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Abstract We advance our prior energy- and flux-budget (EFB) turbulence closure model
for stably stratified atmospheric flow and extend it to account for an additional vertical flux of
momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential
energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity
waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model
disregarding large-scale IGW yielded universal dependencies of the flux Richardson number,
turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and
heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies
lose their universality. The maximal value of the flux Richardson number (universal constant
≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous
stratification, it increases with increasing wave energy and can even exceed 1. For hetero-
geneous stratification, when internal gravity waves propagate towards stronger stratification,
the maximal flux Richardson number decreases with increasing wave energy, reaches zero
and then becomes negative. In other words, the vertical flux of potential temperature becomes
counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast
to the mean wind shear, which generates only horizontal TKE, internal gravity waves gener-
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140 S. S. Zilitinkevich et al.

ate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in
the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves
is their direct contribution to the vertical transport of momentum. Depending on the direction
(downward or upward), internal gravity waves either strengthen or weaken the total vertical
flux of momentum. Predictions from the proposed model are consistent with available data
from atmospheric and laboratory experiments, direct numerical simulations and large-eddy
simulations.

Keywords Internal gravity waves · Stable stratification · Turbulence closure ·
Turbulent energies · Vertical turbulent fluxes · Wave-induced transports

List of Symbols
Az = Ez/EK Ratio of the vertical turbulent kinetic energy, Ez , to TKE, EK

E = EK + EP Total turbulent energy (TTE)
EK = 1

2 〈ui ui 〉 Turbulent kinetic energy (TKE)
Ei Vertical (i = z) and horizontal (i = x, y) components of TKE
Eθ = 1

2

〈
θ2

〉
“Energy” of potential temperature fluctuations

EP Turbulent potential energy (TPE) given by Eq. 25
EW IGW kinetic energy given by Eq. 16
Êz Dimensionless vertical TKE given by Eq. 70
e Vertical unit vector
eW (k) Energy spectrum of the ensemble of internal gravity

waves (IGW) given by Eq. 17
Fi = 〈ui θ〉 Potential-temperature flux
Fz Vertical component of the potential-temperature flux
FW

i Instantaneous potential-temperature flux caused by
the IGW–turbulence interaction given by Eq. 42

FW W
i Potential-temperature flux caused by IGW averaged over the period

of IGW, given by Eq. 21
FW

θ Scale of the IGW contribution turbulent flux of potential
temperature given by Eq. 57

Êz Dimensionless vertical TKE given by Eq. 70
f = 2� sin ϕ Coriolis parameter
G “Wave-energy parameter” proportional to the normalized

IGW kinetic energy, EW , given by Eq. 50
g Acceleration due to gravity
H External height scale
KM Eddy viscosity given by Eq. 79
K H Eddy conductivity given by Eq. 80
k Wave vector

kα = (kx , ky) Horizontal wave vector with kh = ±
√

k2
x + k2

y

k =
√

k2
z + k2

h Total wavenumber

L Obukhov length scale given by Eq. 5
LW Minimal wave length of the large-scale IGW
lz Vertical turbulent length scale
N Mean-flow Brunt–Väisälä frequency

123



EFB Turbulence Closure Model for Stably Stratified Flows 141

P Pressure
P0 Reference value of P
PW Pressure variation caused by IGW
p Pressure fluctuation caused by turbulence
Pr = ν/κ Prandtl number
PrT Turbulent Prandtl number given by Eq. 2
Q Dimensionless lapse rate given by Eq. 44
Qi j Correlations between the pressure and the velocity-shear

fluctuations, given by Eqs. 34 and 63
r Radius-vector of the centre of the wave packet
Ri Gradient Richardson number, Eq. 1
Ri f Flux Richardson number, Eq. 4
Ri∞f Limiting value of Ri f in the flow without IGW

(universal constant in the homogeneous sheared flow)
Rimax

f Limiting value of Ri f in the presence of
IGW (depends on the G and Q)

S = |∂U/∂z| Vertical shear of the horizontal mean wind
T Absolute temperature
T0 Reference value of the absolute temperature
tT = lz E−1/2

z Turbulent dissipation time scale
tτ Effective dissipation time scale
VW = (

V W
1 , V W

2 , V W
3

)
IGW velocity given by Eqs. 9–10

V W
0 (k) IGW amplitude

U = (U1, U2, U3) Mean wind velocity
u Turbulent velocity
Z0 Height of the IGW source
β = g/T0 Buoyancy parameter
γ = cp/cv Ratio of specific heats
εK , εθ , ε

(F)
i and ε

(τ)
i j Dissipation rates for EK , Eθ , F (F)

i and τi j

εα3(eff)(α = 1, 2) Effective dissipation rates of the vertical
turbulent fluxes of momentum

κ Temperature conductivity
µ Exponent of the energy spectrum of the ensemble of IGW
ν Kinematic viscosity
�K ,�θ and �F Third-order moments representing turbulent fluxes of

EK , Eθ and Fi

ϕ Latitude

W IGW production of TKE given by Eq. 49

W

i IGW production of the vertical (i = z) and horizontal
(i = x, y) components of TKE given by Eqs. 52–53


W
θ IGW production of Eθ given by Eq. 56


W
E = 
W + 
W

θ β2 N−2 IGW production of TTE

W

F IGW production of the flux of
potential temperature given by Eq. 58


W
τα IGW production of the non-diagonal components of the

Reynolds stresses, τα3, given by Eq. 61
τi j Reynolds stresses characterising the turbulent flux of

momentum
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τα3(α = 1, 2) Components of the Reynolds stresses characterising vertical turbulent flux
of momentum

τ Modulus of (τ13, τ23)
τ W

i j Instantaneous Reynolds stresses caused by
IGW, given by Eq. 41

τ W W
i j Reynolds stresses caused by IGW averaged over the

period of IGW given by Eqs. 21 and 43
ρ0 Density
� Potential temperature
�W IGW potential temperature given by Eq. 11
θ Turbulent fluctuation of potential temperature
�i Earth’s rotation vector parallel to the polar axis
ω Frequency of IGW

1 Introduction

Internal gravity waves (IGW) in relation to atmospheric and oceanic turbulence have
been a subject of intense research [e.g., monographs: Beer (1974), Gossard and Hooke
(1975), Baines (1995), Nappo (2002); and review papers: Garrett and Munk (1979), Fritts
and Alexander (2003), Thorpe (2004), Staquet and Sommeria (2002)]. In the atmosphere,
IGW are present at scales ranging from metres to kilometres, and are measured by direct
probing or remote sensing using radars and lidars (Chimonas 1999; Fritts and Alexander
2003).

The sources of IGW are: strong wind shear, flows over topography, convective and other
local-scale motions underlying the stably stratified layer (Wurtele et al. 1996; Fritts and
Alexander 2003), geostrophic adjustment of unbalanced flows in the vicinity of jet streams
and frontal systems, and wave–wave interactions (Staquet and Sommeria 2002; Fritts and
Alexander 2003). The IGW propagation is complicated by variable wind speed and density
profiles causing refraction, reflection, focusing, and ducting.

IGW contribute to the energy and momentum transport, the turbulence production and
eventually enhance mixing. The dual nature of fluctuations representing both turbulence and
waves in stratified flows has been recognised, e.g., by Jacobitz et al. (2005). The role of waves
and the need for their inclusion in turbulence closure models has been discussed by Jin et al.
(2003) and Baumert and Peters (2004, 2009). Baumert and Peters (2004) included an addi-
tional negative term in the TKE budget equation: the rate of transfer of TKE into potential
energy of wave-like motions (highly irregular short internal waves coexisting with turbulent
eddies), and postulated that with increasing stability these motions dominate random veloc-
ity and buoyancy fluctuations and suppress vertical mixing (see also Umlauf and Burchard
2005). The parameterization of mixing in the deep ocean due to short IGW was considered by
Polzin (2004a,b). Finnigan and Einaudi (1981), Einaudi et al. (1984), Finnigan et al. (1984),
Finnigan (1988, 1999), Einaudi and Finnigan (1993) analyzed the budgets of the wave kinetic
energy and the wave temperature variance, and found significant buoyant production of the
wave energy despite the strong static stability and energy transfer from waves to turbulence.

