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Small-scale magnetic buoyancy and magnetic pumping
effects in a turbulent convection
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We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent
magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are
caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform
fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results
in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift
velocities of the mean magnetic field cause the small-scale magnetic buoyancy and
magnetic pumping effects in the turbulent convection. These phenomena are different from
the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect
of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale
magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects
when the mean magnetic field is smaller than the equipartition field. We discuss the
small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and
stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic
diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field.
In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the
small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component
of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the
poloidal field.

Keywords: Turbulent convection; Magnetic buoyancy and magnetic pumping; Magnetic
dynamos

1. Introduction

Magnetic fields observed in astrophysical plasma are strongly inhomogeneous (see, e.g.,
Moffatt 1978, Parker 1979, Krause and Réadler 1980, Zeldovich et al. 1983, Ruzmaikin
et al. 1988, Stix 1989, Roberts and Soward 1992, Kulsrud 1999, and references therein).
For instance, the sunspots and the solar active regions are related to the strongly
inhomogeneous large-scale magnetic fields. The scales of the magnetic inhomogeneities,
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e.g., in the Sun are much smaller than the radius of the Sun and usually much larger
than the size of granules of the solar convection. One of the mechanisms of the
formation of the magnetic inhomogeneities is associated with the magnetic buoyancy
instability of stratified continuous magnetic field (see, e.g., Parker 1966, Gilman
1970, Priest 1982). The magnetic buoyancy instability is excited if the scale of variations
of the initial magnetic field is less than the density stratification length. This mechanism
does not include explicitly magnetic flux tubes. On the other hand, the buoyancy of
the magnetic flux tubes as a mechanism of the formation of the magnetic structures
was studied in a number of publications (see, e.g., Parker 1955, Spruit 1981, Spruit
and van Ballegooijen 1982, Schiissler et al. 1994, Moreno-Insertis et al. 1996). Note
also that the problem of the storage of magnetic fields and the formation of flux
tubes in the overshoot layer near the bottom of the solar convective zone was
investigated, e.g., by Spiegel and Weiss (1980), Tobias et al. (2001), Tobias and
Hughes (2004), Brandenburg (2005).

Another universal mechanism of the formation of the nonuniform distribution of
magnetic flux in flows of the conducting fluid is a magnetic flux expulsion. In particular,
the expulsion of magnetic flux from two-dimensional flows (a single vortex and a grid
of vortices) was demonstrated by Weiss (1966). In the context of solar and stellar
convection, the topological asymmetry of stationary thermal convection plays a very
important role in the magnetic field dynamics (Drobyshevski and Yuferev 1974).
Fluid rises at the centers of the convective cells and falls at their peripheries. This results
in the ascending fluid elements (contrary to the descending fluid elements) being
disconnected from one another. This causes a topological magnetic pumping effect
allowing downward transport of the mean horizontal magnetic field to the bottom of
a cell but impeding its upward return (Drobyshevski and Yuferev 1974, Zeldovich
et al. 1983, Galloway and Proctor 1983). The fine structure of a sunspot is determined
by the local interaction between magnetic fields and turbulent convection near the Sun’s
surface. It was shown recently by Thomas et al. (2002) that a downward pumping of
magnetic flux may cause filamentary structures in sunspot penumbrae. In particular,
the magnetic field lines are kept submerged outside the spot by turbulent, compressible
convection, which is dominated by strong, coherent, descending plumes.

Turbulence causes additional effects, e.g., the turbulent diamagnetic and paramag-
netic drift velocities of the mean magnetic field (Zeldovich 1956, Krause and
Rédler 1980, Vainshtein and Kichatinov 1983, Kichatinov 1991, Kichatinov and
Ridiger 1992, Kichatinov and Pipin 1993, Kleeorin and Rogachevskii 2003, Rédler
et al. 2003, Rogachevskii and Kleeorin 2004). In particular, an inhomogeneity of the
velocity fluctuations leads to a transport of mean magnetic flux from regions
with high intensity of the velocity fluctuations (turbulent diamagnetism, see, e.g.,
Zeldovich 1956, Krause and Raédler 1980, Vainshtein and Kichatinov 1983,
Kichatinov and Riidiger 1992, Réidler et al. 2003). On the other hand, an inhomogene-
ity of magnetic fluctuations due to the small-scale dynamo causes turbulent paramag-
netic velocity, i.e., the magnetic flux is pushed into regions with high intensity of the
magnetic fluctuations (Vainshtein and Kichatinov 1983, Kichatinov 1991, Ridler
et al. 2003). Other effects are the effective drift velocities of the mean magnetic field
caused by inhomogeneities of the fluid density (Kichatinov 1991, Kichatinov and
Riidiger 1992) and pressure (Kichatinov and Pipin 1993). In a nonlinear stage of the
magnetic field evolution, inhomogeneities of the mean magnetic field contribute to
the diamagnetic or paramagnetic drift velocities depending on the level of magnetic
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fluctuations due to the small-scale dynamo and level of the mean magnetic field
(Rogachevskii and Kleeorin 2004). The diamagnetic velocity causes a drift of the
magnetic field components from the regions with a high intensity of the mean
magnetic field.

The pumping of magnetic flux in three-dimensional compressible magnetoconvection
has been studied in direct numerical simulations by Ossendrijver et al. (2002) (see also
review by Ossendrijver 2003). The resulting magnetic pumping effects are isolated in the
direct numerical simulations by calculating the turbulent diamagnetic and paramagnetic
velocities. The pumping effect in the vertical direction is found as a predominating
downward advection with a maximum speed in the turbulent convection of about
10% of the turbulent velocity (Ossendrijver et al. 2002).

