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Threshold, excitability and isochrones in the Bonhoeffer–van der Pol
system

A. Rabinovitch and I. Rogachevskii
Physics Department and Department of Mechanical Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel

~Received 19 October 1998; accepted for publication 16 July 1999!

Some new insight is obtained for the structure of the Bonhoeffer–van der Pol system. The problems
of excitability and threshold are discussed for all three types of the system classified according to the
existing attractors: a focus only, a limit cycle only and a limit cycle together with a focus. These
problems can be treated by the T-repellers and the T-attractors of the system which are mutually
reciprocal under time inversion. The threshold depends on the structure of the T-repeller~unstable
part of integral manifold!. This structure is then used to understand the behavior and the properties
of the two different types of isochrones: Winfree isochrones~W-isochrones! and regular isochrones.
Winfree’s description of a W-isochrone is extended to excitable systems. Both W-isochrones and
regular isochrones are calculated for the Bonhoeffer–van der Pol system in its limit cycle and
excitable regimes. The important role of the T-repeller as an asymptotic limit for both types of
isochrones is manifested. ©1999 American Institute of Physics.@S1054-1500~99!00304-3#
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Excitable systems are prevalent in many branches of sci
ence. A clear understanding of the meaning of excitability
is therefore of importance. In this paper we provide a
description of excitable systems for a set of nonlinear or-
dinary differential equations of the ‘‘relaxation oscilla-
tor’’ type „e.g., Bonhoeffer–van der Pol system…. This de-
scription is based on the definition of a a ‘‘transient
attractor’’ and a ‘‘transient repeller’’ „T-repeller…. A
‘‘transient’’ attractor „T-attractor … means that it attracts
trajectories which leave it after a finite time. A T-repeller
means that trajectories are repelled from it. The differ-
ence between a boundary between two basins of attrac
tion „BBA… and a T-repeller is that while the BBA sepa-
rates between two different attractors, the T-repeller
separates between trajectories that eventually flow into
the same attractor. A T-repeller is a necessary condition
for a threshold to exist. An excitable system is taken to be
a system for which both T-attractor and a T-repeller ex-
ist. One of the important tools of studying excitable sys-
tems are isochrones. Here we differentiate between two
types of isochrones which we analyze in the phase spac
of an excitable system. We show the relation between iso
chrones and the T-repeller.

I. INTRODUCTION

The term ‘‘excitable medium’’ has been used repeata
for decades in many fields notably for biological syste
such as axons, the heart muscles, nonlinear electrical
tems, chemical reactors, etc.1–7 However the nature of excit
ability still remains a subject of discussion. Winfree heur
tically tried to describe an excitable system as follows:1 ‘‘A
reaction is excitable if it has a unique steady state that
system will approach from all initial conditions, but the
exists a locus of initial conditions near which either of tw
quite different paths may be taken toward the unique ste
8801054-1500/99/9(4)/880/7/$15.00
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state. If one of these paths is a lot longer than the other
system is excitable.’’ However, this description is not exa
enough.5

We elaborate on Winfree’s description of excitability
gain additional insight for this problem, which is then used
address the issue of isochrones in the medium’s phase sp
The problems of excitability and threshold are discussed
all three types of the system classified according to the
isting attractors: a focus only, a limit cycle only and a lim
cycle together with a focus.

Isochrones are important tools of understanding in ma
branches of science. In recent years this notion has been
in two different meanings and applications even when c
fined to phase space. In the first~regular! meaning, an isoch-
rone describes the surface all points of which have the s
physical property simultaneously, for example all points
the heart having the same action potential2,8 at the same time
constitute an isochrone in real space. In this sense, the
lution of a specific property~e.g., luminosity of stars starting
from the big bang9,10! can be viewed as the development
an isochrone with time.