In the present paper we focus on the wave-induced vertical flux of momentum and the
generation of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent
flux of potential temperature due to large-scale IGW in the context of an energetically con-
sistent “energy- and flux-budget” (EFB) turbulence closure model for stably stratified flow
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EFB Turbulence Closure Model for Stably Stratified Flows 143

(Zilitinkevich et al. 2007, 2008). The model is designed for typical stably stratified atmo-
spheric flows, characterised by the vertical shear S = |∂U/∂z| of the horizontal mean wind
U = (U1, U2, 0), and is based on the budget equations for the key second moments: TKE,
TPE, and the vertical turbulent fluxes of the momentum and the buoyancy (proportional to
the potential temperature). It takes into account the non-gradient correction to the down-gra-
dient formulation for the vertical turbulent flux of buoyancy, and employs the concept of total
turbulent energy (TTE = TKE + TPE). It is a model without a critical Richardson number
permitting sustenance of turbulence by shear at any gradient Richardson number

Ri = N 2/S2, (1)

where, N is the Brunt–Väisälä frequency defined as N 2 = β∂�/∂z,� is the mean potential
temperature, β = g/T0 is the buoyancy parameter, g is the acceleration of gravity, and T0 is
the reference value of the absolute temperature T . For the turbulent Prandtl number, defined
as

PrT = KM/K H , (2)

where KM and K H are the eddy viscosity and eddy conductivity, the EFB model predicts
the asymptotically linear dependence:

PrT ∝ Ri at Ri >> 1. (3)

In terms of the flux Richardson number, Ri f , and the Obukhov length scale, L , defined as

Ri f = −βFz

τ S
, (4)

L = τ 3/2

−βFz
, (5)

where Fz is the vertical turbulent flux of potential temperature, and τ is the modulus of the
vertical turbulent flux of momentum, Eq. 3 yields the following asymptotic relation

Ri f = τ 1/2

SL
→ Ri∞f at Ri → ∞, (6)

where Ri∞f is the maximal flux Richardson number. In the EFB closure, Ri∞f is a universal
constant (Ri∞f < 1) to be determined empirically. The model reveals a transitional interval,
0.1 < Ri < 1, separating the two turbulent regimes of essentially different nature: strong
turbulence at Ri << 1 and weak turbulence that transports momentum but is much less
efficient in transporting heat at Ri > 1.

Alternative new closure models with no Ri-critical also employ the TTE-budget equation
but avoid the direct use of the budget equations for turbulent fluxes suggested by Mauritsen
et al. (2007), and modification of their prior second-order turbulence closure by Canuto et al.
(2008). L’vov et al. (2008) and L’vov and Rudenko (2008) have performed detailed analyses
of the budget equations for the Reynolds stresses in the turbulent boundary layer (relevant
to the strong turbulence regime) taking into consideration the dissipative effect of the hori-
zontal heat flux explicitly, in contrast to the Zilitinkevich et al. (2007) “effective-dissipation
approximation”. All three budget equations for TKE, TPE and TTE were considered earlier
by Canuto and Minotti (1993), Elperin et al. (2002) and Cheng et al. (2002). The third-order
vertical transports of TKE and TPE caused by IGW in the two-layer system, comprising the
turbulence-dominated atmospheric boundary layer and the IGW-dominated free atmosphere,
was included in a simple turbulence closure model by Zilitinkevich (2002).
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2 Large-Scale IGW in Stably Stratified Sheared Flows

In the present study we focus on the effect of large-scale IGW on stably stratified turbulence
and do not discuss small-scale IGW. Accordingly, we consider the IGW wavelength/periods
much larger than the turbulence spatial/time scales. This allows us to treat the large-scale
IGW with respect to turbulence as a kind of mean flow with random phases, and to neglect
molecular dissipation of IGW. We also neglect the feedback effect of turbulence on IGW. At
the low frequency part of the IGW spectra, we limit our analysis to frequencies essentially
exceeding the Coriolis frequency, so that the IGW under consideration are not affected by
the Coriolis parameter, f = 2� sin ϕ, where �i is the Earth’s rotation vector parallel to the
polar axis (|�i | ≡ � = 0.76 × 10−4 s−1), and ϕ is the latitude.

The large-scale IGW are characterized by the wave-field velocity, VW = (
V W

1 , V W
2 , V W

3

)
,

and potential temperature, �W , which satisfy the following equations (in the Boussinesq
approximation for incompressible fluid):

∂VW

∂t
= − (U · ∇) VW − ∇

(
PW

ρ0

)
+ β�W e −

(
VW · ∇

)
VW , (7)

∂�W

∂t
= − (U · ∇)�W − 1

β

(
VW · e

)
N 2 −

(
VW · ∇

)
�W , (8)

and the conditions of incompressibility: div VW = 0 and div U = 0. Here, U is the mean
flow velocity, β = g/T0 is the buoyancy parameter, g = 9.81 m s−1 is the acceleration due
to gravity, PW is the pressure caused by IGW, e is the vertical unit vector, ρ0 is the density
of fluid, N is the Brunt–Väisälä frequency: N 2 = β∂�/∂z,� is the potential temperature
defined as � = T (P0/P)1−1/γ , T is the absolute temperature, T0 is its reference value,
P is the pressure, P0 is its reference value, and γ = cp/cv = 1.41 is the ratio of the specific
heats. We do not consider nonlinear wave–wave interactions. Consequently, we neglect in
Eqs. 7 and 8 the nonlinear terms

(
VW · ∇)

VW and
(
VW · ∇)

�W , and apply to Eq. 7 the
‘curl’ operator to exclude the pressure (PW ) term. The solution of the linearised equations
(7) and (8) in Fourier space reads:

V W
α = −kαkz

k2
h

V W
0 (k) cos(ωt − k · r), (9)

for α = 1, 2,

V W
3 ≡ V W

z = V W
0 (k) cos(ωt − k · r), (10)

�W = − Nk

βkh
V W

0 (k) sin(ωt − k · r) (11)

(see, e.g., Turner 1973; Miropolsky 1981; Nappo 2002). Here, k is the wave vector; kα =
(kx , ky) is the horizontal wave vector, so that kh = ±

√
k2

x + k2
y ; and ω is the frequency of

IGW:

ω = kh

k
N + k · U, (12)

where k =
√

k2
z + k2

h is the total wavenumber. The second term in Eq. 12 is caused by
the Doppler shift due to the sheared mean wind velocity U(z). Equations 9–10 satisfy the
condition of incompressibility of the wave velocity field.
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Propagation of IGW in a stably stratified sheared flow in the approximation of geometrical
optics is determined by the following equations in the Hamiltonian form:

∂r
∂t

= ∂ω

∂k
, (13)

∂k
∂t

= −∂ω

∂r
, (14)

where r is the radius vector of the centre of the wave packet, and k is the characteristic wave
vector (see, e.g., Weinberg 1962). Since the Brunt–Väisälä frequency N (z) and the mean
velocity U(z) are functions only of the vertical coordinate, z, i.e., the only non-zero spatial
derivative in Eq. 14 is ∂ω/∂z, Eqs. 12 and 14 yield kh =constant. For the Hamiltonian system
of Eqs. 13–14, dω/dt = 0, and Eq. 12 yields

kh

k(z)
N (z) + k · (U(z) − U(Z0)) = kh

k0
N (Z0), (15)

where Z0 is the height of the IGW source, k0 = k(z = Z0), and kh(z) = kh(Z0). We
assume that the only source of the IGW is localised at z = Z0 and neglect the generation and
dissipation of waves during their propagation in the atmosphere.