The turbulent diamagnetic and paramagnetic velocities were determined
analytically in previous studies only for purely hydrodynamic turbulence. A relation
to the turbulent convection was made in some studies (see, e.g., Kichatinov 1991,
Kichatinov and Pipin 1993) only phenomenologically, using the equation
(u'’?) o gto(u.s’) which follows from the mixing-length theory. Here (i s') is the
vertical turbulent heat flux, w’ and s" are fluctuations of fluid velocity and entropy,
g is the acceleration of gravity and 7, is the characteristic correlation time of turbulent
velocity field. This relationship implies that the vertical turbulent heat flux plays a role
of a stirring force for the turbulence. However, a more sophisticated approach implies
a solution of a coupled system of dynamical equations which includes the equations for
the Reynolds stresses (u;u)), the turbulent heat flux (s'u;), the entropy fluctuations
(s's’), the magnetic fluctuations (b; b;), the cross helicity tensor (b;u}) and (b;s’) in a
turbulent convection. The latter has not been taken into account in the previous studies
of the small-scale magnetic buoyancy and magnetic pumping effects caused by the
turbulent diamagnetic and paramagnetic drift velocities. Note that the turbulent
convection can strongly affect these phenomena.

The goal of this study is to determine the nonlinear drift velocities of the mean
magnetic field in a turbulent convection. We demonstrate that the nonlinear drift
velocities depend on the different kinds of inhomogeneities: (i) inhomogeneous
turbulence; (ii) the nonuniform fluid density and (iii) the nonuniform turbulent heat
flux. The inhomogeneous turbulence causes the well-known turbulent diamagnetic
and paramagnetic velocities. In addition, the nonlinear drift velocities results in the
small-scale magnetic buoyancy and magnetic pumping in the turbulent convection.
These phenomena are different from the large-scale magnetic buoyancy and magnetic
pumping effects. The large-scale phenomena are caused by the influence of the mean
magnetic field on the large-scale fluid flow. Our study shows that these large-scale
effects are stronger than the small-scale magnetic buoyancy and magnetic pumping
only for a strong mean magnetic field (about equipartition field). We study the
small-scale magnetic buoyancy and magnetic pumping effects in the context of the
solar and stellar turbulent convection. In particular, we demonstrate that in the main
part of the solar convective zone the small-scale magnetic pumping effect dominates,
while near the solar surface the radial drift velocity of the weak mean magnetic field
results in the small-scale magnetic buoyancy effect. We also investigate the anisotropic
turbulent magnetic diffusion of the mean magnetic field in the turbulent convection.

This article is organized as follows. In section 2 we formulate the governing
equations, the assumptions and the procedure of the derivations. In section 3 we
consider the axisymmetric «2 dynamo problem and determine the nonlinear drift
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velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a
turbulent convection. In section 4 we discuss the small-scale magnetic buoyancy and
magnetic pumping effects and make estimates for the solar and stellar turbulent
convection. Finally, we draw conclusions in section 5. In appendix A we perform a
detailed derivation of the nonlinear drift velocities of the mean magnetic field and
nonlinear turbulent magnetic diffusion in a turbulent convection.

2. The governing equations

In this study we investigate the small-scale magnetic buoyancy and magnetic pumping
effects in a turbulent convection. These phenomena are determined by the nonlinear
drift velocities in the nonlinear electromotive force. In order to derive the nonlinear
electromotive force in the turbulent convection, we use a mean field approach in
which the magnetic and velocity fields, and entropy are decomposed into the mean
and fluctuating parts, where the fluctuating parts have zero mean values. We assume
that there exists a separation of scales, i.e., the maximum scale of turbulent motions
lo is much smaller than the characteristic scale L of inhomogeneities of the
mean fields. Here we adopt a procedure of the derivation of the nonlinear electromotive
force which was applied previously by Rogachevskii and Kleeorin (2004) for the hydro-
dynamic incompressible turbulence. Let us outline here the procedure of the derivation
of the nonlinear electromotive force for the turbulent convection (for details, see also
appendix A). We consider a nonrotating turbulent convection with large Rayleigh num-
bers and large hydrodynamic and magnetic Reynolds numbers. The equations for fluc-
tuations of the fluid velocity, entropy and the magnetic field are given by

ELERCSTNT A U T : Ao reth - H) — (b - }

N V<p0>+m|:(b V)H + (H - V)b + —£[2e(b - H) — (b - ¢)H]
—%Hv”, (1)
W:(H°V)v—(v-V)H—l—%[v(H-e)—H(v-e)]—i—bN, (2
8S(;(l, 1) _ _%[27(‘] ‘o) + sV, (3)

where we use new variables (v, s, H) for fluctuating fields v = ,/pou’ and s = /pg 5,
and also for the mean field H = B/(u,/p9). Here B is the mean magnetic field, p is
the fluid density, u is the magnetic permeability of the fluid, e is the vertical unit
vector, Q7 = —g - VS is the Brunt-Viisild frequency, S is the mean entropy, g is the
acceleration of gravity, u/, b and s are fluctuations of velocity, magnetic field and
entropy (for simplicity of notations we omitted prime in b because we did not use
new variables for magnetic fluctuations), vV, b" and sV are the nonlinear terms
which include the molecular viscous and diffusion terms, p =p’ + /oo (H - b) are
the fluctuations of total pressure, p’ are the fluctuations of fluid pressure.
Equations (1)—(3) for fluctuations of fluid velocity, entropy and magnetic field are
written in the anelastic approximation, which is a combination of the Boussinesq
approximation and the condition V+ (pyu’) = 0. The equation, V+ u' = A,(u’ - e), in
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the new variables reads: V- v =(A,/2)(v - e), where Vpy/p9p = —A,e. The quantities
with the subscript ‘0’ correspond to the hydrostatic nearly isentropic basic reference
state, i.e., VPy=pog and g-[(yPy) ' VPy — 05 'Vpol 0, where y is the specific
heats ratio and P, is the fluid pressure in the basic reference state. The turbulent con-
vection is regarded as a small deviation from a well-mixed adiabatic reference state.

