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Some new insight is obtained for the structure of the Bonhoeffer—van der Pol system. The problems
of excitability and threshold are discussed for all three types of the system classified according to the
existing attractors: a focus only, a limit cycle only and a limit cycle together with a focus. These
problems can be treated by the T-repellers and the T-attractors of the system which are mutually
reciprocal under time inversion. The threshold depends on the structure of the T-repediable

part of integral manifolgl This structure is then used to understand the behavior and the properties
of the two different types of isochrones: Winfree isochrofWsisochronesand regular isochrones.
Winfree's description of a W-isochrone is extended to excitable systems. Both W-isochrones and
regular isochrones are calculated for the Bonhoeffer—van der Pol system in its limit cycle and
excitable regimes. The important role of the T-repeller as an asymptotic limit for both types of
isochrones is manifested. @999 American Institute of Physid$§1054-150(09)00304-3

state. If one of these paths is a lot longer than the other the
system is excitable.” However, this description is not exact
enough?®

We elaborate on Winfree’s description of excitability to
gain additional insight for this problem, which is then used to

Excitable systems are prevalent in many branches of sci-
ence. A clear understanding of the meaning of excitability
is therefore of importance. In this paper we provide a

description of excitable systems for a set of nonlinear or-
dinary differential equations of the “relaxation oscilla-

tor” type (e.g., Bonhoeffer-van der Pol system. This de-
scription is based on the definition & a a “transient
attractor” and a “transient repeller” (T-repeller). A
“transient” attractor (T-attractor ) means that it attracts
trajectories which leave it after a finite time. A T-repeller
means that trajectories are repelled from it. The differ-
ence between a boundary between two basins of attrac-
tion (BBA) and a T-repeller is that while the BBA sepa-
rates between two different attractors, the T-repeller
separates between trajectories that eventually flow into
the same attractor. A T-repeller is a necessary condition
for a threshold to exist. An excitable system is taken to be
a system for which both T-attractor and a T-repeller ex-
ist. One of the important tools of studying excitable sys-
tems are isochrones. Here we differentiate between two

types of isochrones which we analyze in the phase space

of an excitable system. We show the relation between iso-
chrones and the T-repeller.

I. INTRODUCTION

address the issue of isochrones in the medium’s phase space.
The problems of excitability and threshold are discussed for
all three types of the system classified according to the ex-
isting attractors: a focus only, a limit cycle only and a limit
cycle together with a focus.

Isochrones are important tools of understanding in many
branches of science. In recent years this notion has been used
in two different meanings and applications even when con-
fined to phase space. In the fifstgula) meaning, an isoch-
rone describes the surface all points of which have the same
physical property simultaneously, for example all points in
the heart having the same action poteffiat the same time
constitute an isochrone in real space. In this sense, the evo-
lution of a specific propertye.g., luminosity of stars starting
from the big bang!% can be viewed as the development of
an isochrone with time.

The second type of isochronésochron$ was invented
by Winfree"! three decades ago and has frequently been used
since to help in understanding “timing relations in oscilla-
tors perturbed off their attracting cycles:’The reason for
this abundant use is that such oscillators’ behavior is charac-

The term “excitable medium” has been used repeatablyferistic of many phenomena in chemistry, biology, electron-
for decades in many fields notably for biological systemsiCS, medicine, etc(e.g., pacing in the heart, neuronal func-
such as axons, the heart muscles, nonlinear electrical syd0n. triggering of the Belousov-Zhabotinsky reactlpn

tems, chemical reactors, ét¢. However the nature of excit-

a_lbility s'_[ill remains a subject qf discussion. Winfree heuris-, + cEPELLERS AND T-ATTRACTORS

tically tried to describe an excitable system as folldwigs

reaction is excitable if it has a unique steady state that the Regarding the excitability problem, firstly Winfree's
system will approach from all initial conditions, but there “unique steady state” is interpreted to be either a focus, a
exists a locus of initial conditions near which either of two node, a limit cycle or a strange attractor. Secondly, an excit-
quite different paths may be taken toward the unique steadgble medium is considered as a medium, in every spatial
880
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trajectory attractiongsee below

We call the geometrical structure a T-repeller since it
obviously repels trajectories while the qualification “tran-
sient” is discussed below. We prefer this nomenclature to

A=02 ment applies to a “transient” attractdiT-attractoy for its

-0.5

S5 0

05 15 25 (t— —t) this geometrical structure becomes a T-attractor,
attracting trajectories for a limited time only, before they
approach a real attractor.