Equation 15 determining the z-dependence of k(z) =
√

k2
z (z) + k2

h implies that the IGW
vertical wavenumbers, kz(z), change when the IGW propagate through the stably stratified

sheared flow. For Z0 = 0 (the IGW source is located at the surface), kz(z) =
√

k2(z) − k2
h ,

and for Z0 = H (the IGW source is located at the upper boundary of the layer under consid-

eration), kz(z) = −
√

k2(z) − k2
h .

The IGW kinetic energy,

EW ≡ 1

2

∫ 〈
V2

W (k)
〉
W d k = 1

4

∫
[V W

0 (k)]2d k, (16)

is related to the energy spectrum eW (k) of the ensemble of IGW: EW = ∫ [eW (k)/2πk2]dk,
and 〈. . .〉W denotes time average over a IGW period. Here, integration in k space over the
angle θ between the axis z and the vector k is performed:

• from 0 to π/2 when the IGW source is located at the surface, and
• from −π/2 to 0, when the IGW source is located at the upper boundary of the layer.

Equations 9, 10 and 16 yield the expression for the wave amplitude: [V W
0 (k)]2 = (2k2

h/

πk4)eW (k). We assume that the energy spectrum of the ensemble of IGW generated at the
point Z0 is isotropic and has the power-law form:

eW (k0) = (µ − 1)EW H−(µ+1)k−µ
0 , (17)

where EW = ∫ [eW (k0)/2πk2
0]dk0 = ∫

eW (k0)dk0. Observations give different values
of the exponent µ from 1 to 4 (Fofonoff 1969; Pochapsky 1972; Garrett and Munk 1979;
Miropolsky 1981; Nappo 2002; Fritts and Alexander 2003). The wave vector k0 varies from
H−1 to L−1

W , where LW is the minimal wave length of the large-scale IGW. It is assumed
that LW is much larger than the turbulence length scale but much smaller than the depth of
fluid, H .

For simplicity we consider the power-law form, Eq. 17, of the energy spectrum of
the ensemble of IGW. This standard assumption is supported by many experiments (e.g.,
Nappo 2002; Fritts and Alexander 2003; and references therein). Other forms of the energy
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spectrum would cause only minor changes in coefficients in the theoretical dependencies
obtained below (in Sects. 4–6) but would not change their form. The exponent µ is a free
parameter, which must exceed unity and be less than 4 (see Nappo 2002; Fritts and Alexan-
der 2003; and references therein). Variations in µ change only the coefficient on the r.h.s.
of Eq. 43 for the IGW transport of momentum (see Sect. 4), and only weakly affect other
theoretical dependencies.

3 Basic Equations for Turbulent Flows Accounting for Large-Scale IGW

We consider the large-scale IGW whose periods and wavelengths are much larger than the
turbulent time and length scales. Therefore, although the IGW have random phases, the wave
field interacts with small-scale turbulence in same way as the mean flow. We represent the
total velocity as the sum of the mean-flow velocity,U(z), the wave-field velocity, VW , and
the turbulent velocity, u, and neglect the wave–wave interactions at large scales but take
into account the turbulence–wave interactions. We limit our analysis to flows in which the
vertical variations [along the x3 (or z) axis] of the mean wind velocity U = (U1, U2, U3)

and potential temperature � are much larger than the horizontal variations [along x1, x2 (or
x, y) axes], so that the terms associated with the horizontal gradients in the budget equations
for turbulent statistics can be neglected.

For typical atmospheric flows, the vertical scales (limited to the height scale of the atmo-
sphere or the ocean: H ∼ 104 m) are much smaller than the horizontal scales, so that the mean
vertical velocity is much smaller than the horizontal velocity. To close the Reynolds equations
in these conditions, we need only the vertical component, Fz , of the potential temperature
flux and the two components of the vertical turbulent flux of momentum that comprise the
turbulent contributions, τ13 and τ23, and the direct contributions of the large-scale IGW, τ W W

1 j

and τ W W
2 j .

The mean-flow momentum equations and thermodynamic energy equation accounting for
the large-scale IGW can be written as follows:

DU1

Dt
= f U2 − 1

ρ0

∂ P

∂x
− ∂τ13

∂z
− ∂τ W W

1 j

∂x j
, (18)

DU2

Dt
= − f U1 − 1

ρ0

∂ P

∂y
− ∂τ23

∂z
− ∂τ W W

2 j

∂x j
, (19)

D�

Dt
= −∂ Fz

∂z
− ∂ FW W

j

∂x j
+ J, (20)

where D/Dt = ∂/∂t + Uk∂/∂xk; τi j = 〈
ui u j

〉 ; Fi = 〈ui θ〉; t is the time; ρ0 is the mean
density; J is the heating/cooling rate (J = 0 in adiabatic processes); P is the mean pressure;
u = (u1, u2, u3) = (u, v, w) and θ are the velocity and potential-temperature fluctuations,
respectively. The angle brackets 〈. . .〉 denote the ensemble average over turbulent fluctuations.
Besides the ensemble averaging, Eqs. 18–20 are averaged in time over the IGW period. This
procedure is denoted by 〈. . .〉W . It implies that 〈cos(ωt − k · r)〉W = 〈sin(ωt − k · r)〉W = 0
and

〈
cos2(ωt − k · r)

〉
W = 1/2.

Any direct effects of IGW on the mean flow are determined by the second-order moments
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τ W W
α j =

〈
V W

α V W
j

〉

W
, (21a)

α = 1, 2,

FW W
j =

〈
V W

j �W
〉

W
, (21b)

which determine the wave-induced fluxes of momentum and potential temperature. In the
linear theory, IGW do not transfer heat (so that F W W

j = 0) but transfer momentum (e.g.,

Nappo 2002). Accordingly, we neglect FW W
j but account for τ W W

α j (see Sect. 4.2).

The budget equations for the turbulent kinetic energy (TKE), EK = 1
2 〈ui ui 〉, the squared

potential temperature fluctuations, Eθ = 1
2

〈
θ2

〉
, and the potential-temperature flux, Fi =

〈ui θ〉, accounting for large-scale IGW can be written as follows:

DEK

Dt
+ ∂�K

∂z
= −τi3

∂Ui

∂z
+ βFz − εK −

〈

τ W
i j

∂V W
i

∂x j

〉

W

+ β
〈
V W

z �W
〉

W
, (22)

DEθ

Dt
+ ∂�θ

∂z
= −Fz

∂�

∂z
− εθ −

〈
FW

j
∂�W

∂x j

〉

W

, (23)

DFi

Dt
+ ∂

∂x j
�

(F)
i j = βi

〈
θ2〉 + 1

ρ0
〈θ∇i p〉 − τi3

∂�

∂z
− Fj

∂Ui

∂x j
− ε

(F)
i −

〈
τ W

i j
∂�W

∂x j

〉

W

−
〈

FW
j

∂V W
i

∂x j

〉

W

. (24)

Recall that Eθ is proportional to the turbulent potential energy (TPE):

EP = β2

N 2 Eθ , (25)

so that Eq. 23 is equivalent to the budget equation for EP .
As already mentioned, we are interested, first of all, in the vertical flux, F3 = Fz = 〈wθ〉,

whose budget equation is

DFz

Dt
+ ∂

∂z
�F = β

〈
θ2〉 + 1

ρ0

〈
θ

∂

∂z
p

〉
− 〈

w2〉 ∂�

∂z
− ε(F)

z −
〈
τ W

j3
∂�W

∂x j

〉

W

−
〈

FW
j

∂V W
z

∂x j

〉

W

. (26)

Accounting for IGW, the budget equation for the Reynolds stresses, τi j = 〈
ui u j

〉
, reads:

Dτi j

Dt
+ ∂

∂xk
�

(τ)
i jk = −τik

∂U j

∂xk
− τ jk

∂Ui

∂xk
+ β(Fjδi3 + Fiδ j3) + Qi j − ε

(τ)
i j

−
〈

τ W
ik

∂V W
j

∂xk

〉

W

−
〈

τ W
jk

∂V W
i

∂xk

〉

W

. (27)