Using equations (1)—(3) written in a Fourier space we derive equations for the
two-point second-order correlation functions of the velocity fluctuations (v;v;), the
magnetic fluctuations (b;b;), the entropy fluctuations (ss), the cross-helicity (b;v)),
the turbulent heat flux (sv;) and (sb;). The equations for these correlation functions
are given by equations (A.5)—~(A.10) in appendix A. We split the tensor of magnetic fluc-
tuations into nonhelical, A; = (b;b;), and helical, hfyﬂ), parts. The helical part hfjH)
depends on the magnetic helicity and is determined by a dynamic equation which
follows from the magnetic helicity conservation arguments (see below). We also split
all second-order correlation functions, M) into symmetric and antisymmetric parts
with respect to the wave vector k, e.g., h; = hf.;) + hf;’), where the tensor hg?‘) =
[h;i(k) 4+ hjj(=k)]/2 describes the symmetric part of the tensor and hg’) = [h(k) —
hij(=k)]/2 determines the antisymmetric part of the tensor. A

The second-moment equations include the first-order spatial differential operators A/
applied to the third-order moments M), A problem arises — how to close the system,
i.e., how to express the set of the third-order terms N'MYD through the lower moments
MUD (see, e.g., Orszag 1970, Monin and Yaglom 1975, McComb 1990). We use the
spectral T approximation which postulates that the deviations of the third-moment
terms, N'MD(k), from_the contributions to these terms afforded by the background
turbulent convection, N'MU"-9(k), are expressed through similar deviations of the
second moments, MU (k) — MU0 (k):

AN = M) = — s MO — MO @)

(see, e.g., Orszag 1970, Pouquet et al. 1976, Kleeorin et al. 1990, Kleeorin et al. 1996,
Blackman and Field 2002, Kleeorin and Rogachevskii 2003, Rogachevskii and
Kleeorin 2004, Brandenburg er al. 2004, Brandenburg and Subramanian 2005b,
Kleeorin and Rogachevskii 2006), where t(k) is the scale-dependent relaxation time,
which can be identified with the correlation time of the turbulent velocity field.
In the background turbulent convection, the mean magnetic field is zero.

We apply the spectral r approximation only for the nonhelical part /;; of the tensor of
magnetic fluctuations. The helical part hf-jH) depends on the magnetic helicity, and it is
determined by the dynamic equation which follows from the magnetic helicity conser-
vation arguments (see, e.g., Kleeorin and Ruzmaikin 1982, Gruzinov and Diamond
1994, Kleeorin et al. 1995, Gruzinov and Diamond 1996, Kleeorin and Rogachevskii
1999, Kleeorin et al. 2000, Blackman and Field 2000, Kleeorin et al. 2002, Blackman
and Brandenburg 2002, Kleeorin et al. 2003, Brandenburg and Subramanian 2005a,
Zhang et al. 2006, and references therein). The characteristic time of evolution of the
nonhelical part of the tensor /;; is of the order of the turbulent time vy = /y/uy, while
the relaxation time of the helical part of the tensor hf/H) is of the order of 7y Rm,
where Rm = lyug/n is the magnetic Reynolds number (which is very large), u, is the
characteristic turbulent velocity in the maximum scale of turbulent motions /, and
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n is the magnetic diffusivity due to electrical conductivity of the fluid. In this study
we consider an intermediate nonlinearity which implies that the mean magnetic field
is not strong enough in order to affect the correlation time of turbulent velocity field.
The theory for a very strong mean magnetic field can be corrected after taking into
account a dependence of the correlation time of the turbulent velocity field on the
mean magnetic field.

We assume also that the characteristic time of variation of the mean magnetic field B is
substantially larger than the correlation time t(k) for all turbulence scales. This allows us
to get a stationary solution for the equations for the second-order moments, M). For
the integration in k space of the second-order moments, we have to specify a model for
the background turbulent convection which is determined by equations (A.32)-(A.34) in
appendix A. This model takes into account the inhomogeneity of the turbulence
described by the two parameters: A" = v;w?)@/@?)® and A = v;(p?)@/(p*)©.
This model includes also the inhomogeneity of the turbulent heat flux,
Aﬁ” = V(Ju'| YO/ (u'| &)¥, and the inhomogeneity of the fluid density described by
the parameter A,. The quantities with the superscript (0) correspond to the background
turbulent convection with B = 0. Using the solution of the derived second-moment
equations, we determine the nonlinear electromotive force, & = &imy [(by Vi) dk, in
the turbulent convection (see appendix A), where g;; is the fully antisymmetric Levi-
Civita tensor. This allows us to determine the nonlinear drift velocities of the mean
magnetic field and nonlinear turbulent magnetic diffusion, and to study the small-scale
magnetic buoyancy and magnetic pumping effects in the turbulent convection.