The term “transient” applied to the repeller is now
clarified, i.e., a T-repeller is a repeller, which under time
inversion becomes a transient attractor. Note that a
T-attractor for positive times transforms into a T-repeller for
t— —t. Note also that the T-attractors and T-repellers are
parts of the “integral manifolds” of the system of differen-
) 25 LS 05 05 15 25 tial equationg>~1°
We thus have a “dual” system of geometrical structures

@ 7

bl

A=034 . .

L5 F . : , — for an excitable system: its phase space can have a set of

T-repellers as well as a set of T-attractors. Those sets are

! 7 interchanged for a negative time direction. Let us stress the
> 05 / N point that the T-attractors considered here are “transient”
0 TR structures. Trajectories are attracted to them but only for a
W _/ finite time. Eventually these trajectories flow into some
ST ! s L] “steady state” or a real attractor, which is in the basin of
(© 25 15 05 05 1525 attraction of this geometrical structure. For the T-repellers

too, trajectories starting on both sides of it are eventually
FIG. 1. (a) Trajectories in phase space of a ‘stable focus only’ caseiflowing into thesamereal attractor. Thus in this respect these
A=0.2; dashed—dotted line: T-repell€FR); TA denotes T attractor(b) . “ " . .
Trajectories in phase space of the ‘stable limit cycle and unstable focusStrucn'lreS are dlﬁerent.than a BBA WhICh defines the
case;A=0.342; dashed—dotted line: T-repelléFR); (c) Trajectories in  boundary between basins of attraction different steady
phase space of the ‘two limit cyclgguter stable, inner unstablend a  states. The “BBA” can be considered as a “real repeller.”
stable focus’ caseh=0.34; dashed—dotted line: T-repelidiR). In other words, the difference between a regular attractor

and a T-attractofi.e., a transient attractpcan be understood

crudely as follows. Both, regular attractors and T-attractors

point of which there is a “threshold.” That is, if we consider gttrac.t trajector 1€s. |—'|owe.ve.r, fpr a regular .a'.[tr_a ctor the tra-
ectories remain on itor in its immediate vicinity for all

the equations of motion without the spatial part we find thaf.]r ; ) . ) 4 )
there exists a special “locus” in their phase space. This lo- uture times; for a T-attractor trajectories leave it after a fi-

cus is a geometrical structure: a line in a two dimensionap'te;"me' hreshold eff ists f ith |
phase space or a surfaga n—1 dimensions or legsn a ow, a threshold effect exists for a system with a repel-

three or a higher dimensional phase space. It could possibf§" (€ither a real one or a T-repelleiThe effect of a thresh-

be a geometrical structure of a fractal dimension althougtP!d is manifested when one crosses the repeller. Starting on
none has been reported by now. The heuristic definition iniwo sides of the repeller leads to two distinct outcomes. Due

volving “sides” of the geometrical structure is obviously 0 the difference between a real repeller and a T-repeller,

invalid for a fractal case, but the T-repeller ofsee below  there is an induced difference in behaviors of thresholds ef-
is. fects in each of these systems. Thus while for a real repeller,

The “transient repe”er”(T_repe”eD is the geometrica' two initial pOintS on its two sides eVentUa”y lead to different

structure which repels all trajectories. This structure sepaattractors, for a T-repeller such two initial points lead to the
rates between initial conditions on its two “sides.” Trajec- Same attractor.

tories starting at two points which are close to each other but ~ While the dual structure of real attractors and repellers
situated on both sides of the geometrical structure will, afwhich interchange under time reversalways exists in a
some later time separate from each other, before eventualynamical system, the T-attractors or T-repellers appear only
flowing into the steady statésee, e.g., Fig. 1, where the in excitable systems and we therefore can describe an “ex-
geometrical structure is the dashed—dotted)liitne differ-  citable system” as one for which a T-attractor and a
ence between a T-repeller and other lines in phase space is &gepeller exist. Note that a system can have one set and not
follows: (i) a T-repeller repels all trajectories in its vicinity; the othefe.g., a T-repeller and not a T-attractor for positive
(ii) The divergence of trajectories from a T-repeller is verytimes, see, e.g., Fig.(B)].

