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Abstract. We show, by direct numerical simulations, that heavy inertial particles (characterized by Stokes
number St) in inhomogeneously forced statistically stationary isothermal turbulent flows cluster at the
minima of mean-square turbulent velocity. Two turbulent transport processes, turbophoresis and turbu-
lent diffusion together determine the spatial distribution of the particles. If the turbulent diffusivity is
assumed to scale with turbulent root-mean-square velocity, as is the case for homogeneous turbulence,
the turbophoretic coefficient can be calculated. Indeed, for the above assumption, the non-dimensional
product of the turbophoretic coefficient and the rms velocity is shown to increase with St for small St,
reach a maxima for St ≈ 10 and decrease as ∼ St−0.33 for large St.

Introduction

The subject of this paper is turbulent flows of Newtonian fluids with small particles. We limit ourselves to spherical
particles whose radii are significantly smaller than the viscous scale of the fluid. We further assume that the material
density of each particle is significantly larger than that of the fluid and the number density of the particles is quite
low. In this parameter regime the equations of motion of each individual particle are well described by

Ẋ = V ,

V̇ =
1

τ
{u[X(t), t] − V } , (1)

where X and V are respectively the position and velocity of the particle, τ is the characteristic relaxation time of
the particle and u is the flow velocity, whose magnitude is denoted by u. As the number density of the particles is
assumed to be small, the effects of the particles on the flow and particle-particle interactions are both ignored. The
flow velocity u is obtained by solving the Navier-Stokes equation with proper boundary conditions. Particles that
satisfy (1) are called Heavy Inertial Particles (HIP). This approximation is often used to model various natural and
industrial flows. Two important examples are: (a) droplets in warm clouds (see, e.g., [1, 2] for a review) and (b) dust
grains in astrophysical accretion disks (see, e.g., [3], for a review).

The study of heavy inertial particles in homogeneous and isotropic turbulent (HIT) flows is a topic of numerous
research publications. In addition to the fluid Reynolds number, such a problem is described by a second dimensionless
number, the Stokes number, defined by St ≡ τ/τf , where τf is a characteristic time scale of the flow. Recent analytical,
numerical, and experimental works have shown that HIPs self-organize in fractal clusters in HIT, (see, e.g., [4–8] and
references therein) and at small distances the probability distribution function (PDF) of their relative velocities shows
power-law behavior [9, 10].

The focus of this paper is the large-scale clustering of heavy inertial particles in inhomogeneous, but unstratified,
turbulence. Numerical and experimental studies in wall-bounded flows, e.g., channel and pipe flows, have shown
that heavy inertial particles distribute themselves preferentially near the wall —a phenomenon that has been called
turbophoresis [11] by analogy with thermophoresis [12–14]. Thermophoresis —motion of Brownian particles governed
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by gradient in temperature [15]— is well understood within the framework of local thermodynamic equilibrium in
statistical mechanics [12]. Recent works [13, 14] have demonstrated that the flux of molecules in thermophoresis (J )
can be well described by

〈J 〉th = −D∇〈N〉th −DT〈N〉th∇T (2)

where D is the diffusion coefficient, N the concentration of the molecules, DT the thermophoretic coefficient, and the
symbol 〈·〉th denotes averaging over a state in local thermal equilibrium at temperature T .

To understand turbophoresis, let us consider a statistically stationary inhomogeneous turbulent flow. For simplicity,
we consider the turbulence to be inhomogeneous in only one coordinate direction, which we denote by z. This is often
the case in most practical applications, e.g., in turbulent channel or pipe flows. We start with the mean flux (J) of
inertial particles in space,

J ≡ NV , (3)

where the symbol (•) denotes Reynolds averaging, and N denotes the number density of the particles. We use the
standard Reynolds decomposition,

N = N + n, V = V + v, (4)

where each quantity of interest is decomposed into mean and fluctuating parts. After Reynolds averaging we obtain

J = N V + nv. (5)

The second term on the right-hand side (RHS) of this equation is usually modelled through closure by nv = −κ∇N ,
where κ is the turbulent diffusivity. To calculate the first term in the RHS of (5) we use (1) to write (following ref. [16])