3. The axisymmetric dynamo

Let us consider the axisymmetric «Q2 dynamo problem. The mean magnetic field in the
local system of coordinate is B = B(x, z)e, + V x [A(x, z)e,], where B(x,z) and A(x,z)
are determined by the dimensionless equations

2 a5+ T ) T (v ) W ©
aa_ — D[V(5Q) x VA]), +V - [7,(B)VB — V4(B)B], 6)

32 determine the differential rotation, D is the dynamo number (see below), a(B) is the
total (hydrodynamic + magnetic) nonlinear « effect (see, e.g., Kleeorin et al. 2000,
Rogachevskii and Kleeorin 2000, and references therein), #, is the diagonal tensor
with the components n(z ¥(B) of the nonlinear turbulent magnetic diffusion of toroidal
field, n'*¥(B) are the nonlinear turbulent magnetic diffusion coefficients of the poloidal
magnetic field, V4(B) and V(B) are the nonlinear drift velocities (see below). The axis z
of the local system of coordinate is directed opposite to the gravity acceleration g
and the axis x is in meridional plane and directed to the equator, so that the spherical
coordinates (r, 0, ¢) translate to the local system of coordinate (z, x, y).

Here we adopt the dimensionless form of the mean dynamo equations; in particular,
length is measured in units of L, time is measured in units of the turbulent magnetic
diffusion time L?/n, and B is measured in units of the equipartition energy
Beq = \/Itpo tg, a is measured in units of a, (the maximum value of the hydrodynamic



Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection 249

part of the « effect), the nonlinear turbulent magnetic diffusion coefficients are
measured in units of 1, = lyup/3, the nonlinear drift velocities V4 p(B) are measured
in the units of n,/L, the differential rotation §Q is measured in units of §€2, and the
dimensionless parameters AW AD) A, and AP are measured in the units of L7
We define R, = La,/n,, R, =r(d(RQ,)/dr)L?/n,, and the dynamo number
D = R,R,.

The derivation of equation for the nonlinear electromotive force allows us to
determine the nonlinear turbulent magnetic diffusion coefficients and the nonlinear
drift velocities of the mean magnetic field, which are given by

12, (B) = 1),(B) + .1/ (B).
15, (B) = 1), (B) + ./} (B). ™

A, B

Vi 5(B) = V) 5(B) + a, V' 5(B).

Here the superscript (v) corresponds to the contributions from the purely hydrodynamic
turbulence and the superscript (F') corresponds to the contributions from the turbulent
heat flux. These contributions are given by equations (A35)—(A47) in appendix A.
The parameter a, which is determined by the budget equation for the total energy,
is given by

ot — 1 4 VO + 0, (VB /(o)
: gF. ’

®)

where U is the mean velocity and v, is the turbulent viscosity.

The asymptotic formulae for the nonlinear turbulent magnetic diffusion coefficients
and the nonlinear drift velocities for the weak mean magnetic fields, B <« B./4,
are given by

190(B) = n(B) = 1 +as,
n*(B) =1+0.1a,, (B =1,

. . 1 9
VOB) = VY (B) = — 3 [Aff‘) —eAD — e, + % Ap} ©)

X X 1 D
VPB) =V (B) = —5[AY —eal’),
where we neglect the terms ~O(f%). Here B= \/gB/Beq and the parameter

e= ")/ ® When B> B,/4 the nonlinear turbulent magnetic diffusion
coefficients and the nonlinear drift velocities are given by

OBy =% W(g) = 2%
nA(B)—ﬁ, n (B)_s,fs’
n(")(B) _ M_Fﬁ,
B 2(13i €) ! a (10)
n(B) = 35 Ve®= —E*Ape,
1+ X
V(B) = —YfA(B) — %Ape,

where we neglect the terms ~O(872).
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The nonlinear turbulent magnetic diffusion coefficients 1 of the poloidal and
toroidal components of the mean magnetic field in the vertical (along the z-axis)
and horizontal (along the x-axis) directions are shown in figure 1 for the turbulent
convection with a, = 0.8. The magnetic fluctuations due to the small-scale dynamo
(described by the parameter €) increase the turbulent magnetic diffusion of the toroidal
mean magnetic field (see figure 1b), and they do not affect the turbulent magnetic
diffusion of the poloidal field. Note also that the nonlinear turbulent magnetic diffusion
in a turbulent convection is anisotropic even for a weak mean magnetic field.
In particular, it is enhanced in the vertical (radial) direction.

The vertical nonlinear drift velocities of poloidal and toroidal components of the
mean magnetic field in the turbulent convection (a, = 0.8) and in the nonconvective
turbulence (a, = 0) are shown in figure 2. The turbulent convection enhances the
nonlinear drift velocities of the mean magnetic field in comparison with the case of a
purely hydrodynamic turbulence (see figure 2). In the next section we discuss the
nonlinear drift velocities of the mean magnetic field in the solar convective zone
which cause the small-scale magnetic buoyancy and magnetic pumping effects.

(a) "

1.5

0.5

(b) "8

0 1 2 3 B/Bg,
Figure 1. Nonlinear turbulent magnetic diffusion coefficients (a) n, and (b) n, in the vertical (solid) and
horizontal (dashed) directions in a turbulent convection with @, = 0.8. The thin curves in (b) correspond to
€=0 and thick curves to e=1.
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2
(a) 4

0 0.5 1 15 2 B/Beq

0 0.5 1 1.5 2 B/Bgg

Figure 2. Vertical nonlinear drift velocities (a) V(j) and (b) 12 in a turbulent convection with a, =0.8
(solid) and in a nonconvective turbulence, a, = 0 (dashed) for AY = AP = AP = A, = A® = 1. The thin
curves correspond to e =0 and thick curves to e=1.