fast (exponential like in timg!? while the separation of tra- Note that i’ the T-attractor is termed “local attractor,”
jectories from any other line is much slower. A similar treat-in*® it is termed “phanton attractor” and i a “hidden
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A=0.342 wherea, b, andA are constants; is a small parameter, and
' to avoid the coexistence of two equilibrium poiftsh<1,
and 3+2b=3. This system has been recently thoroughly
investigated®?3-25Such systems with a small parameter are
of the “relaxation oscillator” type. Trajectories in phase
space of these systems include a “slow motion” gary., in
Egs. (1) and (2), close to the cubic curvg=x—x3/3+A]
and a “fast motion” part®2®

The systen{1)—(2) can obviously be transformed into a
second order equation far say. The latter can be cast in the
“simplest” form by a change of variablex=aX and
t= BT with « and B judicially chosen to get rid of unneces-
sary terms, as follows:

FIG. 2. The W-isochrones including a detailed calculation of pBinbn it
for a limit cycle case.

st_ructure.” In the latter the T-repeller is termed “separa-  x7— ;(1—X2)X’+X(1+&X2)=f (3)
trix.”
Recall that previous description of excitable systeins  with
not complete since it does not include T-attractors which we
consider_ to be an esseqtial part of excitable §ystems. o d_X a=(1-cb)2  B=[c(1-b)]" 2
Finding the geometrical structures numerically when the dT
differential equations of trajectories in phase space are
known, is a simple task: starting at a grid of points, say, of
phase space as initial conditions the trajectories ensuing
therefrom are calculated. Trajectories which approach a cer-
tain geometrical structure, continue along it only for a lim- Equation(3) is nonlinear in both the seconX() and the
ited time before approaching a steady state, define third (X) terms. Whereas the first nonlinearity is inherent for
T-attractor(see Fig. 1 Reversing the direction of tim€,the ~ the BVP system, the second disappears for the special case
same procedure will yield the T-repellers, as T-attractors foP=0. Equation(3) with b=0 is called the van der Pol
a negative time. equatiol’ and has been extensively treated by numerous au-
In the following we treat a specific two dimensional ex- thors. Here we concentrate on the “strict” BVP model,
amp'e, name'y the Bonhoeffer—van der RB'\/P) System, namelyb?ﬁ 0, since the HOpf bifurcation fdo+# 0 is subcriti-
and show the different T-repeller—T-attractor configurationsc@l giving rise to the above mentioned three different re-
and isochrones obtained for the different attractor cases. TH#ONs. Forb=0 the second region is absent.
Bonhoeffer—van der Pol system can obviously serve as the Equations(1) and (2) were partially numerically ana-
“nonspatial” part of a reaction-diffusion partial differential lyzed before}>?®both for the case where a focus is the only

equation which describes information propagation througtsteady state and for the case of a limit cycle with an addi-
excitable medig®-22 tional stable focus. Our present results which emphasize the

T-attractor and T-repeller configuration are shown in Fig. 1.
In Fig. 1(a) which describes the case for which a stable focus
Ill. THE BVP MODEL is the sole regular attractor, a system of both a T-repeller and

. . . a T-attractor is shown. Figurgl) depicts the situation, fol-
The BVP system was chosen since albeit being a Ver)(owing the subcritical Hopf bifurcation, in which the

simple two-dimensional system, it includes a rich infrastruc— . .
ture. For example, we consider here the BVP in three of itT attractor of Fig. 1a) transformed into a regular attractor

: limit cycle) while the focus became unstable. The T-repeller
regions, separated by the structure of the attractors present:;a ycle) P

focus alone[Fig. 1a@)]; a limit cycle alone[Fig. 1b)]: a and the spiral part of the T-attractor of Fl_ga)Lsegm to have
o . been transformed to the T-repeller of Figbll Figure Xc)
focus and a limit cycldFig. 1(c)]. We calculate for these Ny .
) shows the case where two limit cycles exist as real struc-
regions the T-repeller—T-attractor structures, and the tw

. ) ?ures; the outer one is an attractor while the inner one is a
types of isochrones, the regular isochrofaenoted hereafter o ;
. ; regular repeller or a BBA. The T-repeller in this case spirals
as R-Isochrongsand the Winfree isochronglenoted hereaf- . L
around and approaches the inner unstable limit c§tlne
ter as W-Isochrongsin order to calculate W-Isochrones for .
) - , o . focus here is a stable one.
regiona we shall have to extend Winfree’s definition, which

e Several points can be gleaned from these figures.
was constructed and used only for a limit cycle case, to an . . . .
. (1) Consider, e.g., Fig. (&). Although trajectories go
excitable system.