Hence, the budget equations for the non-diagonal, τα3, and diagonal, ταα = 2Eα , components
of the Reynolds stresses, τi j = 〈

ui u j
〉
, can be written as follows:
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Dτα3

Dt
+ ∂

∂z
�(τ)

α = − 〈
w2〉 ∂Uα

∂z
+ βFα + Qα3 − ε

(τ)
α3 −

〈

τ W
α j

∂V W
z

∂x j

〉

W

−
〈
τ W

j3
∂V W

α

∂x j

〉

W

,

(28)

DEα

Dt
+ ∂

∂z
�(τ)

α = −τα3
∂Uα

∂z
+ 1

2
Qαα − ε(τ)

αα −
〈
τ W
α j

∂V W
α

∂x j

〉

W

, (29)

DEz

Dt
+ ∂

∂z
�(τ)

z = βFz + 1

2
Q33 − ε

(τ)
33 −

〈

τ W
j3

∂V W
z

∂x j

〉

W

, (30)

where βi = βei ; e = (e1, e2, e3) is the vertical unit vector; τα3 = 〈uαw〉 (α = 1, 2) are the
two components of the vertical turbulent flux of momentum, and Fα = 〈uαθ〉 are the hori-
zontal fluxes of potential temperature (α = 1, 2). In Eq. 29 we do not apply the summation
convention for the double Greek indices.

The terms �K ,�θ in Eqs. 22–23 are the third-order moments determining turbulent fluxes
of EK and Eθ :

�K = 1

ρ0
〈p u〉 + 1

2

〈
u2 u

〉 + �W
K , (31a)

whose z-component is

�K = 1

ρ0
〈p w〉 + 1

2

〈
u2 w

〉 + �W
K , (31b)

�θ = 1

2

〈
θ2 u

〉 + �W
θ , (31c)

whose z-component is

�θ = 1

2

〈
θ2 w

〉 + �W
θ , (31d)

where the terms marked with the superscript “W ” denote the wave-driven turbulent fluxes of
EK and Eθ .

The terms �
(F)
i j ,�F = �

(F)
33 ,�

(τ)
i jk and �

(τ)
α in Eqs. 24–30 are the third-order moments

representing the fluxes of fluxes:

�
(F)
i j = 1

2ρ0
〈p θ〉 δi j + 〈

ui u jθ
〉 + �

(FW )
i j , (32a)

�
(F)
33 = �F = 1

2ρ0
〈p θ〉 + 〈

w2θ
〉 + �

(FW )
33 , (32b)

�
(τ)
i jk = 〈

ui u j uk
〉 + 1

ρ0

(〈pui 〉 δ jk + 〈
pu j

〉
δik

) + �
(τW )
i jk , (33a)

�
(τ)
i = �

(τ)
i33 = 〈

ui w
2〉 + 1

ρ0
〈pui 〉 + �

(τW )
i , (33b)

where the terms marked with the superscript “(W )” denote the wave-driven turbulent fluxes
of fluxes, and Qi j are correlations between the fluctuations of the pressure, p, and the velocity
shears:

Qi j = 1

ρ0

〈
p

(
∂ui

∂x j
+ ∂u j

∂xi

)〉
. (34)
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The terms, εk,ε
(τ )
i j , εθ and ε

(F)
i are determined by the following relations,

εK = ν

〈
∂ui

∂xk

∂ui

∂xk

〉
, (35a)

ε
(τ)
i j = 2ν

〈
∂ui

∂xk

∂u j

∂xk

〉
, (35b)

εθ = −κ 〈θ � θ〉 , (36a)

ε
(F)
i = −κ (〈ui � θ〉 + Pr 〈θ � ui 〉) , (36b)

where ν is the kinematic viscosity, κ is the temperature diffusivity, and Pr = ν/κ is the
Prandtl number.

The diagonal terms, ε
(τ)
11 , ε

(τ)
22 , ε

(τ)
33 , εK (the sum of ε

(τ)
i i ), εθ , andε

(F)
i , representing the

dissipation rates for ταα, EK , Eθ and F (F)
i , respectively, are expressed using the Kolmogorov

(1941) hypothesis:

εK = EK

CK tT
, (37a)

ε(τ)
αα = ταα

CK tT
, (37b)

εθ = Eθ

CP tT
, (37c)

ε
(F)
i = Fi

CF tT
, (37d)

where tT is the turbulent dissipation time scale, CK , CP and CF are dimensionless constants,
and the summation convention is not applied to the double Greek indices.

In the budget equations for the vertical turbulent fluxes of momentum, τα3 (α = 1, 2), the
terms ε

(τ)
α3 dependent on the molecular viscosity are usually small, whereas the contributions

of the terms βFα and Qα3 to dissipation are overwhelming. Following Zilitinkevich et al.
(2007), we introduce the Reynolds-stress “effective dissipation rates”:

εα3(eff) ≡ ε
(τ)
α3 − βFα − Qα3,

(38)

for α = 1, 2, and, by analogy with Eq. 37, apply to them the closure hypothesis:

εα3(eff) = τα3

tτ
= τα3

Cτ tT
, (39)

where tτ is the effective dissipation time scale, and Cτ is a dimensionless coefficient account-
ing for the difference between tτ and tT . The turbulent dissipation time scale, tT , is expressed
through the vertical turbulent length scale, lz , and the kinetic energy of the vertical velocity
fluctuations:

tT = lz

E1/2
z

. (40)

Equations 18–20 and 22–30 are obtained by averaging over the ensemble of turbulent
fluctuations and over the period of large-scale IGW. These equations in a general form with-
out the IGW terms can be found, e.g., in Kaimal and Fennigan (1994), Kurbatsky (2000),
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Cheng et al. (2002) and Canuto and Minotti (1993). Equation 22 is presented in Einaudi and
Finnigan (1993). Hereafter we restrict our analysis to the effects of IGW on the second-order
statistics and leave the IGW third-order moments (the fluxes of energies and the fluxes of
momentum and heat fluxes) for further study.

The IGW terms in the above equations include the wave-field velocity and temperature,
V W

i and �W , specified by Eqs. 9–11; and the instantaneous Reynolds stresses, τ W
i j , and tur-

bulent flux of potential temperature, F W
i , caused by the IGW–turbulence interaction. We

determine τ W
i j approximately—subtracting Eq. 27 from the ensemble-averaged equation for

τi j but not averaged over the IGW period, assuming that ωtT 	 1 and ε
(τ)
i = τ W

i j /(Cτ tT ),
and omitting the terms quadratic in wave amplitude, which do not contribute to the correla-

tions
〈
τ W

i j

(
∂V W

i /∂x j
)〉

W
and

〈
τ W

i j

(
∂�W /∂x j

)〉

W
:

τ W
i j ≈ −Cτ tT

(

τik
∂V W

j

∂xk
+ τ jk

∂V W
i

∂xk

)

. (41)

Similarly, we determine F W
i also approximately—subtracting Eq. 24 from the ensemble-

averaged equation for Fi but not averaged over the IGW period, assuming that ωtT 	 1
and ε

(F)
i = FW

i /(CF tT ), and omitting the terms quadratic in wave amplitude, which do not

contribute to the correlations
〈
FW

j

(
∂V W

i /∂x j
)〉

W
and

〈
FW

j

(
∂�W /∂x j

)〉

W
:

FW
i ≈ −CF tT

(

τi j
∂�W

∂x j
+ τ W

i3
∂�

∂z
+ Fj

∂V W
i

∂x j

)

. (42)

Concrete effects of IGW on turbulence are considered in the following sections.