4. Discussion

Let us discuss the small-scale magnetic buoyancy and magnetic pumping effects.
In figure 3 the vertical nonlinear drift velocities of the toroidal and poloidal magnetic
fields are plotted for different depths % of the solar convective zone (measured from
the solar surface): h= 1.7 x 10’ cm (figure 3a); 7 =3.7 x 107cm (figure 3b), and
h=1.9x10""cm (figure 3c). In order to estimate the governing parameters we use
the models of the solar convective zone (see, e.g., Spruit 1974, Baker and Temesvary
1966). More modern treatments make little difference to these estimates.

In particular, in the upper part of the solar convective zone, say at the depth
he ~ 1.7 x 10" cm, the parameters are as follows: the characteristic turbulent velocity
uy ~ 2.2 x 10°cms™'; the maximum scale of turbulent motions Iy ~ 3.3 x 107 cm;
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7
ol 1.7 x 10" cm

N _—

0 1 B/Beq

3.7x 107 cm

0 1 B/Beq

1.9x10"%cm

0 1 B/Beg

Figure 3. Vertical nonlinear drift velocities (V() = V( ) = P )) in a turbulent convection with a, = 0.8
for A“” AP =0, and for dlfferent depths / of the convective zone (from the solar surface):
(a) h=17x 107 cm; (b) h=3.7 x 107 cm; () h=19 x 10" ¢cm. The thin curves correspond to e=0 and
thick curves to e=1.

the fluid density p ~ 4.6 x 1077 gecm™>; the turbulent magnetic diffusion n, ~ 2.4 x

10'2cm?s™'; the density stratification scale A pl 108 cm and the characteristic scale
of the 1nh0m0genelty of the turbulent magnetic diffusion A, Y=V, n,/n,17" ~ 107 cm.

At the depth h, ~3.7x107cm, the parameters are up~ 1.5 x 105cms™
Iy ~4.5x107cm; p~83x107gem™; 7, ~2.3 x 102 cm?s™"; Ayl ~4x107cm
and A;'~2.2x 10%cm.

At the bottom of the solar convective zone, say at the depth /4, ~ 1.9 x 10'° cm
the parameters are ug~2x 103cms™; /p~8.1x10°cm; p~2.1x 10" gem™
N, ~52x10%em? s AT~ 6.5x 10°cm and A, ~ 8 x 10‘00m.

Figure 3 demonstrates that only near the solar surface the radial drift velocity for a
weak mean magnetic field is directed upward to the surface of the Sun. This causes the
small-scale magnetic buoyancy effect. However, in the main part of the solar convective
zone the radial nonlinear drift velocities of the toroidal and poloidal mean magnetic
fields are directed downward. This results in the small-scale magnetic pumping effect.
These phenomena are determined by the nonlinear drift velocities in the nonlinear
electromotive force, and they are different from the large-scale magnetic buoyancy
and magnetic pumping effects. The large-scale phenomena are caused by the effect
of the mean magnetic field on the large-scale density stratified fluid flow. These
large-scale phenomena are stronger than the small-scale magnetic buoyancy and

>



Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection 253

(a) »
Vg

05 1 15 2 BB,

0 0.5 1 15 2 B/Beq

Figure 4. (a) Vertical nonlinear drift velocity V(g) of toroidal magnetic field in the overshoot layer
with a, = 0.8 for A" = A =20, A, = AP =1, AD =AW — A,. The thick curve corresponds to e=1,
the thin solid curve corresponds to € =0.9 and thin dashed curve corresponds to €=0.5. (b) Horizontal
nonlinear effective drift velocities V(/f)B of toroidal (solid) and poloidal (dashed) magnetic fields in the
turbulent convection with a, = 0.8 for A" = A? = A = A®) = 1. The thin curves correspond to =0
and thick curves to e=1.

magnetic pumping effects when the mean magnetic field is larger than the equipartition
field. In particular, the ratio of the velocities which correspond to the large-scale and
small-scale effects, is of the order of (B/B(,q)z.

In figure 4 the vertical (figure 4a) and horizontal (figure 4b) nonlinear drift velocities
of the toroidal mean magnetic field are plotted for the overshoot layer located at the
bottom of the solar convective zone. In this layer the turbulence and the turbulent
heat flux are strongly inhomogeneous. The drift velocities in figures 2—4 are measured
in the units of 5, A,. Here we assume that AY = A® — A,, which implies that
Agb) = Vi(po ()Y /(po (W?)©®). Figure 4(a) demonstrates that the vertical nonlinear
drift velocity of the toroidal mean magnetic field depends strongly on the level of the
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magnetic fluctuations caused by the small-scale dynamo (described by the parameter €).
If there is a small deviation from e=1 (the equipartition between the kinetic and
magnetic turbulent energies) there is only the magnetic pumping effect in the overshoot
layer. On the other hand, the horizontal nonlinear drift velocity of the toroidal mean
magnetic field in the overshoot layer is negative, i.c., it is directed to the solar polar
regions (see figure 4b).