0 along a whole curve to the focus, only two parts oftiin-
The Bonhoeffer—van der Pol systé’is siently) attract other trajectoriefT-attractor in Fig. 1a)],
while the part fory~1 does not. We see that the T-attractors
and T-repellers(in the sense that trajectories actually ap-
proach them or pull away from thernly reside close to the
d—yzc(x+a—b ) @) “slow motion” part of the system. We expect that in line
) with the Van der Pol case treated by Dorodnittthe width

B*c

1
,LL:,BCZZ, &= §Cb,82a2, f=7(bA—a)

- =X— 5 —Yy+A, (1)
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of the slow motion curve is of the order aef~exp(—u?), A=l
namely, for negative times, starting withén no repelling is sl |
obtained. —

(2) The existence and extent of the T-repellers and
T-attractors depend on the valueofsee Eq(2)]. For large ir 7
values ofc the whole configuration ceases to exist. On the
other handc=0 is completely out of the BVP regime. Itis =~ o0s} .
therefore only for a limited range af values that the con-
figuration exists and the system is excitable. o /

(3) The problem of the exact point where the T-repeller
ends for highy values can be of practical importance since \\‘/ \‘Y*

: L ) ) ) i L L
2 15 -1 05 0 05 1 15 2 25
x

this point marks the limit between the “absolutely refrac- 05 )
tory” zone (for largery valueg and the “relatively refrac- @ 25

tory” zone (for smallery valuegY). This limit point is how-

ever vague and the exact extent of the T-repeller is not well A=0342

T T T T T T

defined. This problem is due to the fact that the region of the | |

end of the T-repeller is a transient region between two dif-
ferent asymptotic solution.

To recapitulate, in order to calculate a T-repeller in ex- 1 .
citable systems, many points in phase space are used as ini
tial conditions. Changing the time direction, trajectories ema- os | i
nating from each initial point are calculated. Coalescence of
these trajectories define the T-repeller. The problem of the .

definition of the right end of the T-repeller can be numeri-
cally overcome by using many initial points in the general
vicinity of the end of the T-repeller. To calculate the s} .
T-attractors a similar procedure is used but in the positive ot P EEE————
time direction. Note that T-attractors reside in the region of ® ~ >° % 1% & 03 e
“slow motion,” and the ends of the T-attractors are associ-
ated with the transition region between “slow and fast
motions.” 2

o

FIG. 3. The W-isochrones fok=0.2 (a) and forA=0.342(b).

get out of its width, and move backwards in timee., solv-
ing the system of differential equations for a negative jime
for the same amount of time The pointB’, thus obtained is
We extend the idea of isochrones to excitable systemsn the W-isochrone, for, starting fro and fromB’ and
since with isochrones it is easy to build the phase resettinghoving in the positive time directioffrom B’ to M and
curves. The latter are important for the theoretical and exfrom B to N) we arrive simultaneously at two points, one on
perimental analysis of these systefsse, e.g., Ref. 19 the LC and the other a distaneeaway. The accuracy of the
Winfree’s descriptioht? of a W-isochrones for a limit W-isochrone thus obtained therefore depends:.oNoving
cycle region can be recast in the following manner. Considein the positive time direction from these two poirits sepa-
a limit cycle (LC) attractor of flow(Fig. 2). Starting from ration ¢), the trajectories approach each other even further
any point in phase space as an initial condition, the trajectoryconvergence to the LC
eventually converges to the limit cycle and moves along it  Consider an excitable systeffig. 3a)] namely a sys-
subsequently. A point “B” on the LC is chosen as zero, andtem (of type 1) where a focus is the sole attractor. In addition
for any other point(A, say of the LC a time(or phasg¢t,  to the focus there exist a T-attractor and a T-repéfiee Fig.
can be definedmodulo the periodr of the LC) by the time  1(a)]. Trajectories, whose initial points are other than the
elapsed from zero until a trajectoristarting atB) has focus, are firstly attracted to the T-attractor and then flow
reachedA along the LC. Ata—W-isochrone is, by Winfree, along it to the focus, while trajectories starting on both sides
the set of points in phase space which have the characteristif the T-repellefsee Fig. 1a)] are driven away from it, such
that if one starts from each of thef@nd simultaneously from that a trajectory starting on its right moves to the right before
A) its trajectory would “reach” the LC together with the reaching the T-attractor, and a trajectory starting on its left
trajectory from A (which traversed along the DC An  moves firstly to the left before reaching the T-attractor. The
e-neighborhood is usually implie@ee above It is therefore  important role of the T-repeller as “attractor” for both types
the eventual or “final” time that is common to all points of of isochrones will presently be discussed.
an isochrone of this type. Designing a specific point on the T-attractor as an origin
A simple practical method of calculation of points on a of time (not a phase heyeany point on the T-attractal,
W-Isochrone is as follows: starting froB® we move along say can be endowed with a time labgl, which is the time
the LC for a certain time-intervat. We then move a short taken to go over from the origin to the point 1 along the
distance[ e > e~exp(—x?)] away from the LC(so that we T-attractor(see Fig. 1 in Ref. 19 The W-isochrone of; is

