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Abstract. A new mean-field theory of turbulent convection is developed based on the idea
that only the small-scale region of the spectrum is considered as turbulence, whereas its
large-scale part, including both regular and semi-organized motions, is treated as the mean
flow. In the shear-free regime, this theory predicts the convective wind instability, which
causes the formation of large-scale semi-organized motions in the form of cells. In the
presence of wind shear, the theory predicts another type of instability, which causes the for-
mation of large-scale semi-organized structures in the form of rolls and the generation of
convective-shear waves propagating perpendicular to the convective rolls. The spatial char-
acteristics of these structures, such as the minimum size of the growing perturbations and
the size of perturbations with the maximum growth rate, are determined. This theory might
be useful for understanding the origin of large-scale cells and rolls observed in the convective
boundary layer and laboratory turbulent convection.
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1. Introduction

In this paper a theoretical approach proposed by Elperin et al. (2002) is
further developed and applied to investigate the mechanisms of the forma-
tion of semi-organized (coherent) structures in the atmospheric convective
boundary layer.

In the traditional approach, semi-organized structures are usually con-
sidered as simply the largest scale turbulent eddies. Accordingly they
are treated in terms of statistical moments and corresponding turbulence
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closures. The term “mean flow” is applied only to the fully regular motion.
In particular, shear-free convection is associated with zero mean flow, and
sheared convection with the one-dimensional, plain-parallel sheared mean
flow.

However, semi-organized structures that are usually observed in the
atmospheric convective boundary layer (CBL) and in laboratory experi-
ments essentially differ from turbulence. First of all, they exist and retain
their specific forms during longer periods than the largest time scales of
turbulence (see, e.g., Etling and Brown, 1993; Atkinson and Wu Zhang,
1996; Brümmer, 1999; and references therein). In atmospheric shear-free
convection, the structures represent large, three-dimensional, long-lived
Benard-type cells composed of narrow uprising plumes and wide down-
draughts. They usually embrace the entire CBL (of the order of 1–3 km
in height) and include pronounced convergence flow patterns close to the
surface. In sheared convective flows, the structures represent CBL-scale
rolls stretched along the mean wind. Buoyancy-driven structures, such as
plumes, jets, and large-scale circulation patterns have been observed in
numerous laboratory experiments, and the circulation caused by convec-
tion in a closed box with a heated bottom (in the Rayleigh–Benard appa-
ratus) is often called the “convective wind” (Krishnamurti and Howard,
1981; Zocchi et al., 1990; Kadanoff, 2001; Niemela et al., 2001, and ref-
erences therein). In the present study this term is used in a wider sense –
to emphasize the fact that the structures do not belong to turbulence and
are treated individually rather than statistically.

The lifetimes and spatial scales of semi-organized structures are larger
when compared to the largest turbulent time scales. Their spectral proper-
ties differ from those of small-scale turbulence, and they are characterised
by narrow spectra and do not exhibit the direct energy-cascade behaviour
(from larger to smaller scales). As a result the turbulence and the struc-
tures interact in practically the same way as the turbulence and the mean
flow. In other words, the structures show more similarity in their behaviour
with regular flows than with turbulence. They can be identified as flows
whose spatial and temporal scales are larger than the characteristic turbu-
lent scales, whereas their time scales are shorter than the lifetime of the
imposed mean flows (such as the background mean wind).

In view of the above considerations it seems natural to treat the struc-
tures in convective flows as complex but basically regular mean flows,
“convective winds”, and to investigate them individually rather than statis-
tically. This is the first key point of the approach proposed by Elperin et al.
(2002), which distinguishes between the “true turbulence”, that is the small-
scale part of the spectrum, and the “convective wind” considered together
with the fully regular imposed sheared flow.
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The second key point is that the true turbulence is divided into two
principally different parts: the familiar “Kolmogorov-cascade turbulence”
and an essentially anisotropic “tangling turbulence” caused by tangling of
the mean-velocity gradients with the Kolmogorov-type turbulence (Lumley,
1967). These two types of turbulent motions overlap in the maximum-scale
part of the turbulent spectrum. To parameterise the tangling turbulence, a
spectral closure model is developed.

Recall that traditional theoretical models of boundary-layer turbulence,
such as the Kolmogorov-type local closures, imply the following assump-
tions:

• fluid flows are decomposed into two components of principally different
nature: organized mean flow and turbulent flow;

• turbulent fluxes are proportional to the local mean gradients, whereas
the proportionality coefficients (eddy viscosity, turbulent conductivity,
turbulent diffusivity) are uniquely determined by local turbulent param-
eters.

For example, a widely used traditional approximation of the turbulent flux
of potential temperature reads

F ≡〈θu〉=−KH∇��, KH = (1/3) tT
〈
u2〉 ,

where KH is the turbulent thermal conductivity, �� is the mean potential
temperature, tT is the correlation time of the turbulent velocity field, u and
θ are turbulent fluctuations of the velocity and potential temperature (e.g.,
Monin and Yaglom, 1975; Stull, 1988; Wyngaard, 1992; Garratt, 1992).