V = u − τ V̇

≈ u − τ

[

∂u

∂t
+ (u · ∇)u

]

+ O(τ2), (6)

which is an approximation valid for small τ . On Reynolds averaging, we obtain

V ≈ u − τ
∂u

∂t
− τ(u · ∇)u. (7)

In general, we are interested in the component of the flux J along the direction of inhomogeneity, which in wall
bounded flows, e.g., pipe or channel flows, is the wall-normal direction. Projecting (7) along the wall-normal direction
we obtain

Vz ≈ −τ
d(u2

z/2)

dz
, (8)

because uz = 0. This demonstrates that although the mean flow velocity in the wall normal direction is zero, the mean
particle velocity is not. Putting together, the flux of inertial particles along the direction of inhomogeneity is given by

Jz ≈ −τN
d(u2

z/2)

dz
− κ

dN

dz
. (9)

The second term on the RHS is the usual Fickian (turbulent) diffusion, the first one is called the turbophoretic term.
There are several ways to obtain (9), here we have followed refs. [17–19]. Clearly, (9) is an approximation that holds
for small St (small τ). How can this expression be generalized for arbitrary values of the Stokes number?

In this paper we show by direct numerical simulations (DNS) that the large-scale clustering of heavy inertial
particles in inhomogeneous turbulence can be described by a simple generalization of (9):

J = −κtN∇K − κ∇N. (10)

Here κt is the turbophoretic coefficient, κ is turbulent diffusivity, and K ≡ (u2/2). The expression of molecular flux in
thermophoresis, (2), can be considered as an inspiration for (10). So far, neither numerical nor experimental studies
have measured κt and κ simultaneously and it is not clear how this can be done. Here, we perform careful numerical
experiments to measure their ratio:

Tu ≡ κt

κ
, (11)

which we call the turbophoretic ratio. We find that our data is well described by Tu = σt/(2
√
K). We non-

dimensionalize σt by multiplying it with urms; the non-dimensionalized σt is a non-monotonic function of the Stokes
number —it increases linearly with St for small St, reaches a maximum value around St ≈ 10 and decreases with St
for large St1. This is the first numerical measurement of the turbophoretic ratio and its dependence on the Stokes
number.

1 Note that we define the Stokes number using the characteristic time scale of the flow, τf , based on the integral (forcing)
scale of turbulence. Very often the Stokes number is defined using the flow time scale based on the Kolmogorov scale.
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Table 1. Parameters for our DNS runs: the runs are grouped by the function F (z) which determines the spatial variation
of the mean-square turbulent velocity K, in particular; A) F (z) = exp[−(z/H)2] with H = 1, B) F (z) = sin2(z), and C)
F (z) = sin2(2z). The numbers of Eulerian grid points are N3, the number of HIPs is given by Np.

Run N Np Re Lzkf St

A1 256 5 × 105 48 5 1.1–71.6

A2 256 5 × 105 13 15 0.4–162

B1 256 106 20 15 0.6–102.0

B2 256 106 20 15 5.0–1028.0

B3 512 106 56 15 0.17–2896.0

C1 512 106 26 30 0.32–333.0

Model

So far, most numerical [20–23] and experimental [24] observations of large-scale clustering and deposition [25, 26] of
HIP in inhomogeneous flows are in wall-bounded flows (see, e.g., [19] for a review). In such flows it has not been
possible to disentangle the individual effects of inhomogeneities of mean-square turbulent velocity, large-scale shear,
and physical boundaries. For a deeper understanding of turbophoresis, we choose to do DNS of the Navier-Stokes
equation

Dtρ + ρ∂kuk = 0,

ρDtuj = −∂jp + µ∂kSkj + fjF (z), (12)

under isothermal conditions, with an inhomogeneous external force. Here ∂k denotes partial derivatives with respect
to coordinate k, Dt ≡ ∂t + uk∂k is the advective derivative, u (whose k-th component is uk), p, and ρ are respectively
the velocity, pressure, and density of the flow, µ is the dynamic viscosity, and Skj ≡ ∂kuj +∂juk − δjk(2/3)∂kuk is the
viscous stress. The simulations are performed in a three-dimensional periodic box with sides Lx = Ly = Lz = 2π. In
addition we use the ideal gas equation of state with a constant speed of sound cs = 1.