4 The Effects of Large-Scale IGW on the Turbulent Transports and Energies

4.1 The IGW Transport of Momentum

For simplicity, we consider the stationary, homogeneous regime of turbulence, neglect the
effect of the Earths rotation, and assume that the mean wind velocity is directed along the
x-axis: U = (U, 0, 0). Using Eqs. 9 and 10 for the IGW velocity field, Eq. 17 for the IGW
energy spectrum, and assuming that |U (z) − U (Z0)| 	 LW N (Z0), integration over the spec-
trum of the IGW vertical flux of momentum, τ W W

α3 (k0) = −kαkz(k0)eW (k0)/[πk2
0k2(k0)],

in k-space yields:

τ W W
α3 =

〈
V W

α V W
z

〉

W
=

∫
τ W W
α3 (k0) dk0

= ±�[U (Z0) − U (z)]
3N (z)H

[(Q + 4) E(Q) − (Q + 2) K (Q)] EW , (43)

where Q is the dimensionless lapse rate:

Q =
[

N (z)

N (Z0)

]2

. (44)
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The coefficient � is expressed through the exponent µ in the power-law energy spectrum of
IGW, namely, for 1 < µ < 2:

� = µ − 1

2 − µ

(
H

Lw

)2−µ

, (45a)

for µ = 2:

� = ln

(
H

LW

)
, (45b)

for 2 < µ:

� = µ − 1

µ − 2
, (45c)

where K (Q) = ∫ π/2
0 (1 − Q−1 sin2 θ)

−1/2
dθ and E(Q) = ∫ π/2

0 (1 − Q−1 sin2 θ)
1/2

dθ are
the complete elliptic integrals of the first and the second types, respectively. Plus or minus
signs in Eq. 43 correspond to the cases when the IGW sources are located at the lower (Z0 = 0)
or upper (Z0 = H ) boundaries, respectively. The condition, |U (z) − U (Z0)| 	 LW N (Z0),
is introduced to simplify further derivations and results, which otherwise become too cum-
bersome. This assumption is not principal and can be relaxed. At large Q, the integrals are
K (Q) = E(Q) ≈ π/2 and Eq. 43 reads:

τ W W
α3 ≈ ±π

3

�[U (z) − U (Z0)]
N (z)H

EW . (46)

When the IGW sources are located at the lower boundary (Z0 = 0) and IGW are generated
by the interaction of the flow with mountains or hills, τ W W

α3 is negative so that IGW transport
momentum downward and increase the total downward momentum flux, τα3 + τ W W

α3 (where
τ W W
α3 < 0 and τα3 < 0). This well-known mechanism is called “wave drag” (e.g., Nappo

2002). When the IGW sources are located at the upper boundary (Z0 = H ), e.g., when IGW
propagating in the free atmosphere are trapped by the stably stratified atmospheric boundary
layer (ABL), IGW transport momentum upwards (τ W W

α3 > 0) because U (z) < U (Z0). Then
the vertical flux of the momentum τ W W

α3 is subtracted from the turbulent flux, τα3 < 0, and the
total vertical flux of momentum reduces. These effects can be parameterized using Eq. 43.

4.2 The IGW Production of Turbulent Energies and Turbulent Flux of Potential
Temperature

The IGW contribution to the production of TKE, EK , is


W = −
〈

τ W
i j

∂V W
i

∂x j

〉

W

=
∫


W (k0) dk0, (47)

where 
W (k0) is the production of EK in k-space, caused by the diagonal components of
the tensor τ jk :


W (k0) = Cτ tT τ jkk j kk
eW (k0)

πk2
0

= 2Cτ tT
(

Ezk2
z (k0) + Ex k2

x + Eyk2
y

) eW (k0)

πk2
0

. (48)

Integration over k yields


W = 4Cτ

3
E1/2

z lz S2G

[
1

Az
+ 3(Q − 1)

]
, (49)
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where Az = Ez/EK is ratio of the vertical kinetic energy to TKE, G is a dimensionless
“wave-energy parameter” proportional to the normalized IGW kinetic energy, EW :

G = EW

S2 H2

µ − 1

3 − µ

(
H

LW

)3−µ

. (50)

In further analysis we assume that the wavelengths are much shorter than the basic depth
scale: Lw 	 H .

The IGW contribution to the production of the vertical component of TKE, Ez , is


w
z = −

〈

τ W
j3

∂V W
z

∂x j

〉

W

=
∫


W
z (k0) dk0, (51)

where 
W
z (k0) = 
W (k0)k2

h/k2 is the production of Ez in k-space. Integration over k in
Eq. 51 yields


W
z = 8Cτ

3
E1/2

z lz S2G

[
1 + 2

5Q
(A−1

z − 3)

]
. (52)

The IGW contribution to the productions of the longitudinal, Ex , and the transverse, Ex ,
components of TKE are


W
x = 
W

y = 1

2

(

W − 
W

z

)
= 2Cτ

3
E1/2

z lz S2G

[
3Q − 2 + (A−1

z − 3)

(
1 − 4

5Q

)]
.

(53)

The IGW contribution to the production of Eθ = 1
2

〈
θ2

〉
is


W
θ = −

〈
FW

j
∂�W

∂x j

〉

W

=
∫


W
θ (k0) dk0, (54)

where


W
θ (k0) = 2CF tT

N 2(z)

β2

(
Ezk2

z (k0) + Ex k2
x + Eyk2

y

) eW (k0)

πk2
0

, (55)

and CF is an empirical dimensionless constant. Here, we take into account that only diago-
nal components of the tensor τ jk contribute to 
W

θ (k0) (similarly to the production of EK ).
Integration in Eq. 54 in k-space yields


W
θ = FW

θ

N 2(z)

β
, (56)

where FW
θ is the wave-induced turbulent flux of potential temperature:

FW
θ = 4CF

3β
E1/2

z lz S2G
[
A−1

z + 3(Q − 1)
]
. (57)

Note that the vertical flux of potential temperature is negative (downward), which is the
reason for the negative production (see Eq. 56). The IGW contribution to the production of
Eθ is affected by FW

θ , which in its turn is affected by Eθ .
In order to determine the direct effect of IGW on F W

θ , we take into account that
〈
Vi�

W
〉
W = 0, which yields

〈
τ W

i j
∂�W

∂x j

〉

W
= 0. Then, using Eq. 52, the term

〈
FW

j

(
∂V W

z /∂x j
)〉

W
describing the production of Fz in Eq. 26, can be written as follows:
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W
F = −

〈

FW
j

∂V W
z

∂x j

〉

W

= −CF
W
33

lz

E1/2
z

N 2(z)

β

= −8CF Cτ

3
l2
z S2G

[
1 + 2

5Q
(A−1

z − 3)

]
N 2

β
. (58)

The production of the non-diagonal components of the Reynolds stresses, τα3, caused by
IGW is


W
τα = −

〈

τ W
α j

∂V W
z

∂x j

〉

W

−
〈
τ W

j3
∂V W

α

∂x j

〉

W

=
∫


W
τα(k0) dk0, (59)

where


W
τα(k0) = −2Cτ tT τi j

ki k j kαkz

k2(k0)

eW (k0)

πk2
0

. (60)

Here we take into account that only diagonal components of the tensor τ jk contribute to

W

τα(k0). Using Eq. 17 and integrating in k-space in Eq. 59 yields:


W
τα = −8Cτ

3
τα3

lz S2

E1/2
z

G

(
1 − 4

5Q

)
. (61)

Finally, the production of the total turbulent energy (TTE) E = EK + EP caused by IGW is


W
E = 
W + 
W

θ

β2

N 2 . (62)

Consequently, IGW contribute to the production of both TKE and TPE, in contrast to the
mean shear, which contributes only to the TKE production.

5 Turbulence Closures with and without IGW for the Steady-State Regime

5.1 The Background Energy- and Flux-Budget (EFB) Closure Model

In this section we present a refined version of the EFB turbulence closure model
(Zilitinkevich et al. 2007). The latter employed the same equations as Eqs. 22–30 but without
the IGW terms (marked in the present paper with the superscript “W”). Zilitinkevich et al.
(2007) assumed that the dissipation constants for the kinetic and potential energies were
equal (CP = CK ) and had to admit that the ratio Cτ = tτ /tT depends on Ri. Our analysis of
the experimental data revealed that this assumption was not quite correct:

• the dissipation constants are different: CP/CK = 0.72,
• accounting for this difference, the coefficient Cτ turns into a universal (independent of

Ri) constant.