The above relation for F does not include the contribution from the
anisotropic tangling turbulence. In fact the mean velocity gradients can
directly affect the potential temperature flux. The reason is that additional
essentially anisotropic velocity fluctuations are generated by tangling of
the mean-velocity gradients with the Kolmogorov-type turbulence due to
the influence of the inertial forces during the lifetime of large turbulent
eddies. Thus the Kolmogorov turbulence feeds the energy of the tangling
turbulence. In its turn the tangling turbulence causes formation of semi-
organized structures due to an excitation of a large-scale instability. Aniso-
tropic velocity fluctuations due to the tangling turbulence were studied for
the first time by Lumley (1967). He had shown that the velocity field in
the presence of mean shear is strongly anisotropic and is characterised by
a steeper spectrum (∝k−7/3) than the Kolmogorov turbulence.

A turbulence closure for the tangling turbulence is formulated in k-space
(in the spectral form). As a result, there is no need for closure hypothe-
ses for the statistical moments representing the whole spectrum of motions
in physical space (the latter is an extremely difficult problem especially in
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convective flows; see Zeman and Lumley, 1976; Canuto 1994; Zilitinkevich
et al., 1999). The derivation of the tangling-turbulence closure model is
given below (in general terms it was proposed by Elperin et al. (2002)).
It includes the following steps: applying the spectral closure, solving the
equations for the second moments in k-space, and returning to the physical
space to obtain formulae for the Reynolds stresses and the turbulent heat
fluxes (recall that the semi-organized structures are not included in turbu-
lence). Besides other advantages, this procedure removes the necessity for
closure hypotheses for the correlations involving pressure (the most vulner-
able step in any turbulence closure). The reason is that in k-space, the pres-
sure term is excluded by calculating the curl of the momentum equation.

The above tangling-turbulence closure requires us to specify a limited
number of parameters, first of all the kinetic energy and the correla-
tion length of the turbulent velocity field, characterising the background
Kolmogorov turbulence. These parameters are to be calculated using com-
paratively simple closure models of the traditional type. Therefore, the pres-
ent study – in its turbulence-closure aspect – is a complementary rather
than an alternative development to the traditional turbulence closures.

Semi-organized structures in convective turbulent flows were compre-
hensively studied theoretically, numerically (see, e.g., Lenschow and
Stephens, 1980; Wyngaard, 1983, 1987; Hunt, 1984; Moeng and Wyngaard,
1984, 1989; Mason, 1985; Shirer, 1986; Stensrud and Shirer, 1988; Hunt
et al., 1988; Schmidt and Schumann, 1989; Sykes and Henn, 1989; Mahrt,
1991; Robinson, 1991; Zilitinkevich, 1991; Williams and Hacker, 1992,
1993; Chlond, 1992; Zilitinkevich et al., 1998; Young et al., 2002, and ref-
erences therein), and in atmospheric experiments (Miura, 1986; Etling and
Brown, 1993; Alpers and Brümmer, 1994; Atkinson and Wu Zhang, 1996;
Brooks and Rogers, 1997; Brümmer, 1999; Weckwerth et al., 1999, and ref-
erences therein). However, some aspects related to the origin of large-scale
semi-organized structures in convective flows are not completely under-
stood. In the atmospheric CBL and in laboratory flows, the Rayleigh num-
bers based on the molecular transport coefficients are very large (of the
order of 1011 −1013), and correspond to the fully developed turbulent con-
vection. The effective Rayleigh numbers based on the turbulent viscosity
and conductivity/diffusivity are not high. Typically they are less than the
critical values required for the excitation of large-scale convection. There-
fore, the emergence of large-scale convective motions in the atmospheric
CBL and in laboratory flows is not completely clear.

In the present study, a new approach outlined above is applied to
investigate the key excitation mechanisms of large-scale convective circu-
lations. It is found that the convective wind instability in shear-free tur-
bulent convection results in the formation of large-scale motions in the
form of cells. In sheared convection, the instability causes the generation
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of convective-shear waves. The dominant semi-organized structures in this
case are rolls. The spatial characteristics of all these structures, such as the
minimum size of the growing perturbations and the size of the perturba-
tions with the maximum growth rate, are determined. A diagram of inter-
actions between turbulent and mean-flow objects that cause the large-scale
instability and formation of semi-organized structures is shown in Figure 1.

The proposed theory predicts values of the following parameters: (i) the
aspect ratio Lz/Lh of the structures, where Lz and Lh are the vertical and
horizontal scales of the structures; (ii) the ratios L/l0 and T/tT, where L is
the minimum size of the semi-organized structures, l0 is the maximum scale
of turbulent motions, T is the characteristic time of formation of semi-
organized structures, and tT is the correlation time of the turbulent velocity
field at the scale l0. The theory also predicts the generation of convective-
shear waves propagating perpendicular to the convective rolls whereby the
flow inside the rolls is characterised by non-zero hydrodynamic helicity.

It is shown that the typical length and time scales of the convective-
wind motions are larger than the true-turbulence scales. On these grounds
we propose that the term turbulence (or true turbulence) will be used
only for the Kolmogorov- and tangling-turbulence part of the spectrum.
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Figure 1. A scheme of interactions between turbulent and mean-flow objects causing large-
scale instabilities.
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This concept implies that the convective wind (as well as semi-organized
motions in other very high Reynolds number flows) should not be confused
with the true turbulence.

Here we need to emphasize a difference in terminology. When we refer
to “Kolmogorov turbulence” we imply that starting from some scales the
turbulent motions exhibit a universal behaviour. This definition coincides
with Kolmogorov’s understanding of fully developed turbulence. On the
other hand, in the current literature on atmospheric turbulence all motions
except for the mean wind are sometimes considered as turbulence.

