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ABSTRACT

We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the
large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo
saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied
a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using
these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the
large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active
regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated
by −A · B evaluated at the depth from which the active region arises, resembles the observational data much better
than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are,
respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of
these results is given.
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1. INTRODUCTION

The solar activity cycle is believed to be a manifestation of
dynamo action which somewhere in the solar interior generates
waves of quasi-stationary magnetic field propagating from
middle latitude toward the solar equator (“dynamo waves”).
The traditional explanation of this dynamo action (Parker
1955) is based on the joint action of differential rotation and
mirror asymmetric convection which results in what has come
to be known as the α-effect, based on the helicity of the
hydrodynamic convective flow (Krause & Rädler 1980; Moffatt
1978). This explanation is however not the only one discussed
in the literature and, for example, meridional circulation is also
suggested as an important co-factor of the α-effect, see, e.g.,
Dikpati & Gilman (2001); Choudhuri et al. (2004).

In turn, traditional dynamo scenarios based on differential ro-
tation and the classical α-effect have to include a dynamo satura-
tion mechanism. One of the most popular saturation mechanisms
is based on a contribution to the α-effect from magnetic fluc-
tuations (Pouquet et al. 1976). A relevant quantification of this
effect involves considerations of magnetic helicity evolution,
e.g., Kleeorin et al. (1995, 2003). A key role in the evolution
of magnetic helicity is played by magnetic helicity fluxes
(Kleeorin et al. 2000; Blackman & Field 2000a; Brandenburg
& Subramanian 2005). Of course, this scenario is not the only
one that has been suggested: for example, Blackman & Field
(2000b), Blackman & Brandenburg (2003), and Brandenburg
(2007) consider coronal-mass ejections as an important part of
nonlinear suppression of the dynamo, and Mitra et al. (2011)
discuss the effects of losses via the solar wind. Choudhuri et al.
(2004) believe that the current helicity in solar active regions
is substantially modified when magnetic tubes rise up to the
solar surface.

A natural way to resolve such controversies is to determine
relevant quantities such as the α-effect through observations,
this providing a check on the various scenarios. Such an option
is now becoming realistic, starting from the 1990s when the first
attempts to observe current helicity in solar active regions were
undertaken (Seehafer 1990; Pevtsov et al. 1994; Bao & Zhang
1998; Hagino & Sakurai 2004).

Twenty years of continuous efforts by several observational
groups, with the main contribution coming from the Huairou
Solar Station of China, has resulted (Zhang et al. 2010) in
reconstruction of the current helicity time–latitude (butterfly)
diagram for one full solar magnetic cycle (1988–2005). From
this butterfly diagram it is apparent that the current helicity is
involved in the solar activity cycle and follows a polarity law
comparable with the Hale polarity law for sunspots—but rather
more complicated. In other words, dynamo generated magnetic
field is indeed mirror asymmetric and this mirror asymmetry is
involved in the solar activity cycle and can be used to understand
its nature (Kleeorin et al. 2003; Zhang et al. 2006).

What, however, needs clarification is which dynamo govern-
ing parameter is traced by such a surface proxy as a measure of
current helicity in solar active regions. A naive idea here is to
identify this part of the surface current helicity with the current
and magnetic helicities of the dynamo generated small-scale
magnetic fields deep inside the Sun (say, in the solar overshoot
layer), which suppress dynamo action. To start with something
definite, this naive interpretation was applied by Kleeorin et al.
(2003) and Zhang et al. (2006).

Recent progress in observation which has resulted in butterfly
diagrams for the current helicity in active regions (Zhang et al.
2010) makes it possible to go further with this topic. The
aim of this paper is to argue that the current helicity in solar
active regions directly reflects the magnetic helicity of the
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large-scale dynamo generated field. We organize our arguments
as follows.

Based on the observed butterfly diagram for the current
helicity, we here confront the naive interpretation with the
available observations. We examine a mean-field dynamo
model with dynamo suppression based on the magnetic helicity
balance, obtain the corresponding current helicity butterfly di-
agrams, and also that of the large-scale magnetic helicity, and
compare them with those observed. This comparison shows that
the evolution of the large-scale magnetic helicity resembles the
observational data much more closely than that of the current
helicity of the small-scale fields. In order to demonstrate the
robustness of this result, we also consider a more primitive
dynamo model, with a simple algebraic α-quenching. From
this model we calculate the large-scale magnetic helicity and
compare it with the observational butterfly diagram. We find
that this fits observations more or less as well as that from a
dynamo model based on helicity conservation. We conclude
that the major part of the observed current helicity in ac-
tive regions is produced in the rise of magnetic loops to the
solar surface.