This leads to an essentially simplified EFB closure model—with CP 
= CK but Cτ =
constant, and yields a very simple formula for the eddy viscosity: KM = 2Cτ E1/2

z lz . Note
that principally the same result, KM (E1/2

z lz)
−1 = constant, has been derived from a quite

rigorous analysis of the budget equations for the Reynolds stresses in k-space based on the
τ -approximation (Elperin et al. 2002, 2006).

In order to better fit the EFB model to the available observational data on the vertical
anisotropy, Zilitinkevich et al. (2007) proposed a modified formulation of the Rotta (1951)
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return-to-isotropy hypothesis. Considering the IGW–turbulence interaction, we now recog-
nise that the apparent deviations from the Rotta hypothesis are caused by the effect of IGW.
Therefore, it is only natural to retain the universally recognised classical formulation whereby
the sum of the terms

∑
Qii = ∑

ρ−1
0 〈p∂ui/∂xi 〉 in Eqs. 28–30 is zero because of the con-

tinuity equation
(∑

∂ui/∂xi = 0
)
, so that Qαα describe the energy transfer from the high

energy to the lower energy components:

Qαα = − 2Cr

3CK tT
(3Eα − EK ), (63)

where Cr is a dimensionless constant accounting for the difference between the relaxation
(return to isotropy) and dissipation time scales.

The terms β
〈
θ2

〉
and ρ−1

0 〈θ∂p/∂z〉 in the budget equation (26) for the vertical turbulent
flux of potential temperature play a very important role. Zilitinkevich et al. (2007) showed
that ρ−1

0 〈θ∂p/∂z〉 is negative and scales as β
〈
θ2

〉
, which yields:

β
〈
θ2〉 + ρ−1

0 〈θ∂p/∂z〉 = Cθβ
〈
θ2〉 , (64)

where Cθ < 1 is an empirical constant. We retain this approximation in the present study.
On these grounds we afford different values of CP and CK and essentially simplify the

original EFB model setting Cτ = constant and using the standard return-to isotropy formu-
lation, Eq. 63.

5.2 The EFB + IGW Closure Model

Now we generalise the refined EFB closure model (Sect. 5.1) considering the budget equa-
tions (22)–(30) with the IGW terms determined by Eqs. 49, 52, 56–58. To demonstrate the
role of IGW, we compare the two versions of the closure—with and without IGW—in the
steady-state regime of turbulence, when the left-hand sides (l.h.s.) of all budget equations are
zero, so that the model reduces to a system of algebraic equations. We focus on the turbulent
energies and fluxes and leave the problem of determining the vertical turbulent length scale,
lz , for a separate study. In further derivations we basically follow Zilitinkevich et al. (2007)
but introduce the changes indicated in Sect. 5.1 and include the effects of IGW presented in
Sects. 3 and 4.

In the steady state, the system of equations (22)–(23), (26), (28) and (30) reads:

−τi3
∂Ui

∂z
+ βFz − EK

CK tT
+ 
W = 0, (65)

−Fz
N 2

β
− Eθ

CP tT
+ 
W

θ = 0, (66)

2CθβEθ − 2Ez
N 2

β
− Fz

CF tT
+ 
W

F = 0, (67)

−2Ez
∂Uα

∂z
− τα3

Cτ tT
+ 
W

τα = 0, (68)

βFz − Cr

3CK tT
(3Ez − EK ) − Ez

CK tT
+ 
W

z = 0, (69)

where the productions, 
W ,
W
z 
W

θ ,
W
F and 
W

τα , are determined by Eqs. 49, 52, 56, 58
and 61.
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In the steady state, Eqs. 65–69 specify the turbulent energies and the vertical turbulent
fluxes as dependent on the turbulent length scale, lz , and the following dimensionless exter-
nal parameters:

• gradient Richardson number Ri, Eq. 1,
• wave-energy parameter G, Eq. 50,
• lapse rate parameter Q, Eq. 44, characterising the IGW refraction.

A remarkable feature of this system is that lz drops out from the equations specifying the
dimensionless parameters of turbulence,1 so that the latter are determined as universal func-
tions of Ri, G and Q, without any knowledge about lz . In particular, for the dimensionless ver-
tical TKE Êz , the vertical flux of potential temperature F̂z and the energy ratio Az defined as

Êz ≡ Ez

(Slz)2 , (70a)

F̂z ≡ −βFz

E1/2
z lz S2

, (70b)

Az ≡ Ez

EK
, (70c)

the system reduces to the following three algebraic equations:

Êz − 2CK Cr Cτ

3(1 + Cr )

{
1 −

(
1 + 3

Cr

)
F̂z

2Cτ

+ G

[
1

3Az

(
1 + 12

5Cr Q

)

+ Q − 1 + 2

Cr

(
1 − 6

5Q

)]}
= 0 (71)

Az − Êz

2CK Cτ

(

1 − F̂z

2Cτ

+ 2G

3

(
A−1

z + 3(Q − 1)
)
)−1

= 0, (72)

G

[
1

Az

(
2Cτ

5Q
− C

)
+ Cτ

(
1 − 6

5Q

)
− 3C(Q − 1)

]

+ 3Êz

4CF

[
1 − F̂z

(
1

2CF Ri
+ CθCP

Êz

)]
= 0, (73)

where C = CθCK . The system of algebraic equations (71)–(73) determines the three func-
tions:

Êz = Êz(Ri, G, Q), (74a)

F̂z = F̂z(Ri, G, Q), (74b)

Az = Az(Ri, G, Q), (74c)

1 This result is very favourable. It allows us to fully separate the problems of the energy and flux budgets
(considered in this paper) and the vertical turbulent length scale, lz (to be considered later).
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which can be found numerically. Other important dimensionless parameters of turbulence
are expressed through Êz, F̂z and Az :

Ri f ≡ −βFz

τ S
= F̂z

2Cτ

[
1 + 8C2

τ

3Êz
G

(
1 − 4

5Q

)]
, (75)

(
τ

EK

)2

≡
(

τ 2
13 + τ 2

23

EK

)

= Êz

C2
K

(

1 − F̂z

2Cτ

+ 2G

3

(
A−1

z + 3(Q − 1)
)
)−2

×
[

1 + 8C2
τ

3Êz
G

(
1 − 4

5Q

)]−2

, (76)

F2
z

EK Eθ

= 2Cτ Az

CP PrT

[
1 + 4CF

3F̂z
G

(
A−1

z + 3(Q − 1)
)]−1

, (77)

E p

EK
= CP

2Cτ CK

[
F̂z + 4CF

3
G

(
A−1

z + 3(Q − 1)
)]

×
(

1 − F̂z

2Cτ

+ 2G

3

(
A−1

z + 3(Q − 1)
)
)−1

. (78)

In contrast with Eqs. 76–78, the vertical turbulent fluxes of momentum and potential temper-
ature essentially depend on lz :

τα3 = −KM
∂Uα

∂z
, (79a)

KM = 2Cτ E1/2
z lz

[
1 + 8C2

τ

3Êz
G

(
1 − 4

5Q

)]−1

, (79b)

Fz = −K H
∂�

∂z
, (80a)

K H = KM Ri f

Ri
, (80b)

where Ri f is determined by Eq. 75.
At Ri 	 1, the above dimensionless parameters have precisely the same asymptotic limits

as in our new EFB closure without IGW:

PrT → Pr (0)
T = Cτ

CF
, (81)

Az → A(0)
z = Cr

3(1 + Cr )
, (82)

(
τ

EK

)2

→ 2Cτ A(0)
z

CK
, (83)

F2
z

EK Eθ

→ 2CF A(0)
z

CP
, (84)

where the superscript “(0)” denotes Ri → 0.
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6 Comparison of the EFB + IGW Model with Empirical Data