According to atmospheric measurements in the convective boundary layer
(see e.g., Kaimal et al., 1976; Kaimal and Fennigan, 1994) “the measured
spectra of velocity components in the boundary layer can be generalised
within the framework of mixed layer similarity. The spectrum of vertical
velocity fluctuations can be reduced to a family of curves that spreads out
as a function of z/zi at low frequencies, but converge to a single universal
curve in the inertial subrange. The spectra of horizontal velocity fluctuations
generalised in the same manner show universal behaviour. The onset of the
inertial subrange in the mixed layer occurs at wavelength λ≈0.1zi .” Here zi

is the height of the lowest inversion base (typically zi ≈ 1.25 km). In partic-
ular, according to Kaimal et al. (1976), the universal behaviour is observed
from very small scales up to λz ≈0.02 zi for vertical velocity fluctuations, and
up to λx,y ≈0.05 zi for horizontal velocity fluctuations. In this study we refer
to the Kolmogorov turbulence as turbulence with universal behaviour.

2. Tangling-Turbulence Closure Model

Since the semi-organized structures are not included in turbulence let
us decompose the velocity, pressure and potential temperature fields into
the “mean” component (including the semi-organized structures) and the
fluctuating component characterised by zero mean values. The source of
turbulence is the small-scale buoyant production. The equations for the
fluctuations of velocity u and potential temperature θ (obtained by sub-
tracting the equations for the “mean” fields from the corresponding equa-
tions for the total fields) read

∂u
∂t

=− (�U ·∇)
u − (u ·∇) �U −∇

(
p

ρ0

)
− �θ +UN, (1)

∂θ

∂t
=− (�U ·∇)

θ − 1
β

(u · e)N2 +�N. (2)

Here div u=0, div �U=0, �U is the mean velocity, UN and �N are the non-
linear terms that include the molecular dissipative terms, � = g/T0 is the



TANGLING TURBULENCE AND SEMI-ORGANIZED STRUCTURES 455

buoyancy parameter (with the absolute value β), e is the vertical unit vec-
tor, p is the fluctuation of fluid pressure, N is the Brunt–Väisälä frequency,
g is the acceleration of gravity (directed opposite to the vertical axis z), and
T0 and ρ0 are the fluid temperature and density, respectively.

2.1. Derivation of the turbulent flux of potential temperature

Using Equations (1) and (2) the equations for the second moments in
k-space, M(II) (k), can be derived:

τij = L̂(ui, uj ), Fi = L̂(θ, ui), Q= L̂(θ, ωz),

G= L̂(ωz, ωz), H = L̂(θ, θ), (3)

where � =∇ × u are the fluctuations of vorticity and k is the wave vector
in turbulence scales. The operator L̂ is defined as L̂ (a, b)=〈a (k) b (−k)〉,
where the angle brackets denote ensemble averaging.

The second-moment equations include the first-order spatial differential
operators D̂ applied to the third moments M(III). A problem arises on how
to close the system of the second-moment equations; that is how to express
the set of third-order terms D̂M(III) (k) through the lower moments (see
Orszag, 1970; Monin and Yaglom, 1975; McComb, 1990). Various approx-
imate methods have been proposed in order to solve this.

A widely used τ -approximation (Orszag, 1970; Pouquet et al., 1976) pos-
tulates that the deviations of the third-moment terms, D̂M(III) (k), from
the contributions to these terms afforded by the Kolmogorov turbulence,
D̂M

(III)
K (k), are expressed through the similar deviations of the second

moments, M(II) (k) − M
(II)
K (k), where M

(II)
K (k) is the Kolmogorov-turbu-

lence contribution to the moment M(II) (k):

D̂M(III) (k)− D̂M
(III)
K (k)=− 1

τc (k)

(
M(II) (k)−M

(II)
K (k)

)
. (4)

Here, τc (k) is the characteristic relaxation time, which can be identi-
fied with the correlation time of the turbulent velocity field, e.g., τc(k) =
2tT (k/k0)

−2/3. The Kolmogorov-turbulence moments M
(II)
K and M

(III)
K are

determined by the budget equations, the energy spectrum can be obtained
from the dimensional analysis and the general structure of the moments is
obtained by symmetry reasoning (see, e.g., Section II-C and Appendix B
in Elperin et al., 2002, and references therein). It is worth noting that the
above closure is consistent with the well-known k−7/3 spectrum of the tan-
gling turbulence.

In the present study the τ -approximation is employed to model the tan-
gling turbulence (that is the distortion of the background turbulence caused
by the spatial derivatives of the mean velocity). It is assumed that the
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characteristic times of variation of the second moments are substantially
larger than the correlation times τc (k) for all turbulence scales. This allows
the obtaining of a stationary solution for the second moments.

To obtain the second moments through the integration over the spec-
trum in k-space, Elperin et al. (2002) used a non-helical model of the back-
ground Kolmogorov-turbulence convection:

τ
(K)
ij (k)= 〈

u2〉∗ Pij (k) Ẽ (k) , (5)

F
(K)
i (k)=k−2

h

(
k2F (K)

z (k) ejPij (k)+ iQ(K) (k) (e ×k)i
)
, (6)

Q(K) (k)=−6i (kh/k)2 (
F∗ · (e ×k)

)
Ẽ (k) , (7)

G(K) (k)= τ (K)
zz (k) k2, (8a)

H(K) (k)=2H ∗Ẽ (k) , (8b)