The flow attains a statistically stationary state where the average energy dissipation by viscous forces is balanced
by the average energy injection by the external force f which is random, Gaussian, white-in-time, with zero-mean,
concentrated on a shell of wavenumber with radius kf in Fourier space. The amplitude of the external force is chosen
such that the Mach number is always less than 0.1, i.e., the flow is weakly compressible. Crucially, the flow is made
inhomogeneous (but statistically isotropic) by the function F (z) which is a function of one coordinate direction, z2. We
choose the function F (z) to be a slowly varying function of z, i.e., the characteristic wavenumber of F (z), qF ≪ kf . In
particular, we examine three cases: A) F (z) = exp[−(z/H)2] with H = 1, B) F (z) = sin2(z), and C) F (z) = sin2(2z).
In the context of the present problem, length scales larger than 1/kf are the large scales.

We use the pencil-code [27], which uses a sixth-order finite-difference scheme for space derivatives and a third-order
Williamson-Runge-Kutta [28] scheme for time derivatives. The same setup, with a homogeneous external force, has
been used in studies of scaling and intermittency in fluid and magnetohydrodynamic turbulence [29–31]. We introduce
the particles into the DNS after the flow has reached a statistically stationary state. Then we simultaneously solve
the equations of the flow, (12), and the HIPs (1). To solve for the HIPs in the flow we have to interpolate the flow
velocity to typically off-grid positions of the HIPs. We use a tri-linear method for interpolation.

We define the Reynolds number by Re ≡ urms/(νkf), where urms is the root-mean-square velocity of the flow
averaged over the whole domain and the kinematic viscosity ν = µ/ρ. As we are interested in large-scale clustering,
we use the large eddy turnover time, τf ≡ 1/(urmskf), which is the characteristic time scale of the flow at scale 1/kf ,
to define the Stokes number. In our simulations we use three different values of Lxkf/2π = 5, 15, and 30. Here we
implement Reynolds averaging by averaging over the x and y coordinate directions. On top of the Reynolds averaging,
we also perform time averaging over several thousand large eddy turnover times. The various relevant parameters of
our simulations are shown in table 1.

2 The force remains statistically divergenceless as f has zero-mean.
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Fig. 1. The number density of the particles averaged over the x and y coordinates, n(z), as a function of z/Lz (Lz = 2π) for
F (z) = sin2(z) and St ≈ 0.06, 0.25, 1.0, and 4.0 (top), F (z) = exp(−(z/H)2), and St ≈ 0.04, 0.16, 0.64, and 2.6 (middle),
F (z) = sin2(2z) and St ≈ 0.17, 0.7, 2.8, and 11 (bottom). The dashed lines show the mean-square turbulent velocity, K(z),
multiplied by a factor of four to fit it in the same scale.

Results

Once our simulations reach a statistically stationary state we plot, in fig. 1, the mean-square turbulent velocity
K(z) ≡ (1/2)u2 and the mean number density of the particles, N , for the three different F (z) and for different values
of the Stokes number. Here the Eulerian number density of the particles N(x) ≡ δ3(x − X), where δ3(·) is the
three-dimensional Dirac delta function. Clearly, the particles cluster away from the maxima of K, i.e., turbophoresis
is observed.

We now want to quantify turbophoresis using (10). At a stationary state, the mean flux, J , must be zero3.
Furthermore, as the turbulence is inhomogeneous in only one direction, z, (10) reduces to the following one-dimensional
problem:

dN

dz
+

κt

κ
N

dK
dz

= 0. (13)

3 Here as in elsewhere in the paper we ignore the molecular diffusivity of the particles, i.e., the ratio of the kinematic viscosity
to the diffusion coefficient (the Schmidt number) is very large. This is a typical condition for HIP
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Fig. 2. Top: plot of log(n) as a function of the mean-square turbulent velocity K for F (z) = sin2(z) and St ≈ 0.06, 0.25, 1.0,
and 4.0 which corresponds to the data shown in the top panel of fig. 1. The data is fitted with a straight line following (14).
Middle: the same data now plotted as a function of

√
K and fitted with (15). Compare this plot with the top panel. Bottom:

the same plot for F (z) = exp(−(z/H)2), and St ≈ 0.04, 0.16, 0.64, and 2.5, which corresponds to the middle panel of fig. 1.