The second type of isochrones~isochrons! was invented
by Winfree11 three decades ago and has frequently been u
since to help in understanding ‘‘timing relations in oscill
tors perturbed off their attracting cycles.’’1 The reason for
this abundant use is that such oscillators’ behavior is cha
teristic of many phenomena in chemistry, biology, electro
ics, medicine, etc.~e.g., pacing in the heart, neuronal fun
tion, triggering of the Belousov-Zhabotinsky reaction3!.

II. T-REPELLERS AND T-ATTRACTORS

Regarding the excitability problem, firstly Winfree’
‘‘unique steady state’’ is interpreted to be either a focus
node, a limit cycle or a strange attractor. Secondly, an ex
able medium is considered as a medium, in every spa
© 1999 American Institute of Physics
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point of which there is a ‘‘threshold.’’ That is, if we conside
the equations of motion without the spatial part we find t
there exists a special ‘‘locus’’ in their phase space. This
cus is a geometrical structure: a line in a two dimensio
phase space or a surface~of n21 dimensions or less! in a
three or a higher dimensional phase space. It could poss
be a geometrical structure of a fractal dimension althou
none has been reported by now. The heuristic definition
volving ‘‘sides’’ of the geometrical structure is obvious
invalid for a fractal case, but the T-repeller one~see below!
is.

The ‘‘transient repeller’’~T-repeller! is the geometrical
structure which repels all trajectories. This structure se
rates between initial conditions on its two ‘‘sides.’’ Traje
tories starting at two points which are close to each other
situated on both sides of the geometrical structure will,
some later time separate from each other, before eventu
flowing into the steady state~see, e.g., Fig. 1, where th
geometrical structure is the dashed–dotted line!. The differ-
ence between a T-repeller and other lines in phase space
follows: ~i! a T-repeller repels all trajectories in its vicinity
~ii ! The divergence of trajectories from a T-repeller is ve
fast ~exponential like in time!,12 while the separation of tra
jectories from any other line is much slower. A similar trea

FIG. 1. ~a! Trajectories in phase space of a ‘stable focus only’ ca
A50.2; dashed–dotted line: T-repeller~TR!; TA denotes T attractor.~b!
Trajectories in phase space of the ‘stable limit cycle and unstable fo
case;A50.342; dashed–dotted line: T-repeller~TR!; ~c! Trajectories in
phase space of the ‘two limit cycles~outer stable, inner unstable! and a
stable focus’ case;A50.34; dashed–dotted line: T-repeller~TR!.
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ment applies to a ‘‘transient’’ attractor~T-attractor! for its
trajectory attractions~see below!.

We call the geometrical structure a T-repeller since
obviously repels trajectories while the qualification ‘‘tra
sient’’ is discussed below. We prefer this nomenclature
the more general ‘‘unstable part of integral manifold’’~see
below! used in mathematics. Changing the direction of tim
(t→2t) this geometrical structure becomes a T-attract
attracting trajectories for a limited time only, before the
approach a real attractor.

The term ‘‘transient’’ applied to the repeller is now
clarified, i.e., a T-repeller is a repeller, which under tim
inversion becomes a transient attractor. Note that
T-attractor for positive times transforms into a T-repeller f
t→2t. Note also that the T-attractors and T-repellers
parts of the ‘‘integral manifolds’’ of the system of differen
tial equations.13–16

We thus have a ‘‘dual’’ system of geometrical structur
for an excitable system: its phase space can have a s
T-repellers as well as a set of T-attractors. Those sets
interchanged for a negative time direction. Let us stress
point that the T-attractors considered here are ‘‘transie
structures. Trajectories are attracted to them but only fo
finite time. Eventually these trajectories flow into som
‘‘steady state’’ or a real attractor, which is in the basin
attraction of this geometrical structure. For the T-repell
too, trajectories starting on both sides of it are eventua
flowing into thesamereal attractor. Thus in this respect the
structures are different than a ‘‘BBA’’ which defines th
boundary between basins of attraction ofdifferent steady
states. The ‘‘BBA’’ can be considered as a ‘‘real repeller

In other words, the difference between a regular attrac
and a T-attractor~i.e., a transient attractor! can be understood
crudely as follows. Both, regular attractors and T-attract
attract trajectories. However, for a regular attractor the
jectories remain on it~or in its immediate vicinity! for all
future times; for a T-attractor trajectories leave it after a
nite time.