F (K)
z (k)=2F ∗

z Ẽ (k) , (8c)

where i2 =−1 in Equation (7),
〈
u2〉∗ =

∫
τ

(K)
ii (k) dk, F ∗

i =
∫

F
(K)
i (k) dk, H ∗ =

∫
H(K) (k) dk

Ẽ (k)=E (k)/8πk2, Pij (k)= δij −kikj/k
2,

k =kz +kh is the wave vector comprising the vertical kz and horizontal kh

components, F (K)
z (k) = eiF

(K)
i (k), E (k) = 2

3k−1
0 (k/k0)

−5/3 is the Kolmogo-
rov energy spectrum function, k0 = 1/l0 is the wavenumber, l0 is the max-
imum scale of turbulent motions, the superscript (K) in Equations (5)–(8)
denotes the background Kolmogorov turbulence, F ∗

z =eiF
∗
i is a background

vertical flux of potential temperature (see more detailed discussion of this
term later after Equation (10)), and

〈
u2

〉∗
is the mean square velocity of the

background Kolmogorov turbulence. In this study we considered a homo-
geneous and isotropic background turbulent convection given by Equations
(5)–(8). In the previous study of Elperin et al. (2002) we showed that the
effect of anisotropy of the background turbulent convection on the forma-
tion of semi-organized structures was small. Investigation of an inhomo-
geneous turbulent convection is a subject of separate study. Note that the
correlation time tT of turbulent velocity field satisfies the relationship

tT =
∫

τc (k)E (k) dk
∫

E (k) dk
, (9)

(see Monin and Yaglom, 1975).
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Generally in a turbulent flow with mean velocity gradients, the total
mean square velocity

〈
u2

〉
is the sum of the contributions from the back-

ground Kolmogorov turbulence part,
〈
u2

〉∗
, and the tangling turbulence

contribution. However, as is shown below (see Equation (14)), the contri-
bution of the tangling turbulence to the total mean square velocity

〈
u2

〉
is

negligibly small for isotropic background Kolmogorov turbulence and an
incompressible velocity field (it is determined by the higher-order spatial
derivatives of the mean velocity field). Therefore, hereafter the superscript ∗
in

〈
u2

〉∗
is omitted.

The model of the background turbulent convection given by Equa-
tions (5)–(8) has been derived in Appendix B of Elperin et al. (2002).
This model is rather general since it is obtained using symmetry argu-
ments under the condition of incompressibility of the flow. The key prop-
erty of the Kolmogorov-type turbulence is the constant energy flux over the
spectrum, which yields the equation for the correlation time of turbulent
flow, τc(k)=2tT (k/k0)

−2/3. It is also suggested that the spectrum functions
F (K)

z (k) ,Q(K) (k) and H(K) (k) have the same exponent of the spectrum,
q =5/3. Notice that the proposed tangling-turbulence theory requires only
knowledge of the second moments for the background turbulent convec-
tion.

2.2. The turbulent flux of potential temperature and the reynolds
stresses

Starting from the Navier–Stokes and the potential temperature equations
in the Boussinesq approximation and employing the Orszag τ -approxima-
tion, new tangling-turbulence closure equations for the total turbulent flux
of potential temperature F ≡〈θu〉 and the Reynolds stresses τij ≡ 〈

uiuj

〉
are

derived. The first equation reads

F ≡〈θu〉=F∗ − tT

2

[
2
(∇ · �Uh

)
F∗

z −��×F∗
z −��z ×F∗] . (10)

Here, tT is the correlation time of the Kolmogorov turbulence correspond-
ing to the maximum scale of turbulent motions, �� = ∇ × �U is the mean
vorticity, �U is the mean velocity (that is the sum of the vertical �Uz and hor-
izontal �Uh velocities: �U = �Uh + �Uz), z is the vertical coordinate, and

F ∗
i =−Kij∇j

��− tT
(
F∗ ·∇) �U(eq)

i (z) , (11)

is the turbulent flux of potential temperature, which is the sum of the con-
tribution due to the Kolmogorov turbulence and a contribution of the tan-
gling turbulence caused by shear of the imposed large-scale mean wind
�U(eq)

i (z), and
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Kij =KH

[
δij + 3

2
(2+γ ) eiej

]
(12)

is a generalised anisotropic turbulent heat conductivity, γ is the ratio of
specific heats, and KH is the turbulent heat conductivity. The equation for
the tensor Kij was derived in Appendix A of Elperin et al. (2002) using the
budget equations for the turbulent kinetic energy, fluctuations of the poten-
tial temperature and the heat flux. The anisotropic part of the tensor Kij

(the second term in the square brackets) is caused by a modification of the
mean flux of potential temperature by the buoyancy effects.

The terms in the square brackets in the right-hand side of Equation
(10) are caused by the tangling turbulence and depend on the “mean”
(including semi-organize structures) velocity gradients. It is shown below
that these terms lead to the excitation of large-scale instability and the for-
mation of semi-organized structures. In Equation (10) the terms with zero
divergence are omitted, because only ∇ · F contributes to the mean-field
dynamics. Neglecting the tangling-turbulence term and the anisotropy of
turbulence this reduces to the traditional equation: F =−KH∇��.

The physical meaning of Equation (10) is elucidated as follows. The sec-
ond term in Equation (10) describes the redistribution of the vertical back-
ground heat flux by convergent (or divergent) horizontal mean flows. This
redistribution occurs during the lifetime of turbulent eddies (see Figure 2).
The third term in Equation (10) determines the formation of the horizon-
tal heat flux due to “rotation” of the vertical background heat flux by the
horizontal mean vorticity (see Figure 3). The last term in Equation (10)
describes the formation of the horizontal heat flux through the “rotation”
of the horizontal background heat flux (the counterwind heat flux) by the
vertical component of the mean vorticity (see Figure 4). These two effects
are determined by the local inertial forces in a sheared mean flow. A more
detailed discussion of Equation (10) is given in Section 3.