Zilitinkevich et al. (2007) assumed that CP = CK and determined the empirical coeffi-
cients Cr , CK , CF , Cτ (in op. cit. designated by �τ ), and Cθ by comparison of results from
the model with data from field and laboratory experiments, large-eddy simulations (LES)
and direct numerical simulations (DNS) related to the asymptotic regimes at Ri 	 1 and
Ri � 1. For Ri 	 1 we employ, in particular, the following estimates: A(0)

z = 1/6 [after
laboratory experiments on wall-bounded turbulence (L’vov et al. 2006) and DNS (Moser et
al. 1999)], (τ/EK )(0) = 0.26 and [F2

z (EK Eθ )
−2] (0) = 0.11 (after our comparative analyses

of different data). The superscript (0) in the above notations means “at Ri 	 1”.
As already mentioned, we basically follow Zilitinkevich et al. (2007) but no longer assume

that CP = CK . Then using the well-established empirical values of the turbulent Prandtl num-
ber, Pr (0)

T = 0.8 (Elperin et al. 1996; Churchill 2002; Foken 2006), and the von Karman
constant, ku = 0.4, in the wall law dU/dz = τ 1/2(ku z)−1 for the neutrally stratified surface
layer (where lz ∼ z), the four constants are immediately obtained:

Cr = 3A(0)
z (1 − 3A(0)

z )−1 = 1, (85)

CK = ku(A(0)
z )1/2

[
(τ/EK )(0)

]−3/2 = 1.2, (86)

Cτ = CK (2A(0)
z )−1(τ 2/E2

K )(0) = 0.25, (87)

CF = Cτ /
(0)

Pr
T

= 0.31, (88)

where we used Eqs. 81–84. Note that these estimates employ only data for neutrally stratified
flows and therefore are equally relevant to the EFB and the EFB+IGW models because the
IGW effects diminish at Ri 	 1.

The maximal flux Richardson number for the flow without IGW, Ri∞f , and the ratio
CP/CK can be roughly estimated using Eq. 7 in Zilitinkevich et al. (2008), which is derived
from the budget equations for the kinetic and potential turbulent energies:

EP

E
= (CP /CK)Ri f

1 + (CP/CK − 1)Ri f
. (89)

Using the following values for the parameters Ri∞f = 0.2 and (EP/E)∞ = 0.15 (see the
thick solid line in Fig. 5 representing a median for different kinds of empirical data), and
Eq. 89 we determined that

CP/CK = 0.72 . (90)

Because of a lack of better data, we consider this value of CP/CK ,relevant to the regime
without IGW.

It remains to determine the constant Cθ in Eq. 67. In the EFB closure without IGW, it
is expressed through the limiting values of the energy ratio, Az , and the flux Richardson
number, Ri f , at Ri → ∞. Then, adopting reasonable values, Ri∞f = 0.2 and A∞

z = 0.056,
for the regime without IGW (solid lines in Figs. 2–5 based on the DNS, LES and laboratory
experiments presumably unaffected by IGW), we obtain

Cθ = A∞
z

Ri∞f
(1 − Ri∞f ) = 0.31, (91)

where the superscripts “(0)” and “∞” denote “at Ri = 0” and “at Ri → ∞”, respectively.

123



158 S. S. Zilitinkevich et al.

Typical atmospheric values of the wave-energy parameter G, Eq. 50, and the lapse rate
parameter Q, Eq. 44, determining the effects of IGW in our closure model, are estimated
as follows. The first parameter, G, is obviously non-negative and in the Earth’s troposphere
could vary from zero (in the absence of waves) to about 10 in layers with strong wave activ-
ity. In the stratosphere G could be much larger, and IGW could become the major source of
turbulence.

Since the IGW are trapped by the strongly stratified layers, we consider N (z) ≥ N (Z0),
that is Q ≥ 1. Furthermore, the static stability of the troposphere varies only slightly around
typical value of the Brunt–Väisälä frequency N ≈ 10−2 s−1. Therefore, reasonable esti-
mates for the orographically generated IGW are: N (z) ≈ N (Z0) ≈ 10−2 s−1, and Q =
[N (z)/N (Z0)]2 ≈ 1. In the alternative case, when IGW propagating in the free troposphere
are trapped by the stronger stratified long-lived stable planetary boundary layer, where N 2 ≈
5(βFz/τ)2s−2(e.g., Zilitinkevich and Esau 2007), Q could be a few times larger. A reasonable
meteorological range of the lapse rate parameter is 1 < Q < 5.

In the EFB+IGW model the maximal flux Richardson number Rimax
f ≡ (limRi f at Ri →

∞) is no longer a universal constant. Its variations are controlled by the counteraction of the
direct and indirect mechanisms of generation of the turbulent flux of potential temperature
by IGW, namely, by the two terms on the right-hand side (r.h.s.) of Eq. 26: “direct”: 
w

F =
−

〈
Fw

j (∂V w
z /∂x j )

〉

w
and “indirect”, caused by the temperature fluctuations: Cθβ

〈
θ2

〉 =
β

〈
θ2

〉+ρ−1
0 〈θ(∂p/∂z)〉 (where

〈
θ2

〉
satisfies Eq. 23). As shown in Fig. 1, Rimax

f with increas-
ing G increases at 1 ≤ Q < 1.02, and decreases at Q > 1.03. Note that the maximal flux
Richardson number Rimax

f at Q > 1.03 reaches zero at some value of G (dependent on Q).
For larger G the vertical flux of potential temperature becomes positive, that is counter-gra-
dient. This looks surprising, but in fact is only natural. Indeed, IGW generate the potential
temperature fluctuations, which in turn generate the upward (positive) contribution to the flux
of potential temperature (cf. the above “indirect” mechanism). When the “indirect” share of
the flux becomes larger than the “direct” share, the resulting flux changes sign and becomes
positive in spite of the stable stratification.

Figures 2–5 show empirical data on the Ri dependences of the turbulent Prandtl num-
ber, PrT , flux Richardson number, Ri f , energy–flux ratios, (EK /τ)2 and (EK Eθ )/F2

z , and
energy ratios Az and EP/E together with theoretical curves plotted after the EFB model
(heavy solid lines) and the EFB+IGW model for different G and Q. Since at Ri < 0.25,
large-scale IGW practically do not affect turbulence, the model predictions accounting for
IGW are plotted in Figs. 2–5 only for Ri > 0.25.

Fig. 1 Maximal values Rimax
f

(attainable at Ri → ∞) of the
flux Richardson number,
Ri f = −βFz(τ S)−1, as
functions of the wave energy
parameter, G, Eq. 50, for
different values of the lapse rate
parameter, Q, Eq. 44

123



EFB Turbulence Closure Model for Stably Stratified Flows 159

Fig. 2 Ri dependences of a turbulent Prandtl number, PrT = KM/K H , and b flux Richardson number, Ri f .
Data points show meteorological observations: slanting black triangles (Kondo et al. 1978), snowflakes (Bertin
et al. 1997); laboratory experiments: black circles (Strang and Fernando 2001), slanting crosses (Rehmann
and Koseff 2004), diamonds (Ohya 2001); LES: triangles (Zilitinkevich et al. 2008); and DNS: five-pointed
stars (Stretch et al. 2001). Curves are plotted after our model (with Ri∞f = 0.2): thick solid lines for the
no-IGW regime (G = 0); thin dashed-dotted lines for Q = 1 and G = 5; dashed lines for Q = 1 and G = 1;
thick dashed-dotted lines for Q = 1 and G = 0.5; thin solid lines for Q = 1.5 and G = 0.3; dotted lines for
Q = 1.5 and G = 0.2