Now, a threshold effect exists for a system with a rep
ler ~either a real one or a T-repeller!. The effect of a thresh-
old is manifested when one crosses the repeller. Starting
two sides of the repeller leads to two distinct outcomes. D
to the difference between a real repeller and a T-repe
there is an induced difference in behaviors of thresholds
fects in each of these systems. Thus while for a real repe
two initial points on its two sides eventually lead to differe
attractors, for a T-repeller such two initial points lead to t
same attractor.

While the dual structure of real attractors and repell
~which interchange under time reversal! always exists in a
dynamical system, the T-attractors or T-repellers appear o
in excitable systems and we therefore can describe an ‘
citable system’’ as one for which a T-attractor and
T-repeller exist. Note that a system can have one set and
the other@e.g., a T-repeller and not a T-attractor for positi
times, see, e.g., Fig. 1~b!#.

Note that in17 the T-attractor is termed ‘‘local attractor,’
in18 it is termed ‘‘phanton attractor’’ and in19 a ‘‘hidden

;
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structure.’’ In the latter the T-repeller is termed ‘‘separ
trix.’’

Recall that previous description of excitable systems1 is
not complete since it does not include T-attractors which
consider to be an essential part of excitable systems.

Finding the geometrical structures numerically when
differential equations of trajectories in phase space
known, is a simple task: starting at a grid of points, say,
phase space as initial conditions the trajectories ens
therefrom are calculated. Trajectories which approach a
tain geometrical structure, continue along it only for a lim
ited time before approaching a steady state, define
T-attractor~see Fig. 1!. Reversing the direction of time,17 the
same procedure will yield the T-repellers, as T-attractors
a negative time.

In the following we treat a specific two dimensional e
ample, namely the Bonhoeffer–van der Pol~BVP! system,
and show the different T-repeller–T-attractor configuratio
and isochrones obtained for the different attractor cases.
Bonhoeffer–van der Pol system can obviously serve as
‘‘nonspatial’’ part of a reaction-diffusion partial differentia
equation which describes information propagation throu
excitable media.20–22

III. THE BVP MODEL

The BVP system was chosen since albeit being a v
simple two-dimensional system, it includes a rich infrastru
ture. For example, we consider here the BVP in three of
regions, separated by the structure of the attractors prese
focus alone@Fig. 1~a!#; a limit cycle alone@Fig. 1~b!#; a
focus and a limit cycle@Fig. 1~c!#. We calculate for these
regions the T-repeller–T-attractor structures, and the
types of isochrones, the regular isochrones~denoted hereafte
as R-Isochrones! and the Winfree isochrons~denoted hereaf-
ter as W-Isochrones!. In order to calculate W-Isochrones fo
regiona we shall have to extend Winfree’s definition, whic
was constructed and used only for a limit cycle case, to
excitable system.

The Bonhoeffer–van der Pol system21,20 is

dx

dt
5x2

x3

3
2y1A, ~1!

dy

dt
5c~x1a2by!, ~2!

FIG. 2. The W-isochrones including a detailed calculation of pointB8 on it
for a limit cycle case.
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wherea, b, andA are constants,c is a small parameter, an
to avoid the coexistence of two equilibrium points,21 b,1,
and 3a12b>3. This system has been recently thorough
investigated.19,23–25Such systems with a small parameter a
of the ‘‘relaxation oscillator’’ type. Trajectories in phas
space of these systems include a ‘‘slow motion’’ part@e.g., in
Eqs. ~1! and ~2!, close to the cubic curvey5x2x3/31A#
and a ‘‘fast motion’’ part.20,26

The system~1!–~2! can obviously be transformed into
second order equation forx, say. The latter can be cast in th
‘‘simplest’’ form by a change of variablesx5aX and
t5bT with a andb judicially chosen to get rid of unneces
sary terms, as follows:

X92m~12X2!X81X~11jX2!5 f ~3!

with

X85
dX

dT
, a5~12cb!1/2, b5@c~12b!#21/2,

m5ba2, j5
1

3
cbb2a2, f 5

b2c

a
~bA2a!.