The above procedure also yields the Reynolds stresses:

τij ≡ 〈
uiuj

〉= δij

〈
u2

〉

3
−KM

(∇i
�Uj +∇j

�Ui

)
, (13)

KM =αtT
〈
u2〉 , (14)

where the coefficient α= (q +3)/30 and q is the exponent of the energy spec-
trum of the background convective turbulence. For the Kolmogorov turbu-
lence q = 5/3 so that α = 7/45. The total tensor of Reynolds stresses

〈
uiuj

〉

is given by Equation (13) and includes the diagonal Kolmogorov-turbulence
term δij

〈
u2

〉 /
3 and the tangling-turbulence term, −KM

(∇i
�Uj +∇j

�Ui

)
.

Since the Kolmogorov turbulence is isotropic and homogeneous, its con-
tribution to the Reynolds stresses in the form δij

〈
u2

〉/
3 is a natural result.
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Figure 2. The effect of non-zero ∇ ·�Uh, which causes redistribution of the vertical turbulent
flux of potential temperature and excitation of a large-scale instability. The vertical arrows
denote the vertical turbulent flux of potential temperature, and the thick horizontal arrows
denote the converging horizontal flow.

*
||

F *
||

F

⊗ ⊗• •⊥ ⊥ ⊥ ⊥

⊥F ⊥F ⊥F⊥F

ω ω ω ω

Figure 3. The effect of non-zero �� × F∗
z , which causes horizontal potential-temperature

fluxes Fy and decreases (increases) the “mean” potential temperature in the regions with
upward (downward) flows.

The tangling-turbulence contribution to the Reynolds stresses caused by the
mean velocity gradients has the traditional form, with the only difference
being that the coefficient α in the expression for the turbulent viscosity KM

is calculated using the τ -approximation.
The above tangling-turbulence closure can be easily extended to para-

meterise the turbulent transports of passive scalars, such as suspended fine
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Figure 4. The growth rate of the convective-wind instability versus (a) L/l0 (for Lz/Lh =
0.4,0.6,0.9) and (b) Lz/Lh (for L/l0 =8.1,9.0,18,36).

particles or gaseous admixtures. Clearly this closure model can be used in
a number of applications beyond the scope of the large-scale convective
instability problem considered here in.

The Kolmogorov fine-scale turbulence and larger coherent structures can
be distinguished as follows. Calculation of the two-point instantaneous cor-
relation function 〈ui(t, x)ui(t, y)〉 of the turbulent velocity field yields the
correlation length l of the velocity fluctuations. Calculation of the one-point
two-time correlation function 〈ui(t1,x)ui(t2,x)〉 of the turbulent velocity field
yields the correlation time tT of the velocity fluctuations. The root-mean-
square velocity u can also be determined independently from measurements.
In the same way, i.e., measuring one-point two-time correlation function
of the velocity field, one can determine the correlation time tcs inside the
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coherent structures. For the non-turbulent mode (coherent structures), the
time tcs >>L/Vm, and for the turbulent mode tT ≈ l/u, where L is the size
of the coherent structure, and Vm is the maximum velocity inside the coher-
ent structure. In addition, for the non-turbulent mode there is no universal
spectrum and universal behaviour. The convective coherent structures are
essentially heterogeneous, while the turbulence is usually close to statistical
homogeneity. These features were observed in numerous laboratory experi-
ments on turbulent convection (e.g., Niemela et al., 2001).

3. Large-Scale Instability Mechanisms and Typical
Semi-Organized Structures

The formation of the semi-organized structures is described by the follow-
ing mean-field equations:

(
∂

∂t
+ �U ·∇

)
�Ui =−∇i

( �P
ρ0

)
−∇j τij +β��ei, (15)

(
∂

∂t
+ �U ·∇

)
��=−∇ ·F − N2

β
�Uz, (16)

where the turbulent flux of potential temperature F and the Reynolds
stresses τij are determined by Equations (10) and (13), �P is the mean pres-
sure, β =g/T0 is the buoyancy parameter, and e is the vertical unit vector
directed along the z-axis.

3.1. Linearised equations

The key point of the present study is the formation of semi-organized
structures by a large-scale instability. Consider the linear stage of the large-
scale instability. We linearise Equations (15)–(16) for small perturbations
from the equilibrium. The equations for small perturbations Ũz = �Uz −
�U(eq)

z , ω̃z =�ωz −�ω(eq)
z , and �̃= ��− ��(eq) are given by




(
∂

∂t
+ �U(eq) ·∇

)
Ũz = ∂

∂z

(∇i∇j τ̃ij

)−

(
ei∇j τ̃ij

)+β
h�̃, (17)

(
∂

∂t
+ �U(eq) ·∇

)
ω̃z =− (e ×∇)i

[

∇j τ̃ij + Ũz

∂ �U(eq)

i

∂z

]

, (18)

(
∂

∂t
+ �U(eq) ·∇

)
�̃=−∇ · F̃ − N2

β
Ũz, (19)
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∇ · F̃ =− tT

2

[
F ∗

z (2
h −
) Ũz + ((
F∗ × e

) ·∇)
ω̃z

]−Kij∇i∇j �̃. (20)

Here, the expression for ∇ · F̃ follows from Equation (10), τ̃ij = −KM(∇i Ũj +∇j Ũi

)
are the Reynolds stresses for perturbations of the mean veloc-

ity, KM is the turbulent viscosity given by Equation (14), 
h = 
 − ∂2/∂z2

is the horizontal Laplace operator. Recall that the total Reynolds stresses
tensor

〈
uiuj

〉= δij

〈
u2

〉 /
3+ τ̃ij , includes the diagonal Kolmogorov-turbulence

term besides the tangling-turbulence term τ̃ij . In this study we neglected
∇iKM and ∇iKH , i.e., we neglected the heterogeneity of turbulent convec-
tion. This issue will be addressed in a separate paper.

