of
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the instability reads 2	2 � 43	þ 63 > 0, i.e. the instability is excited when
0 	 	 < 1:58 and 	 > 19:9. Note that the condition 	 > 19:9 is not realistic.

When �ðkÞ / k1�q, we recover the result obtained by Elperin et al. (2003), i.e.
�

W
¼ 4ð2q2 � 47qþ 108Þ=315. In particular, for the Kolmogorov scaling, �ðkÞ / k�2=3

(i.e. for q ¼ 5=3), we arrive at �
W

 0:45.

For small hydrodynamic Reynolds numbers, the scaling �ðkÞ � 1=ð
k2Þ, the ratio
I=I0 ¼ �2 (i.e. 	 ¼ 2), and the parameter �

W
¼ �4=9 < 0. This implies that the

instability of the perturbations of the mean vorticity does not occur in agreement
with the recent results by Rüdiger and Kichatinov (2006). They have not found the
instability of the perturbations of the mean vorticity in a random flow with large-
scale velocity shear using the second order correlation approximation (SOCA). Note
that this approximation is valid only for small hydrodynamic Reynolds numbers
[see discussion in section 3 after equation (5)].
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