Equation~3! is nonlinear in both the second (X8) and the
third (X) terms. Whereas the first nonlinearity is inherent f
the BVP system, the second disappears for the special
b50. Equation ~3! with b50 is called the van der Po
equation27 and has been extensively treated by numerous
thors. Here we concentrate on the ‘‘strict’’ BVP mode
namelybÞ0, since the Hopf bifurcation forbÞ0 is subcriti-
cal giving rise to the above mentioned three different
gions. Forb50 the second region is absent.

Equations~1! and ~2! were partially numerically ana
lyzed before,19,28 both for the case where a focus is the on
steady state and for the case of a limit cycle with an ad
tional stable focus. Our present results which emphasize
T-attractor and T-repeller configuration are shown in Fig.
In Fig. 1~a! which describes the case for which a stable foc
is the sole regular attractor, a system of both a T-repeller
a T-attractor is shown. Figure 1~b! depicts the situation, fol-
lowing the subcritical Hopf bifurcation, in which the
T-attractor of Fig. 1~a! transformed into a regular attracto
~limit cycle! while the focus became unstable. The T-repel
and the spiral part of the T-attractor of Fig. 1~a! seem to have
been transformed to the T-repeller of Fig. 1~b!. Figure 1~c!
shows the case where two limit cycles exist as real str
tures; the outer one is an attractor while the inner one
regular repeller or a BBA. The T-repeller in this case spir
around and approaches the inner unstable limit cycle.28 The
focus here is a stable one.

Several points can be gleaned from these figures.
~1! Consider, e.g., Fig. 1~a!. Although trajectories go

along a whole curve to the focus, only two parts of it~tran-
siently! attract other trajectories@T-attractor in Fig. 1~a!#,
while the part fory'1 does not. We see that the T-attracto
and T-repellers~in the sense that trajectories actually a
proach them or pull away from them! only reside close to the
‘‘slow motion’’ part of the system. We expect that in lin
with the Van der Pol case treated by Dorodnitcyn12 the width
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of the slow motion curve is of the order ofe;exp(2m2),
namely, for negative times, starting withine, no repelling is
obtained.

~2! The existence and extent of the T-repellers a
T-attractors depend on the value ofc @see Eq.~2!#. For large
values ofc the whole configuration ceases to exist. On t
other hand,c50 is completely out of the BVP regime. It i
therefore only for a limited range ofc values that the con
figuration exists and the system is excitable.

~3! The problem of the exact point where the T-repel
ends for highy values can be of practical importance sin
this point marks the limit between the ‘‘absolutely refra
tory’’ zone ~for larger y values! and the ‘‘relatively refrac-
tory’’ zone ~for smallery values21!. This limit point is how-
ever vague and the exact extent of the T-repeller is not w
defined. This problem is due to the fact that the region of
end of the T-repeller is a transient region between two
ferent asymptotic solutions.12

To recapitulate, in order to calculate a T-repeller in e
citable systems, many points in phase space are used a
tial conditions. Changing the time direction, trajectories em
nating from each initial point are calculated. Coalescence
these trajectories define the T-repeller. The problem of
definition of the right end of the T-repeller can be nume
cally overcome by using many initial points in the gene
vicinity of the end of the T-repeller. To calculate th
T-attractors a similar procedure is used but in the posi
time direction. Note that T-attractors reside in the region
‘‘slow motion,’’ and the ends of the T-attractors are asso
ated with the transition region between ‘‘slow and fa
motions.’’12

IV. ISOCHRONES

We extend the idea of isochrones to excitable syste
since with isochrones it is easy to build the phase reset
curves. The latter are important for the theoretical and
perimental analysis of these systems~see, e.g., Ref. 19!.