For shear-free convection the equilibrium state (i.e., the state with zero
time derivatives in Equations (15)–(16)) is given by �U(eq) =�ω(eq) = 0, while
for sheared convection the equilibrium state is determined by �U(eq)(z) =(
λ
/
tT

)
zey and �ω(eq) =− (

λ
/
tT

)
ex . Here λ is the dimensionless wind shear,

ex and ey are unit vectors in the horizontal plane. Note that in the con-
sidered equilibrium states, div F∗ = 0. However, this does not imply that
the total turbulent flux of potential temperature in the presence of semi-
organized structures is constant. The variables Ũ, ω̃ and �̃ describe semi-
organized structures.

Considering the linear stage of large-scale instability we seek the solu-
tion of the linearised mean-field equations (17)–(20) in the form ∝ exp
(ik · R − γinstt), which allows us to determine the growth rate of the insta-
bility. In this analysis we assume that the heterogeneity of the turbulence is
weak, i.e., we neglected ∇iKM and ∇iKH . Our recent numerical simulations
demonstrated that accounting for the vertical heterogeneity of the turbu-
lence, and using different types of boundary conditions, change the final
results insignificantly.

3.2. Shear-free convection

In the shear-free regime, the convective-wind instability is related to the
first term in square brackets in Equation (10) for the turbulent flux
of potential temperature. When ∂ �Uz

/
∂z>0, perturbations of the vertical

velocity �Uz cause negative divergence of the horizontal velocity, ∇ · �Uh <

0 (provided that ∇ · �U ≈ 0). This strengthens the local vertical turbulent
flux of potential temperature and by this means leads to increasing of the
local “mean” potential temperature and buoyancy (see Figure 2). The latter
enhances the local “mean” vertical velocity �Uz. Through this mechanism a
large-scale instability is excited. Similar reasoning is valid when ∂ �Uz/∂z<0,
whereas ∇ · �Uh > 0. In this case a negative perturbation of the vertical
flux of potential temperature leads to a decrease of the “mean” potential
temperature and buoyancy, which enhances the downward flow, and once
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again excites the instability. Thus, a non-zero ∇ · �Uh causes redistribution
of the vertical turbulent flux of potential temperature and the formation of
regions with large values of this flux. The regions where ∇ ·�Uh <0 alternate
with the low-flux regions where ∇ ·�Uh >0. This mechanism causes the for-
mation of large-scale flow patterns (semi-organized structures).

The role of the second term in square brackets in Equation (10) is
to decrease the growth rate of the convective-wind instability. Indeed,
the interaction of the “mean” vorticity with the vertical flux of poten-
tial temperature produces the horizontal heat flux (see Figure 3). The lat-
ter decreases (increases) the “mean” potential temperature in the regions
with upward (downward) local flows, thus relaxing the buoyancy forces and
reducing the “mean” vertical velocity �Uz and the “mean” vorticity �ω. This
mechanism dampens the convective-wind instability.

The above two competitive effects, namely (i) redistribution of the verti-
cal heat flux due to convergence/divergence of the horizontal “mean” flows,
and (ii) production of the horizontal component of the heat flux due to the
interaction of the mean vorticity with its vertical component, determine the
growth rate of the convective-wind instability.

Perturbative analysis of the linearised Equations (17)–(19) in the shear-
free convection regime (when �U(eq) = 0) yields the following expression for
the growth rate γinst of longwave perturbations (h	1):

γinst ∝gF ∗
z t2

Tk2
√

h
∣∣sin ϕ

∣∣
√

1−2 sin2
ϕ. (21)

Here, h= 1/(l0k)2, l0 is the maximum scale of turbulent motions, ϕ is the
angle between the vertical unit vector e and the wave vector k of small per-
turbations.

In the case considered above, N2 << gtT |F∗| k2
z,h, and allowed neglect-

ing the term ŨzN
2 in the right-hand side of Equation (19). Our recent

numerical simulations accounting for this term have shown that its role
in the excitation of the large-scale instability is minor compared with the
effects caused by the new terms in the heat flux Equation (10). In par-
ticular, when we neglected the new terms in Equation (10) and took into
account the term ŨzN

2, the critical Rayleigh number required for the exci-
tation of the large-scale instability was very high (≈2500). However, taking
into account the new terms in Equation (10), namely the terms associated
with the modification of the vertical background heat flux by the conver-
gent or divergent horizontal mean flows or by the mean vorticity, we have
found that the threshold required for the excitation of the large-scale insta-
bility strongly decreased (by an order of magnitude).