IV. ISOCHRONES
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FIG. 4. lllustration of the method of calculations of the W-isochrones, the
R-isochrones and the data matrix. . . A=0342

15 F E

now described in a similar way to the definition of the
W-isochrone for the limit cycle. That is, the W-isochrone is
the set of points in phase space, the trajectories simulta-
neously started from them and from 1, “reach” the
T-attractor at the same time. The numerical calculation of the
W-isochrones is carried out in a similar way to that in the LC
case[Fig. 3@)].

The regular isochrong®R-isochronesin phase space are 05|
the loci there of points for a fixed time on all the trajectories — s s
which started from a certain curve in phase space at a fixed®) 25 2 35 1 05 0 05 1 152 25
time in the past. Here we treat R-isochrones which eventu-
ally approach the attractors of the different cases and would
like to know their “starting curves.” Thus, for the limit
cycle case for instance, we calculate the R-isochrones which
approach the limit cycle. These R-isochrones can be calcu-
lated by starting from am’ neighborhood of the limit cycle W-isochrones. The latter is easily seen as follows. It takes a
and going backwards in time. period of 7 to get fromA; and fromB, to A, in the positive

Since W-isochrones are defined in phase space, we exime direction. Similarly going fromA; and fromCs; in the
tend the definition of the R-isochrones also to phase spageositive time directionA; is reached after 2 etc.
because there we can easily compare these two types of iso- The R-isochrones are shown in Figab(A=0.2) and
chrones. As we show this extended definition enables us tBig. 5b) (A=0.342), while the W-isochrones are given in
extract additional information about the system. Both theFig. 3@ (A=0.2) and Fig. &) (A=0.342). ForA=0.2 the
W-isochrones and the phase space regular isochrgmes situation is that of a focus as a sole attractor. Two main
R-isochronepwill be shown for the two regions of the BVP points can be noted regarding the W-isochrones. Firstly, the
system(a focus alone and a limit cycle alondlo facilitate ~ W-isochrones are seen to converge to the T-repeller. Sec-
the numerical calculation we use the following method,ondly, the T-repeller is never crossed. W-isochrones coming
shown in detail in Fig. 4 for the LC case. A somewhat simi-from the “left” stay on the left side of the T-repeller while
lar method was used before for W-isochrone calculatfdns. those coming from the “right” remain on that side.
Suppose an overall dfl isochrones are needed. The LC is These properties can be understood by the method of
divided intoN segmentgone of which isA;A,,... Fig. 4). building the W-isochrone. If we start from a poiAton the
The phase differenc@r time difference of each segment is T-attractor to the left, say, of the T-repeller, the W-isochrone
7(=T/N for the LC). From each of the point&;,A,, etc. as is obtained by going along the T-attractor towards the focus,
initial conditions, the trajectories are calculated in the negaand then going in the negative time direction from there. For
tive time direction for periods, and 2, and etc., reaching the latter part, the T-repeller is an attractor, so the
pointsB;,B,, ..., andC,,C,, ..., andetc., respectively. W-isochrone converges to the T-repeller and does so from
A “data matrix” of the pointsA;,B;,C; (for a given7) has the left. Similar results are obtained for the region of an LC
thus been obtained, and can be used to calculate thes the sole attractor and for an LC and a focus together.
R-isochrones and W-isochronénd the trajectorigs Thus, The asymptotic behavior of the W-isochrones is there-
the lines joining all theB; points or allC; points, etc. are fore rather simple. Since they all converge to the T-repeller
obviously the R-isochrones while the lines joining and the latter is not crossed, then, eventually the
A.,B,,C;s,..., and A,,B3;,C,, and etc. are the W-isochrones move along the T-repeller to the focus. This