Winfree’s description11,2 of a W-isochrones for a limit
cycle region can be recast in the following manner. Consi
a limit cycle ~LC! attractor of flow~Fig. 2!. Starting from
any point in phase space as an initial condition, the trajec
eventually converges to the limit cycle and moves along
subsequently. A point ‘‘B’’ on the LC is chosen as zero, a
for any other point~A, say! of the LC a time~or phase! tA

can be defined~modulo the periodT of the LC! by the time
elapsed from zero until a trajectory~starting at B! has
reachedA along the LC. AtA–W-isochrone is, by Winfree
the set of points in phase space which have the characte
that if one starts from each of them~and simultaneously from
A! its trajectory would ‘‘reach’’ the LC together with th
trajectory from A ~which traversed along the LC!. An
e-neighborhood is usually implied~see above!. It is therefore
the eventual or ‘‘final’’ time that is common to all points o
an isochrone of this type.

A simple practical method of calculation of points on
W-Isochrone is as follows: starting fromB we move along
the LC for a certain time-intervalt. We then move a shor
distance@«.e;exp(2m2)# away from the LC~so that we
d
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get out of its width!, and move backwards in time~i.e., solv-
ing the system of differential equations for a negative tim!
for the same amount of timet. The pointB8, thus obtained is
on the W-isochrone, for, starting fromB and fromB8 and
moving in the positive time direction~from B8 to M and
from B to N! we arrive simultaneously at two points, one o
the LC and the other a distance« away. The accuracy of the
W-isochrone thus obtained therefore depends on«. Moving
in the positive time direction from these two points~of sepa-
ration «!, the trajectories approach each other even furt
~convergence to the LC!.

Consider an excitable system@Fig. 3~a!# namely a sys-
tem~of type 1! where a focus is the sole attractor. In additio
to the focus there exist a T-attractor and a T-repeller@see Fig.
1~a!#. Trajectories, whose initial points are other than t
focus, are firstly attracted to the T-attractor and then fl
along it to the focus, while trajectories starting on both sid
of the T-repeller@see Fig. 1~a!# are driven away from it, such
that a trajectory starting on its right moves to the right befo
reaching the T-attractor, and a trajectory starting on its
moves firstly to the left before reaching the T-attractor. T
important role of the T-repeller as ‘‘attractor’’ for both type
of isochrones will presently be discussed.

Designing a specific point on the T-attractor as an ori
of time ~not a phase here!, any point on the T-attractor~1,
say! can be endowed with a time labelt1 , which is the time
taken to go over from the origin to the point 1 along t
T-attractor~see Fig. 1 in Ref. 19!. The W-isochrone oft1 is

FIG. 3. The W-isochrones forA50.2 ~a! and forA50.342~b!.
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now described in a similar way to the definition of th
W-isochrone for the limit cycle. That is, the W-isochrone
the set of points in phase space, the trajectories simu
neously started from them and from 1, ‘‘reach’’ th
T-attractor at the same time. The numerical calculation of
W-isochrones is carried out in a similar way to that in the L
case@Fig. 3~a!#.

The regular isochrones~R-isochrones! in phase space ar
the loci there of points for a fixed time on all the trajectori
which started from a certain curve in phase space at a fi
time in the past. Here we treat R-isochrones which even
ally approach the attractors of the different cases and wo
like to know their ‘‘starting curves.’’ Thus, for the limi
cycle case for instance, we calculate the R-isochrones w
approach the limit cycle. These R-isochrones can be ca
lated by starting from an« neighborhood of the limit cycle
and going backwards in time.