The magnetic pumping in three-dimensional compressible rotating magneto-
convection has been studied by Ossendrijver et al. (2002) in direct numerical simulations
(see also review by Ossendrijver 2003). The resulting pumping effects are isolated by
calculating the effective drift velocities in turbulent convection. The pumping effects
act differently on different components of the mean magnetic field (Ossendrijver
et al. 2002). This result is in good agreement with our results [see figure 2 and
equations (5), (6), (10), (A.37), (A.38)]. The pumping effect in the vertical direction is
found to be equivalent to a predominating downward advection with a maximum
drift velocity of the order of 10% of the turbulent velocity (Ossendrijver et al. 2002).
This is in agreement with our theoretical findings (see, e.g., figures 2, 3 and 4a).
Note that the effective drift velocity due to the inhomogeneity of the fluid density
(see Kichatinov and Riidiger 1992) also causes a predominating downward drift of
the mean magnetic field.

The small-scale magnetic pumping and buoyancy effects were investigated in the
present study for large hydrodynamic and magnetic Reynolds numbers using the
spectral 7 approximation (the third-order closure procedure). Previous analytical
studies of the small-scale magnetic pumping and buoyancy effects (see Kichatinov
1991, Kichatinov and Riidiger 1992, Kichatinov and Pipin 1993) were performed
using the second-order correlation approximation (SOCA). This approximation is
valid for small hydrodynamic Reynolds numbers. Indeed, even in a highly conductivity
limit (large magnetic Reynolds numbers) SOCA is valid only for small Strouhal
numbers, while for large hydrodynamic Reynolds numbers (fully developed turbulence)
the Strouhal number is 1. In the present study we take into account the inhomogeneity
of the fluid density assuming that (owu/}) is weakly inhomogeneous (see equation (A32)).
This is in agreement with the models of the solar convective zone (see, e.g., Baker and
Temesvary 1966, Spruit 1974). On the other hand, in studies by Kichatinov (1991) and
Kichatinov and Riidiger (1992) it was assumed that (pzuguj’.) is weakly inhomogeneous.
Since the density in the solar convective zone varies over six orders of magnitude, the
validity of the latter suggestion is questionable.

5. Conclusions

In summary, we study the nonlinear drift of the mean magnetic field in a turbulent
convection. Three kinds of inhomogeneities determine the nonlinear drift velocities of
the mean magnetic field: (i) the inhomogeneous turbulence; (ii) the nonuniform fluid
density and (iii) the nonuniform turbulent heat flux. The inhomogeneous turbulence
causes the well-known turbulent diamagnetic and paramagnetic velocities. The
nonlinear drift velocities of the mean magnetic field result in the small-scale magnetic
buoyancy and magnetic pumping effects in the turbulent convection. In the main
part of the solar convective zone, the small-scale magnetic pumping effect dominates
(i.e., the radial nonlinear drift velocity of the mean magnetic field is directed downward
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to the bottom of the convective zone), while near the solar surface the small-scale
magnetic buoyancy effect is important when the mean magnetic field is weak. These
small-scale phenomena can be stronger than the large-scale magnetic pumping and
magnetic buoyancy which are caused by the influence of the mean magnetic field on
the stratified fluid flow.
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Appendix A: the nonlinear electromotive force in turbulent convection

Let us derive equations for the second-order moments in a turbulent convection.
For this purpose we rewrite equations (1)—(3) in a Fourier space. In particular,

dvi(k, ¢ ~ A
vél ) = E; SO(b; H) + g e, Pin(k) s(k, £) 4+ A Dippn(k) S (b; H)
iA
+ 52 &hom Pin(e) sk, 1)+ v}, AD)
# = % Ripn SO (v H) + i Ky 89(vi H) — SO (v; H) + bY, (A.2)

where we multiply equation (1) written in k-space by Pj(k) = 8;; — kj; in order to exclude
the pressure term from the equation of motion, and

8@ ) = [ ac- QU

SO(a; A) = 2Pu(k) — 81) S (a; A) + ik, S (a: A),

89 =i [k - Q)0,4(Q)Q.

Ey = 85— (1 Ap/K*)(kie; — 8k - e)),
Dy = epPip(k)amn + epkn7p8in - (%)enaim»

Ripn = enin — €ybim,

P,](k) = 8!7 — kij> Pij(e) = 5[]‘ — €j, 8ij is the Kronecker tensor, klj = kikj/kz and ejj = e;e;.
Here we neglect terms ~O(A%). We use the mean-field approach, and the two-point
correlation function of the velocity fluctuations is given by

(i) = [ itk R exp ik - )k,
where hereafter we omit argument # in the correlation functions, fjj(k, R) = i(vi; v;), and
L(a;c) = /(a(t, k +K/2)c(t, =k + K/2)) exp 1K - R)dK, (A.3)

(see Roberts and Soward 1975). Here R = (x +y)/2, r = x —y. Note that R and K
correspond to the large scales, and r and k to the small ones.
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Using equations (3), (A.1)—(A.2) we derive equations for the following correlation
functions:

fiK) = L(visv)),  hy(k) = L(bi; b)),  g5i(K) = L(bs; ),

Fk) = Lsv). Gik) = E(sib). ©(K) = L(s:). o
These equations are given by

9, f(k) —i(k - H)®y + 1 + N7y, (A-5)
8h;§k) e Wy + 1+ Kby (A.6)
%g;gk) — i (k - H)[f5(K) — hy(K)] + ge, Pu(k)G (k) + I + Ngy, (A7)
) i 609 + g0, PuRIO®) + 1 + N E, (A-8)
PO k- WE®) + 17 + NG A9
a@;(tk) QZ Fk) + Mo, (A.10)

where hereafter we also omit argument R in the correlation functions. Here
®;i(k) = gj(k) — gji(—k), and
= IL®) + I[(—K), I = Ii(k) + (k)
(k) N (k) + MiFy(K), T}(k) = Nb,gj(—K),
= Nb f(K) + N hin(K) + M;G(—K),
= N,,Gu(k) — M;©O(K), I°= N F,(K),
Nf Ap(Diny + Kimej — Sijknmen) Hp + QPin(k) — 8) Ho