Recall that we consider the simplest version of our closure model relevant to the
stationary homogeneous regime of turbulence (with no non-local sources turbulent ener-
gies or turbulent fluxes). On the contrary, most available empirical data represent vertically
(and in some cases also horizontally) heterogeneous flows, controlled (besides Ri, G and
Q) by additional, practically unavailable parameters. In this context, empirical Ri dependen-
cies of PrT , Ri f , (τ/EK )2, F2

z /(EK Eθ ), Az and EP E−1
K demonstrated by Mauritsen and

Svensson (2007) and Zilitinkevich et al. (2007, 2008) are encouraging.
Below we attempt to more accurately determine empirical constants of the model. For

this purpose, we rule out data suspicious because of strong heterogeneity, and limit our anal-
yses to meteorological data of Kondo et al. (1978), Bertin et al. (1997), Banta et al. (2002),
Poulos et al. (2002), Uttal et al. (2002) and Mahrt and Vickers (2005); laboratory data of
Strang and Fernando (2001), Rehmann and Koseff (2004) and Ohya (2001); LES data of
Esau (2004) and Zilitinkevich et al. 2008; and DNS data of Stretch et al. (2001).
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Fig. 3 Same as in Fig. 2 but for the energy to flux ratios: a (EK /τ)2 and b (EK Eθ )/F2
z . Data points

show meteorological observations: squares [CME = Carbon in the Mountains Experiment, Mahrt and Vickers
(2005)], circles [SHEBA = Surface Heat Budget of the Arctic Ocean, Uttal et al. (2002) ], overturned triangles
[CASES-99 = Cooperative Atmosphere–Surface Exchange Study, Poulos et al. (2002), Banta et al. (2002)];
laboratory experiments: diamonds (Ohya 2001); and LES: triangles (Zilitinkevich et al. 2008). Thick solid
lines show the no-IGW version of the model (G = 0). Other lines are in (a): thin dashed-dotted lines for
Q = 1 and G = 8, dashed lines for Q = 1 and G = 1, thick dashed-dotted lines for Q = 1 and G = 0.5, thin
solid lines for Q = 1.5 and G = 0.3, dotted lines for Q = 1.5 and G = 0.2; and in (b): thick dashed lines for
Q = 1 and G = 0.4, thick dashed-dotted lines for Q = 1 and G = 0.1, thin dashed lines for Q = 1.5 and
G = 0.1, thin dashed-dotted lines for Q = 1.5 and G = 0.05

Empirical Ri dependencies of the turbulent Prandtl number, PrT , and flux Richardson
number, Ri f , are shown in Fig. 2 together with the two kinds of theoretical curves: heavy
solid lines calculated neglecting IGW for Ri∞f = 0.2; and bunches of thin lines calculated
accounting for IGW (for different G and Q) in the interval Ri ≥ 0.25. The latter cover the
range of variability of presented data, which allows us to at least partially attribute the spread
of data to the IGW mechanisms. The same format is used to show the energy to flux ratios:
(EK /τ)2 and (EK Eθ )/F2

z in Fig. 3; the energy ratios: Az = Ez/EK and EP/E in Figs. 4
and 5.

With increasing G, the theory predicts that (EK /τ)2 and (EK Eθ )/F2
z increase and Az

decreases. This looks only natural: in contrast to the mean shear, generating only horizontal
velocity fluctuations, IGW generate both horizontal and vertical fluctuations and directly
contribute to Az . Similarly, the energy ratio, EP/E , increases with increasing G due to the
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Fig. 4 Same as in Figs. 2 and 3 but for the energy ratio Az = Ez/EK with additional DNS data of Stretch
et al. (2001) shown by five-pointed stars. The theoretical curve for the no-IGW regime (G = 0) is shown by
the thick solid line; other theoretical curves are: thin dashed-dotted, for Q = 1 and G = 5; thick dashed, for
Q = 1 and G = 1; thick dashed-dotted, for Q = 1 and G = 0.5; thin dotted, for Q = 1 and G = 0.05;
thin dashed, for Q = 1 and G = 0.01; thin solid, for Q = 1.5 and G = 0.3; thick dotted, for Q = 1.5 and
G = 0.2

Fig. 5 The ratio of the potential to total turbulent energies, EP/E , versus the gradient Richardson number, Ri.
Data points show meteorological observations: overturned triangles [CASES-99 = Cooperative Atmosphere–
Surface Exchange Study, Poulos et al. (2002), Banta et al. (2002)]; laboratory experiments: diamonds (Ohya
2001); and LES: triangles (Zilitinkevich et al. 2008). Curves are plotted after our model with Ri∞f = 0.2:
thick solid line for the no IGW regime (G = 0); thin dashed-dotted line for Q = 1 and G = 5; thick dashed
line for Q = 1 and G = 1; thick dashed-dotted line for Q = 1 and G = 0.5; thin dashed line for Q = 1 and
G = 0.1; thin solid line for Q = 1.5 and G = 0.3; dotted line for Q = 1.5 and G = 0.2

direct generation of turbulent potential energy by IGW. It is worth mentioning that Fig. 3b
reveals the linear asymptote: (EK Eθ )/F2

z ∼ Ri at Ri � 1.

7 Concluding Remarks

In stably stratified atmospheric and oceanic flows, large-scale IGW directly perform
vertical transport of momentum and contribute to TKE and TPE generation. Further-
more, the mean squared potential temperature fluctuation,

〈
θ2

〉
, proportional to the TPE,
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essentially controls the generation of the vertical turbulent flux of potential temperature,
which is why this flux is also affected by IGW. In contrast to the mean shear, which directly
generates only the horizontal component of TKE, large-scale IGW generate all three TKE
components: Ex , Ey and Ez , and therefore essentially reduce anisotropy, that is increase the
parameter Az = Ez/EK . This effect is especially pronounced in very stable stratification
and quite probably represents the key source of a very large scatter in empirical plots of
Azversus Ri.

Furthermore, large-scale IGW generate both kinetic and potential turbulent energies and,
as a rule, increase the share of the potential energy. Consequently, the maximal flux Rich-
ardson number (Rimax

f attainable at Ri → ∞) is no longer a universal constant (Ri∞f ) as
in the EFB model, but a variable parameter essentially dependent on both the IGW energy
parameter G, Eq. 50, and the lapse rate parameter Q, Eq. 44. At different Q, this effect causes
larger as well as smaller values of Rimax

f (see Fig. 1). At Q < 1.03, the theory leaves room
for the values of Rimax

f exceeding 1 – obviously impossible in the stationary homogeneous
flows without IGW, but observed in some experiments. On the contrary, at Q > 1.03 and
sufficiently large values of the wave energy parameter, G, the maximal flux Richardson
number, Rimax

f , reaches zero and then becomes negative, which means that the vertical flux

of potential temperature, Fz , becomes positive, in spite of β∂�/∂z ≡ N 2 > 0. The point
is that IGW directly produce potential temperature fluctuations, which in turn produce the
upward contribution to Fz . When it exceeds the contribution due to the potential temperature
gradient, the resulting flux changes sign and becomes counter-gradient.

When the sources of IGW are located at the lower boundary of the air flow (Z0 = 0),
in particular, when IGW are generated by the flow interaction with mountains or hills, the
vertical flux of momentum caused by IGW, τ W W

α3 , is negative and contributes to the total
(turbulent + wave induced) flux: τα3 + τ W W

α3 < 0. This well-known mechanism is called
“wave drag” (e.g., Nappo 2002).

When the source of IGW is located at the upper boundary of a strongly stratified atmo-
spheric boundary layer trapping the IGW from the free atmosphere, Z0 can be identified with
the boundary-layer height. Then the velocity difference U (z) − U (Z0) is negative; and the
wave-induced vertical flux of momentum, τ W W

α3 , determined by Eq. 43 is oriented upwards:
τ W W
α3 > 0. It follows that τ W W

α3 counteracts the ordinary vertical turbulent flux of momentum,
τα3 < 0, so that the total momentum flux and therefore the level of turbulence in the ABL
diminish.

To the best of our knowledge, the above mentioned IGW mechanism leading to the
counter-gradient heat transfer at large positive gradient Richardson numbers, as well as
the upward transfer of momentum and consequent weakening of the boundary-layer turbu-
lence by trapped IGW, have not been considered until present. The trapped-wave effect
could form the basis for dangerous air pollution events and is therefore of practical
interest.

It goes without saying that the above unexpected theoretical predictions call for empirical
verification. Empirical constants of our turbulence closure model, the most important of which
is Ri∞f , also need to be more carefully determined from field and laboratory experiments,
DNS and LES.
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