FIG. 5. The R-isochrones fok=0.2 (a) and forA=0.342(b).
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A=0342 space immediately after the pulse is given by its initial posi-
' tion along the LC plus a straight line parallel to thieaxis
and of a magnitude proportional to the area under the pulse.
The phase response curve at this point defines its
W-isochrone while the trajectory from poift can be ob-
tained by the transient response measured following pulse
application. Evidently, accuracy will crucially depend on the
quality of measurement, since numerical derivatives are in-
volved both fordV/dt and for the trajectory calculations.
Note that these calculations would provide knowledge of the
T-repeller as well as the R-isochrones.

~
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-
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n
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17
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FIG. 6. The network of the W-isochrones and the R-isochrones. V. DISCUSSION

By our analysis of the structure of the solutions of the
structure should help to understand such problems raised faonhoeffer—van der Pol system new insight was obtained of
Ref. 1(p. 153. both excitability and isochrones. Thus, the important role of

The R-isochrones for the two cases are shown in Figsthe dual structure of T-repellers and T-attractors was demon-
5(a) and §b). Here, again there are convergences towardstrated for these problems. In particular, an “excitable sys-
the T-repellergin the negative time directionThis conver- tem” is described as a system in which a T-attractor and a
gence is, however, seen to be “Comp|ex,” in that a “dog’s T-repeller exist. Moreover, the T-repeller was shown to act
bone” is formed which shrinks slowly into the T-repeller. @s a “guiding barrier” to both types of isochrones, the regu-
This behavior is not yet understood as is the importance ofr isochrones and the Winfree ones, thus shedding light on
the point in the middle of the “dog’s bone” which seems to their asymptotic behavioréfor t—c for the W-isochrones
attract the R-isochrones. These problems are currently und@hd fort— —co for the R-isochrones The threshold effect
investigation. was considered and its different dependence on the types of

We would like to emphasize that a mutual grid of repellers was pointed out. A “data grid” was suggested as a
W-isochrones and R-isochrones on the same phase Spa@@ans of facilitating analysis and information gain from the
(Fig. 6) provides complete information about its struct(@e  System.
does a mutual description of the trajectories and In the present paper we treat only systems of ordinary
R-isochrones, sdyThis information can be understood from differential equations. In such systems there exist two types
the building procedure and is represented in the “data maof thresholds: a BBA or T-repeller. The difference between
trix” discussed above. these two is that while the BBA separates between two dif-

G|oba||y, the rate of Change of a proc&sge below is ferent attractor$say, focus and limit cycle, two limit Cycles,
given by the density of the isochrone linéx celly of the  €tc), the T-repeller separates between trajectories that even-
grid, such that the process is faster for sparser lines an@ally flow into the same attractgsay, focus or limit cyclg
larger cells, and slower for denser lines and smaller cells. If If @ system has a T-repeller it can either be an excitable
a point in phase space is considered as representing the st@fe@ limit cycle systenfor othey. If however, in addition to
of the system at a specific time, both its past and its futuréhe T-repeller the system has also a T-attractor it is an excit-
can be gleaned from this grid. Its Winfree’s “time” or able system.

“phase” is given immediately by its W-isochrone. It is pos- ~ Note added in prooftn the final stages of preparation of
sible to obtain rates of change of the trajectory in phaséhis manuscript, the authors became aware of a manuscript
Space(its Ve|ocity there, of the Winfree phaséor time) dealing with similar problems: N. Ichinose, K. Aihara, K.
along the trajectoryby the W-isochrones and of the ap- Judd. “Extending the concept of isochrons from oscillatory
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