Clearly, it is impossible to measure the turbulent transport coefficients κt and κ individually. Instead, only their ratio,
which we call the turbophoretic ratio, Tu, can be measured. In addition, to integrate (13) and compare with our data
we need to make conjectures about the spatial dependence of Tu. The naive one would be to assume that Tu does not
depend on space; which would imply

N = N0 exp(−TuK). (14)

In the top panel of fig. 2 we show that this conjecture does not fit our data well even in the best of cases. Let us note
now, that although we do not know exactly what κ would be in inhomogeneous turbulence, the turbulent diffusion has
been a well studied problem in homogeneous and isotropic turbulence, in which case K is not a function of space and
one typically obtains κ ∼

√
K. In the present problem K is a slowly varying function of space, hence we conjecture

that κ(z) ∼
√

K(z) is also a slowly varying function of space, i.e., Tu ≡ σt/(2
√
K) with σt a constant in space. With

this substitution, (13) can be integrated to obtain

N = N0 exp
(

−σt

√
K

)

, (15)

which fits our numerical data quite well as we show for two different cases in the middle and the bottom panel of
fig. 2. If κ ∼

√
K were true even in inhomogeneous turbulence we would have obtained σt ∼ κt, i.e., the coefficient σt

is proportional to the turbophoretic coefficient κt.
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Fig. 3. The dependence of the non-dimensional quantity urmsσt on the Stokes number from all of our runs. The symbols ⋄, �,
×, denote the runs A B and C in table 1, respectively. Enclosed within a dashed box are those measurements with large error.

We calculate σt for a range of values of St for three different spatial distributions of the mean-square turbulent
velocity, three different values of Lxkf/2π, two different resolutions (2563 and 5123) and for several values of the
Reynolds number ranging from 12 to 56. The results, non-dimensionalized by calculating σturms, are plotted in fig. 3.
For very small and very large values of St our results are not very precise because the large-scale clustering is weak
for both of these limits. These data points are marked in fig. 3 with a dashed box around them. Nevertheless, for
very small St we find that σt is linearly proportional to St. For moderate values of St we find that σt increases with

St roughly as St2/3. At around St ≈ 10 this trend reverses and σt decreases with St, in other words the clustering

phenomenon becomes weaker. For higher values of St we find that σt decreases approximately as St−1/3.

To summarize, two results lie at the heart of our paper: A) We quantify large-scale clustering in inhomogeneous
turbulent flows through two turbulent transport coefficients, turbulent diffusion and turbophoresis, whose ratio we call
the turbophoretic ratio, Tu. The turbophoretic ratio, Tu is a function of space such that the function σt ≡ (2

√
K)Tu

is a constant. B) We find that the σt (non-dimensionalized by multiplying with urms) is a non-monotonic function of
the Stokes number with maximum clustering appearing at St ≈ 10.

Discussions

Large-scale clustering of inertial particles in inhomogeneous turbulent flows is commonly observed in geophysical
and engineering problems. But in trying to understand such clustering we encounter a difficult problem due to an
inhomogeneous distribution of mean-square turbulent velocity, presence of large-scale shear, anisotropy, gravity and
boundary layers. To make progress, it is essential that we study each effect in isolation. To this end, in this paper,
we have proposed a model in which large-scale clustering is due solely to the inhomogeneous distribution of mean-
square turbulent velocity. We find that the minimum of the number density of the particles appears at the maximum
of the mean-square turbulent velocity. Furthermore, we find that this clustering is determined by two processes:
turbophoresis and turbulent diffusion. We numerically measure the ratio of these two transport coefficients, which we
call the turbophoretic ratio, Tu, which is given by Tu = σt/(2

√
K) with σt as a universal function of St, increasing

with St for small St reaching a peak near St ≈ 10 and then decreasing with St.

Traditionally such problems are studied by first constructing exact, but unclosed, relations between various mo-
ments of the probability distribution functions of flow velocity and density and velocity of the particle phase and then
imposing arbitrary closures to obtain expressions for transport coefficients, see, e.g., refs. [32–34]. In this paper we
have taken a different approach. We have assumed that the large scale transport is determined by two undertermined
turbulent transport coefficients and then numerically calculated the ratio of the transport coefficients as a function of
the Stokes number.