1 d
+28,](H V—H,,k 8k>

1 a
NZ = E |:ApRiijm + SU(H V- Hn,qkn %>:| - Hl'\]',
M [em(Pmn(k)k + Pm(k)km)vn - Ame(e)kn],

- 2k2

V=20/0R and H;;= ViH;, Nfyj= ge,[Pi(k)Fi(k) + Pp(k)F(=K)] + Nfj, and Nfj,
Nhy, Ngij, NF;, NG; and N© are the third-order moment terms appearing due
to the nonlinear terms. The terms ~ F; in the tensor Nfj; can be considered as a stirring
force for the turbulent convection. Note that a stirring force in the Navier—Stokes
turbulence is an external parameter.
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For the derivation of equations (A.5)—(A.10) we use an identity for the function
Zi/‘(k, R)

Zik,R) =1 /(kp + K,/2)H,(Q) exp(iK - R)(vi(k + K/2 — Q)v;(—k + K/2))dK dQ.

The identity reads

k)

2506 R) = [i - H) 4 J(H - VI, R) = 3k, P2 B,

(A.11)

(see Rogachevskii and Kleeorin 2004), and similarly for other second-order moments.
We take into account that in equation (A7) the terms with symmetric tensors with
respect to the indexes i’ and ‘j° do not contribute to the nonlinear electromotive
force. In equations (A.5)—(A.10) we neglect the second-order and high-order spatial
derivatives with respect to the large-scale variable R.

Let us solve equations (A.5)—(A.10) neglecting the sources l{;, Ig-, I,g,, ... with the large-
scale spatial derivatives. Then we take into account the terms with the large-scale spatial
derivatives by perturbations. Thus, subtracting equations (A.5)—(A.10) written for
background turbulent convection (i.e., for B =0) from those for B # 0, using the
spectral t approximation [which is determined by equation (4)], neglecting the terms
with the large-scale spatial derivatives, assuming that nk> <« r=' and vk*> <« ! for
the inertial range of turbulent fluid flow, and assuming that the characteristic time of
variation of the mean magnetic field B is substantially larger than the correlation
time 7(k) for all turbulence scales, we arrive at the following steady-state solution of
the obtained equations:

Fi&) ~ 7 (k) + i 7k - H)dj(k), (A.12)
hi(k) ~ hi (k) — i t(k - H)d;(K), (A.13)
&) ~ itk » H)[f(k) — hy(K)] — 7ge, Pu(k)Gi(K), (A.14)
Fik) ~ FO(K) — i t(k - H)Gi(k) + tge, Pu()[O(K) — 0O (K)], (A.15)
GiK) ~ —it(k - H)Fi(K), (A.16)
Ok) ~ 0O(K) + 0(22), (A.17)
where ﬁ-j, f;,-j, e, ® are the solutions without the sources I‘i]f-', Ig, e, IlG and

<i>,;,—(k) = g;i(k) — gji(—k). The quantities with the superscript (0) in equations (A.12)-
(A.17) correspond to the background turbulent convection. Here we take into account
that for the background turbulent convection gﬁ?)(k) =0 and GEO)(k) =0.

Now we split all second-order correlation functions into symmetric and antis-

ymmetric parts with respect to the wave vector k, i.e., f;'j:'f;s) +f,»<j”), where
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f< = [fii(k) + f;}(—=k)]/2 and f;“) [fi(k) — fii(=k)]/2. Thus, equations (A.12)-(A.17)
yleld

UCEE [(1 + 900 + U ) = 2yge P EV (0| (A8)

00 ~ 1 [0+ (1 00 + e, PaDE R (A19)
870 ~ S 000 = 0 + v P )| (A.20)
PO ~ 1F ji/(,l;)z (A21)
GK) ~ —it(k - H)EY(K), (A.22)

where (k) = 2(zk - H) and we neglect the terms NO(Qz) in equations (A.17). The
correlation functions f” 9 ”“),gAl(f) F and G vanish if we neglect the large-scale
spatial derivatives, i.e., they are proportional to the first-order spatial derivatives.
Now we take into account the large-scale spatial derivatives in equations (A.5)—
(A.10) by perturbations. Their effects determine the following steady-state equations

for the second moments:

F00) = £ (k) + i t(k - H)®Y (k) + 77, (A.23)

hO k) = hPOK) — itk - H)Y (k) + ol (A.24)
&0 = i 0 (770 - A ®)) + ge, P0G + 1], (A25)
G0 = —e[i G- WEY k) — 17 (A.26)

FOm) = F*0) - o[- 1GOa0 - 1], (A.27)

where the second moments f s ,,g,,, ... determine the effect of the large-scale deriva-

tives and CD(‘)(k) ~(‘)(k) N(‘)( k). The correlation functions of the background tur-
bulent convection f;oa)(k), h;o“) (k) and Fl(oa)(k) are determined by the inhomogeneities of
turbulence, the fluid density and the turbulent heat flux [see equations (A.32)—(A.34)

below]. Equations (A.26) and (A.27) yield

(a) (0a)
(k )_W[F —i(k - H)el® + le] (A.28)