Since W-isochrones are defined in phase space, we
tend the definition of the R-isochrones also to phase sp
because there we can easily compare these two types o
chrones. As we show this extended definition enables u
extract additional information about the system. Both
W-isochrones and the phase space regular isochrones~i.e.,
R-isochrones! will be shown for the two regions of the BVP
system~a focus alone and a limit cycle alone!. To facilitate
the numerical calculation we use the following metho
shown in detail in Fig. 4 for the LC case. A somewhat sim
lar method was used before for W-isochrone calculation29

Suppose an overall ofN isochrones are needed. The LC
divided into N segments~one of which isA1A2 ,... Fig. 4!.
The phase difference~or time difference! of each segment is
t~5T/N for the LC!. From each of the pointsA1 ,A2 , etc. as
initial conditions, the trajectories are calculated in the ne
tive time direction for periodst, and 2t, and etc., reaching
points B1 ,B2 , . . . , andC1 ,C2 , . . . , andetc., respectively.
A ‘‘data matrix’’ of the pointsAi ,Bi ,Ci ~for a givent! has
thus been obtained, and can be used to calculate
R-isochrones and W-isochrones~and the trajectories!. Thus,
the lines joining all theBi points or allCi points, etc. are
obviously the R-isochrones while the lines joinin
A1 ,B2 ,C3 , . . . , and A2 ,B3 ,C4 , and etc. are the

FIG. 4. Illustration of the method of calculations of the W-isochrones,
R-isochrones and the data matrix.
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W-isochrones. The latter is easily seen as follows. It take
period oft to get fromA1 and fromB2 to A2 in the positive
time direction. Similarly going fromA1 and fromC3 in the
positive time direction,A3 is reached after 2t, etc.

The R-isochrones are shown in Fig. 5~a! (A50.2) and
Fig. 5~b! (A50.342), while the W-isochrones are given
Fig. 3~a! (A50.2) and Fig. 3~b! (A50.342). ForA50.2 the
situation is that of a focus as a sole attractor. Two m
points can be noted regarding the W-isochrones. Firstly,
W-isochrones are seen to converge to the T-repeller. S
ondly, the T-repeller is never crossed. W-isochrones com
from the ‘‘left’’ stay on the left side of the T-repeller while
those coming from the ‘‘right’’ remain on that side.

These properties can be understood by the method
building the W-isochrone. If we start from a pointA on the
T-attractor to the left, say, of the T-repeller, the W-isochro
is obtained by going along the T-attractor towards the foc
and then going in the negative time direction from there. F
the latter part, the T-repeller is an attractor, so t
W-isochrone converges to the T-repeller and does so f
the left. Similar results are obtained for the region of an L
as the sole attractor and for an LC and a focus together.

The asymptotic behavior of the W-isochrones is the
fore rather simple. Since they all converge to the T-repe
and the latter is not crossed, then, eventually
W-isochrones move along the T-repeller to the focus. T

e

FIG. 5. The R-isochrones forA50.2 ~a! and forA50.342~b!.



d

ig
rd

’s
r.

to
nd

of
p

n
m

a

a
.
s
ur
r
s-
as

a
it
e
e

nt
ce

a
im

si-

lse.
its

ulse
he
in-
.
the

he
of

of
on-
ys-
d a
act
u-

t on

s of
s a
he

ary
pes
en
dif-
,
ven-

ble

cit-

f
cript
.
ry
In-

V.
ke
in
to

885Chaos, Vol. 9, No. 4, 1999 Threshold, excitability and isochrones
structure should help to understand such problems raise
Ref. 1 ~p. 153!.

The R-isochrones for the two cases are shown in F
5~a! and 5~b!. Here, again there are convergences towa
the T-repellers~in the negative time direction!. This conver-
gence is, however, seen to be ‘‘complex,’’ in that a ‘‘dog
bone’’ is formed which shrinks slowly into the T-repelle
This behavior is not yet understood as is the importance
the point in the middle of the ‘‘dog’s bone’’ which seems
attract the R-isochrones. These problems are currently u
investigation.