For large h=1/(l0k)2 the growth rate of the instability is proportional to
the wavenumber k (i.e., γinst ∝ku0), and the instability occurs when tgϕ <1.
Here, u0 is the characteristic turbulent velocity at the maximum scale of
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turbulent motions. This range for the instability corresponds to the aspect
ratio 0 < Lz

/
Lh < 1, where Lz

/
Lh ≡ kh

/
kz = tan ϕ, Lz = 2π

/
kz and Lh =

2π
/
kh. The growth rate of the convective-wind instability is independent

of the direction of the horizontal wavenumber. Thus it is plausible to con-
clude that the form of the large-scale semi-organized structure should be
symmetric in the horizontal plane, e.g., in the form of cells.

Figure 4 shows the growth rate of the instability as a function of
the parameters L

/
l0 (Figure 4a) and Lz

/
Lh (Figure 4b), where L =

1
/

.

√
L−2

z +L−2
h . The maximum growth rate of instability, γm ≈0.045t−1

T , is
achieved at the scale of perturbations Lm ≈10l0. The characteristic time of
excitation of this instability is of the order of (20–30) tT. The typical length
and time scales of the convective-wind motions are much larger than the
turbulence scales.

3.3. Sheared convection

The convective-shear instability is related to the third term in square brack-
ets in Equation (10). The key role here is played by the generation of the
potential temperature perturbations by vorticity perturbations. Indeed, in
two adjacent vortices with the opposite directions of the vertical vorticity
��z (“a” and “b” in Figure 5), the turbulent fluxes of potential tempera-
ture are directed towards the boundary between the vortices. This increases
the “mean” potential temperature and the buoyancy, and generates the
upward flow between the vortices. Similarly, between the vortices “b” and
“c” shown in Figure 5, the “mean” potential temperature and buoyancy
decreases, which generates the downward “mean” flow. These vertical flows
excite vorticity perturbations. Thus the instability mechanism is sustained.

Perturbation analysis of the linearised Equations (17)–(19) in the sheared
convection regime yields the following relation for a growth rate of long-
wave perturbations:

γinst ∝gF ∗
z t2

Tk2
(
hλ sin2

ϕ
)2/3

, (22)

where λ = tT∂ �U(eq)
/
∂z is the dimensionless wind shear, and k =

√
k2
x +k2

z

is the wavenumber. The reference state is characterised by depth-constant
large-scale wind shear, �U(eq) = (

λ
/
tT

)
zey .

We considered the case when N2 � gtT |F∗| k2
z,h, which allowed neglect-

ing the term ŨzN
2 on the right-hand side of Equation (19). We also inves-

tigated the convective-shear instability for the very small component of the
wavenumber along the imposed mean wind (ky →0, which implies uniform
perturbations along the wind). This case corresponds to the maximum
growth rate of the convective-shear instability. When ky = 0, we obtained
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Figure 5. The effect of non-zero ��z ×F∗, which causes redistribution of the horizontal tur-
bulent flux of potential temperature. For two vortices (“a” and “b”) with opposite direc-
tions of the vorticity ��z, the turbulent flux of potential temperature is directed towards the
boundary between the vortices. The latter increases the mean potential temperature between
the vortices “a” and “b”. For the vortices “b” and “c” the situation is opposite, so that the
mean potential temperature between the vortices decreases.

the algebraic dispersion relations with constant coefficients. Moreover, we
considered the boundary-layer problem for ky 
= 0 and found that the final
results did not change strongly. This analysis allowed explanation of the
observed angles between the wind and the direction of the rolls (cloud
streets) when the growth rate of the instability is maximum. We also found
that changing the boundary conditions did not strongly affect the final
results, but only slightly changes the ranges of the instability and modifies
the growth rate of the instability.

This instability causes formation of large-scale semi-organized fluid
motions, e.g., in the form of rolls stretched along the imposed mean wind.
This mechanism can also result in generation of the convective-shear waves
with frequency � given by

�∝gF ∗
z t2

Tk2
(
hλ sin2

ϕ
)2/3

, (23)

which implies the wavenumber dependence: �∝ k2/3. The convective-shear
waves propagate perpendicular to convective rolls. The predicted motions
in convective rolls are characterised by non-zero helicity, in agreement with
Etling (1985). Note that similar waves propagating in the direction normal
to cloud streets have been detected in the atmospheric CBL (see Brümmer,
1999).

Figure 6 shows the range of parameters Lz/Lh and L/l0 where
convective-shear instability occurs, for different values of the wind-shear
parameter λ. The increase of shear is favourable for the excitation of the
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Figure 6. The range of parameters Lz/Lh and L/l0, where the convective-shear instability
occurs for different values of the dimensionless shear: λ = 0,0.05,0.1,0.15. The case λ = 0
corresponds to the convective-wind instability.

convective-shear instability with the growth rate γinst ∝ k2/3. The case λ=0
in Figure 6 corresponds to the convective-wind instability. Figure 7 shows
the growth rates of the convective-shear instability, and Figure 8 shows the
frequencies of the generated convective-shear waves.

As seen from Figure 7 the first derivative dγinst
/
dk has a point of sin-

gularity at L = L∗, which is indicative of bifurcation. Indeed, the growth
rate of the convective-shear instability is determined by a cubic algebraic
equation that follows from Equations (17)–(19). When L < L∗, this equa-
tion has three real roots, which corresponds to aperiodic instability. When
L>L∗, it has one real and two complex conjugate roots. Therefore, L=L∗
is the bifurcation point, and when L > L∗ the convective-shear waves are
generated. Notice that L∗ decreases with increasing Lz

/
Lh. When Lz >Lh,

it becomes smaller than the threshold Lcr for the excitation of the large-
scale instability. In this case the convective rolls are always accompanied
by propagating convective-shear waves. Note also that for any given L

/
l0,

there are the lower and the upper limits for the values of Lz

/
Lh for which

the convective-shear instability can be excited. When L
/
l0 is large enough,

the range of the instability has no upper limit with respect to Lz

/
Lh. Nota-

bly the flow in the convective-shear wave has a non-zero hydrodynamic
helicity.