A special mention must be made of ref. [35] where the same clustering phenomenon is studied in turbulent Kol-
mogorov flows. Although the authors do not interpret their results as a balance between turbophoretic and turbulent
diffusive fluxes as we do, they do observe that clustering increases for small St but this trend reverses smoothly at
higher values of St.



Eur. Phys. J. Plus (2018) 133: 35 Page 7 of 8

In the introduction we have provided an approximate analytical theory for turbophoresis which gives a linear
dependence of the turbophoretic coefficient on St for small St. To the best of our knowledge, this result was first
obtained in refs. [36,37], using the Lagrangian History Direct Interaction Approximation, (see also [38] for a review).
Our data does reproduce this trend for very small St although for those values of St the clustering is quite weak and
the errorbars on σt are large.

An alternative way to analytically understand turbophoresis would be to replace the fluid velocity, u, in eq. (1)
by a Gaussian white noise whose strength is the function F (z) of one coordinate, z. Treating eq. (1) as a Langevin
problem it is then possible to write the corresponding Fokker-Planck equation which is an equation for the probability
distribution function p(z, v). The particle number density can be obtained by N(z) =

∫

p(z, v)dv. For a general F (z)
a stationary solution of this Fokker-Planck equation is not known. If the strength of the noise F (z) = c is taken to
be a constant, then it is possible to obtain a flux-free stationary solution of the Fokker-Planck equation to obtain
p(z, v) ∼ exp(−τv2/c2). If F (z) is assumed to be a slowly varying function of space then using the method of multiple
scales it is possible to calculate a flux that has both a diffusive and a turbophoretic part (see the supplemental material
of ref. [39]). But in such a model the turbophoretic ratio is no longer a function of St but a constant. To capture
the non-monotonic dependence of Tu on St, as we observe, it may be necessary to use a colored noise instead of
white-in-time noise. In ref. [40] it has been shown that for F (z) = z2 it is possible to find a non-trivial solution of the
Fokker-Planck equation, which leads to a localization-delocalization transition. In other words no large-scale clustering
should be observed above a critical value of the Stokes number. This is not found in our numerical experiments.

The large-scale clustering observed in turbulent pipe flows [41], which is similar to what has been observed in
turbulent channel flows in ref. [23], can be analyzed in a similar manner to extract the turbophoretic ratio whose
dependence on the Stokes number is similar to what has been observed by us but for the data very close to the wall
and near the center of the pipe. We believe that to understand such departure the effects of the boundary layer and
anisotropy have to be taken into account.

In our simulations we have assumed that the motion of the particles is well described by the HIP approximation, (1).
For small St the validity of this approximation has been critically examined, by comparing DNS and experimental
data for homogeneous and isotropic turbulence, in ref. [43]. To the best of our knowledge no such study exists for
large St and for inhomogeneous turbulence. It may turn out that the large St behavior of σt shown in fig. 3 may not
be easily realisable in experiments. Nevertheless, the non-monotonic behavior of σt as a function of St with a peak at
around St ≈ 10 should be experimentally realisable. Note further that we have assumed that the particles are passive,
which implies that our results apply to experiments where the mass loading parameter is small. Clustering of particles
is also found in simulations where the feedback from the particles to the flow is included, see, e.g., refs. [33, 34]. In
those cases, gravity may also play an important role, i.e., horizontal and vertical pipes may show different clustering
phenomena, see e.g., refs. [44–47]. A description of such clustering through turbophoresis and turbulent diffusion can
also be done, but this is outside the scope of this paper.

In this work, we have considered an isothermal flow which is relevant to most engineering applications. In geo-
physical problems, it is common to have fully developed turbulent flows with an inhomogeneous distribution of mean
temperature. In such cases, the HIPs are found to accumulate in the vicinity of the minima of mean temperature. This
large-scale clustering phenomenon, which can be described by turbulent thermal diffusion, was predicted in an ana-
lytical study [18,48–52] and detected in laboratory experiments [53–55], DNS [56] and atmospheric observations [57].
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