Gk =~

- W 5 [1(k CHY(FO) 4 o1f) — IG] (A.29)
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Our goal is to calculate the mean electromotive force E&i(r=0)=
(1/2/P0) €mm [ %), (K)dk. Solution of system of equations (A.23)~(A.25) allow us to

get the expression for @221(k) which yields the mean electromotive force:

TEinm a a h
Ei = /1 + 21//[ (k H)[ n?n) n?n) + T( mn I/mn)] mn

wgep LK) . o (0a) Fy _ }
M [i(k - H)(F" + ¢If) — I7] |dk, (A.30)

where we use equations (A.28) and (A.29). Equation (A.30) can be rewritten in the
form:

TEinm a a 1 A s
g / { (k H) {fr(ri)n) n?n) + 2T|:<Nl§1p + NL,,,)gpn (Fm Fn? ))] } + mpfl)”

_ Tgemep(k) S (0a) ¥ f h
N hpn+1‘L'M,,(k H)Fm+7l+1/f/2 ik H)Fn + 2qu N F, dk.

(A.31)

For the integration in k-space in equation (A.31) we specify a model for the background
turbulent convection (i.e., the turbulence with zero mean magnetic field, B = 0), which
is determined by

0) _ ) AWM

D) = £, W(k)[ ,,(k)+2k2 (kA N )} (A.32)

hO k) = b, W(k)[ () +@ (k AP~ k,A?’)], (A.33)
Fi(o)(k) = 3F, W(k)¢; [ i(K) — 2k2 (Pim(K)k; + Pim(k)ki)j\ﬁ;?}i (A.34)

0 O(k) =20, W(k), g 9(k) =0 and G\”(k) = 0, where P;(k) = §; — k,,, ki = kik;/k>,
W(k) = E(k)/8mk?, 'C(k) = 21y7(k), E(k) = —dz(k)/dk, T(k) = (k/ko)'™, 1 <q <3 is
the exponent of the kinetic energy s ectrum (e.g., ¢ = 5/3 for Kolmogorov spectrum),
ko =1/ly and 79 = ly/up. Here A}’ ) — —2A,e; and A(F) A(F) 2A,e;. These
imply that

AW Vi(p3 (u?)®) A _ Vi3 (0| 5)©)
’ p5 (u2) ’ o5 (u'| s)©
where

PN AN /1L N B /1 L K
: 2@ pH® (lw]s")©

and  [FOK)dk = Foer, [/ ®dk = (£/3)85, [ ®)dk = (h,/3)8; and
[0O(k)dk = ©.,.
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After the integration in k space in equation (A.31) we obtain the nonlinear electro-
motive force. This yields the nonlinear turbulent magnetic diffusion coefficients and
the nonlinear drift velocities of the mean magnetic field in the axisymmetric case,
which are given by equation (7), where the contributions from the purely hydrodynamic
turbulence are given by

1(B) = 4"@4B) + 4,(4B). (A-33)

n"(B) = A" (4B) +3(1 — €) |:A(1)(4B) —A (1632):| (A.36)

, 1 AP
VP(B) = — 1V BIAY — eA®) 4 Vo) [(2 3¢)45"(4B)

-9 /12(1632)}, (A.37)
2

v 1 y u
V%)(B) _ 5779)(3)(/\(“) _ 6A(b)) + Ve ,p)’ (A.38)

3(1 €) -

V) = % Age |:eA(ll)(4B) —(5—6€)4(4B) + A (1632)] (A.39)

and the contributions caused by the turbulent heat flux are

WE7(B) = 2201 (4 — 341 +3C1) + 4l A) — C) 4 35 (4, + €] (A.40)
E9(B) = S [201 A + o)+ 40a{C1) + 30s(y — 2C)) (A1)
7" (B) = é[( 6w +4W; +3W3) {4 + 4, — C — C3} +2W{C3} + 6W3{C1})], (A42)
"> (B) =0, (A.43)
VP(B) = VP (B) = VO 4 vE), (A.44)

VO(B) = A(”[\IJ4{A1 + Ay — C = C3) — AP 4B) — AP(4B)
+ @B + B, (A45)

V(B = —Am [%{Al + Ay —5C, —5C3) — AV(4B) — AT (4B)
+5CP4B) +5¢0@B)], (A.46)
Ve = %Ape[\lﬁ{ﬂAl + 1745+ 17C, — 7C3} — Wr{6A4, + 64, + 10C,;

— 203} — W3{94; + 94, + 15C, — 3C3} — 447 (4B) — 4Ag2>(43)], (A.47)
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where A® = (VB?)/B?, the parameter € = (b*)©/(v?)?), the parameter a, is given by
equation (8), and

W) = JEXOEB) - X00B),

W, {X} = é [16X(2)(4B) — 16XY(2B) + 29715((432)],
(A.48)
Ws{X} = — é [4)@(43) —49XY(2B) + % )'((432)],

WX} =3xY4B) — %X’(MBZ).

Note that Wa{d;} = A4\ +(1/2)45". The functions A?(B), C?(B) for n=1;2 and
the functions A,,(8°), C,(B?) are given in Rogachevskii and Kleeorin (2004, in
appendices B, C and D). Asymptotic formulae for the nonlinear turbulent magnetic
diffusion coefficients and the nonlinear drift velocities of the mean magnetic field in
the axisymmetric case are given by equations (9) and (10).