For perturbations with kx = 0 the convective-shear instability is not
excited, whereas the convective wind instability can be excited. The above
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Figure 7. The growth rate of the convective-shear instability versus (a) L/l0 (Lz/Lh =
0.5,1.0) and (b) Lz/Lh (L/l0 =10.15,10.23,17.15,24) for different values of the dimension-
less shear: λ=0.1 (dashed lines) and λ=0.2 (solid lines).

large-scale instabilities are fed by the energy of the true turbulence, and
so exhibit an inverse energy cascade. The main difference from the famil-
iar inverse cascade in the two-dimensional turbulence is the pivotal role
of the thermal processes, i.e., redistribution of the heat flux by large-scale
“mean” flows. Our analysis shows that in two-dimensional turbulence the
large-scale instability cannot be excited.

The results discussed in this section might be useful for understanding
the basic features of semi-organized structures observed in the atmospheric
CBL and in laboratory turbulent convection.
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Figure 8. Frequencies of the generated convective-shear waves versus (a) L/l0 (for Lz/Lh =
0.5,1.0) and (b) Lz/Lh (for L/l0 = 10.15,10.23,17.15,24) for different values of the dimen-
sionless shear: λ=0.1 (dashed lines) and λ=0.2 (solid lines).

4. Conclusions

The proposed approach distinguishes between the two principally differ-
ent types of irregular motions. The first one is the true turbulence rep-
resenting the small-scale, turbulent part of the spectrum, which is treated
statistically and parameterised with the aid of an appropriate turbulence
closure model. The second type represents semi-organized motions (con-
vective wind) caused by large-scale instabilities and fed by the energy of
the true turbulence through the inverse energy cascade. Typical scales of
these motions are much larger than the largest true-turbulence scales. They
are treated as very complex but quasi-regular “mean” flows. In the present
study their key properties are determined using perturbation analysis.
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The true turbulence in its turn comprises two different contributions: the
familiar “Kolmogorov-cascade turbulence” and strongly non-isotropic “tan-
gling turbulence” caused by tangling of the mean-velocity gradients with
the Kolmogorov turbulence. An advanced turbulence closure model for the
tangling turbulence is derived.

On the basis of the above developments it is conceivable to suggest
that the term turbulence (or true turbulence) will be used only for the
Kolmogorov and tangling-turbulence part of the spectrum. The convec-
tive wind (as well as semi-organized motions in other very high Reynolds
number flows) should not be confused with the true turbulence. More-
over, further attempts to develop an overall turbulence closure covering
the whole spectrum of non-regular motions in convective flows do not
look promising. Indeed, traditional mathematical-statistical tools, though
quite adequate as applied to the true turbulence, become a Procrustean
bed for semi-organized motions such as the convective wind. This incon-
sistency explains why modern convective-turbulence closures, despite their
enormous complexity, are not sufficiently advanced to reproduce the trans-
port properties of convective flows over a range of regimes.

In accordance with the convective-wind concept, the following threefold
approach is proposed, instead of the traditional (overall) closures, to model
convective flows of practical importance:

• Application of (i) the traditional local closures to the Kolmogorov
turbulence and (ii) the newly proposed Orszag-type (relaxation) closure
to the tangling turbulence;

• analytical investigation of basic features and scales of the convective-
wind structures through perturbation analyses using the above closures;

• three-dimensional numerical simulation of the flows under consider-
ation with optimal spatial resolution imposed by the perturbation anal-
ysis, which is resolving only the dominant, rapidly growing modes, and
using advanced tangling-turbulence closures to parameterise unresolved
small-scale motions.
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Appendix A: The Energetic Aspect of the Large-scale Instability

Let us discuss the energetic aspect of the linearised analytical treatment
(see e.g., Asai, 1970) of the large-scale instability described in Section 3.
The equation for the evolution of perturbations of total energy Ẽ = Ũ 2

2 +
β2

2N2 �̃
2 reads

∂Ẽ

∂t
+∇ · �̃= I −D, (A1)

where

D =KMS2 +KH

β2
∣∣∇�̃

∣∣2

N2
(A2)

is the dissipation, S2 = (∇i Ũj )
2, �̃ is the third-order flux (in perturbations),

and

I =−ŨyŨz

∂U
eq
y

∂z
+ β2∇i�̃

N2
F̃i (A3)

is the source of energy due to the mean flow shear (the first term in
Equation (A3)) and the redistribution of the heat flux by the non-uniform
motions caused by the velocity perturbations (described by the second term
in Equation (A3)). Here

F̃ =− tT

2

[
2
(∇ · Ũh

)
F∗

z − ω̃×F∗
z − ω̃z ×F∗] (A4)

is the new contribution to the heat flux. In order to derive Equation (A1)
we used Equations (15)–(16) for perturbations.

For small values of the Brunt–Väisälä frequency, the second term in
Equation (A3) for the source I becomes more important, and may cause
the large-scale instability. The energy source of the instability is the energy
of turbulence.



TANGLING TURBULENCE AND SEMI-ORGANIZED STRUCTURES 471

References
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