We would like to emphasize that a mutual grid
W-isochrones and R-isochrones on the same phase s
~Fig. 6! provides complete information about its structure~as
does a mutual description of the trajectories a
R-isochrones, say!. This information can be understood fro
the building procedure and is represented in the ‘‘data m
trix’’ discussed above.

Globally, the rate of change of a process~see below! is
given by the density of the isochrone lines~or cells! of the
grid, such that the process is faster for sparser lines
larger cells, and slower for denser lines and smaller cells
a point in phase space is considered as representing the
of the system at a specific time, both its past and its fut
can be gleaned from this grid. Its Winfree’s ‘‘time’’ o
‘‘phase’’ is given immediately by its W-isochrone. It is po
sible to obtain rates of change of the trajectory in ph
space~its velocity there!, of the Winfree phase~or time!
along the trajectory~by the W-isochrones!, and of the ap-
proach to the attractor~by the R-isochrones!.

Experimentally, the data matrix for a specific system c
be obtained in the following way. Consider, e.g., a lim
cycle case as measured for example in embryonic atrial h
cell aggregates.11 The first assumption is of course, that th
complete information can be obtained from a 2D represe
tion or projection. Firstly, the limit cycle itself in phase spa
is calculated from the measured potential (V) as a function
of t ~see Fig. 2 in Ref. 11!, by computingdV/dt as a function
of V for all t values 0,t,T ~whereT is period!. Responses
for a single current pulse are then used for W-isochrones
trajectories calculations. Thus, if it is assumed that the
pulse is applied in a capacitor mode, the point (P) in phase

FIG. 6. The network of the W-isochrones and the R-isochrones.
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space immediately after the pulse is given by its initial po
tion along the LC plus a straight line parallel to theV axis
and of a magnitude proportional to the area under the pu
The phase response curve at this point defines
W-isochrone while the trajectory from pointP can be ob-
tained by the transient response measured following p
application. Evidently, accuracy will crucially depend on t
quality of measurement, since numerical derivatives are
volved both fordV/dt and for the trajectory calculations
Note that these calculations would provide knowledge of
T-repeller as well as the R-isochrones.

V. DISCUSSION

By our analysis of the structure of the solutions of t
Bonhoeffer–van der Pol system new insight was obtained
both excitability and isochrones. Thus, the important role
the dual structure of T-repellers and T-attractors was dem
strated for these problems. In particular, an ‘‘excitable s
tem’’ is described as a system in which a T-attractor an
T-repeller exist. Moreover, the T-repeller was shown to
as a ‘‘guiding barrier’’ to both types of isochrones, the reg
lar isochrones and the Winfree ones, thus shedding ligh
their asymptotic behaviors~for t→` for the W-isochrones
and for t→2` for the R-isochrones!. The threshold effect
was considered and its different dependence on the type
repellers was pointed out. A ‘‘data grid’’ was suggested a
means of facilitating analysis and information gain from t
system.

In the present paper we treat only systems of ordin
differential equations. In such systems there exist two ty
of thresholds: a BBA or T-repeller. The difference betwe
these two is that while the BBA separates between two
ferent attractors~say, focus and limit cycle, two limit cycles
etc.!, the T-repeller separates between trajectories that e
tually flow into the same attractor~say, focus or limit cycle!.

If a system has a T-repeller it can either be an excita
or a limit cycle system~or other!. If however, in addition to
the T-repeller the system has also a T-attractor it is an ex
able system.

Note added in proof:In the final stages of preparation o
this manuscript, the authors became aware of a manus
dealing with similar problems: N. Ichinose, K. Aihara, K
Judd. ‘‘Extending the concept of isochrons from oscillato
to excitable systems for modeling an excitable neuron.’’
ternational Journal of Bifurcation and Chaos8, 2375–2385
~1998!.
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