2. THE ROLE OF HELICITIES IN MAGNETIC
FIELD EVOLUTION

In the evolution of the magnetic field different helicities
play different roles. Considering the small-scale velocity and
magnetic fluctuations, u and b, respectively, there are three he-
licities: (1) the kinetic helicity Hu = 〈u·curl u〉 that determines
the kinetic α effect; (2) the current helicity Hc = 〈b·curl b〉
that determines the magnetic part of the α effect; and (3) the
magnetic helicity Hm = 〈a·b〉, where b = curl a. We use the
angled brackets 〈· · ·〉 to denote spatial integrals over all relevant
turbulent fluid. These integrated helicities are used in the sense
of average helicity densities.

The total magnetic helicity, the sum HM +Hm of the magnetic
helicities of the large- and small-scale fields, HM = A·B
and Hm, respectively, is conserved for very large magnetic
Reynolds numbers. Here, B = curl A is the large-scale magnetic
field. Note that, on the contrary, the current helicity Hc is
not conserved. On the other hand, the kinetic helicity Hu is
conserved only for very large fluid Reynolds numbers when
the large-scale magnetic field B vanishes. The characteristic
time for the decay of kinetic helicity is of the order of the
turnover time τ = �/u of turbulent eddies in the energy-
containing scale, �, of turbulence, while the characteristic
time of the small magnetic helicity decay is of the order of
Tm = τRm (Moffatt 1978; Zeldovich et al. 1983; Brandenburg
& Subramanian 2005), where Rm = � u/η0 is the magnetic
Reynolds number, u is the characteristic turbulent velocity, and
η0 is the magnetic diffusivity due to electrical conductivity
of the fluid. The small-scale current helicity, Hc, is not an
integral of motion and the characteristic time of Hc varies
from a short timescale, τ , to much larger timescales. On the
other hand, the characteristic decay times of the current helicity
of large-scale field, HC = B·curl B, and of the large-scale
magnetic helicity, HM , are of the order of the turbulent diffusion
time. For weakly inhomogeneous turbulence the small-scale
current helicity, Hc, is proportional to the small-scale magnetic
helicity, Hm.

As the dynamo amplifies the large-scale magnetic field, the
large-scale magnetic helicity HM = A·B grows in time (but not
monotonically in a cyclic system). The evolution of the large-

scale magnetic helicity HM is determined by

∂HM

∂t
+ ∇ · FM = 2E · B − 2ηHC (1)

(Kleeorin et al. 1995; Blackman & Field 2000a; Brandenburg
& Subramanian 2005), where E = 〈u×b〉 is the mean electro-
motive force that determines generation and dissipation of the
large-scale magnetic field, 2E ·B is the source of the large-scale
magnetic helicity due to the dynamo generated large-scale mag-
netic field, and FM is the flux of large-scale magnetic helicity
that determines its transport. Since the total magnetic helicity
over all scales, HM + Hm integrated over the turbulent fluid, is
conserved for very small magnetic diffusivity, the small-scale
magnetic helicity changes during the dynamo process, and its
evolution is determined by the dynamic equation

∂Hm

∂t
+ ∇ · F = −2E · B − 2ηHc (2)

(Kleeorin et al. 1995; Blackman & Field 2000a; Brandenburg
& Subramanian 2005), where −2E · B is the source of the
small-scale magnetic helicity due to the dynamo generated
large-scale magnetic field, F is the flux of small-scale magnetic
helicity that determines its transport, and 2ηHc = Hm/Tm is the
dissipation rate of the small-scale magnetic helicity. It follows
from Equations (1) and (2) that the source of the small-scale and
the large-scale magnetic helicities is located only in turbulent
regions (i.e., in our case, in the solar convective zone). The
magnetic part of the α effect is determined by the parameter
χc = τHc/(12πρ), and for weakly inhomogeneous turbulence
χc is proportional to the magnetic helicity: χc = Hm/(18πη

T
ρ)

(Kleeorin & Rogachevskii 1999; Brandenburg & Subramanian
2005), where ρ is the density and η

T
is the turbulent magnetic

diffusion.

3. THE OBSERVED CURRENT HELICITY
BUTTERFLY DIAGRAMS

The observed butterfly diagrams of electric current helicity
for solar active regions during the last two solar cycles have
been presented by Zhang et al. (2010). The general structure can
be described as follows. Current helicity is involved in the solar
activity cycle and follows a polarity rule comparable to (however
more complicated than) the polarity rule for toroidal magnetic
field which in turn comes from the Hale polarity rule for sunspot
groups. Migration of the helicity pattern is clearly visible and
located near the toroidal field pattern. The wings of the helicity
butterflies are slightly more inclined to the equator than the
magnetic field wings, but the former follow in general the latter.
As a quantity quadratic in magnetic field, the current helicity
in one hemisphere has the same sign for both cycles, with the
opposite sign in the other hemisphere (a kind of unchanging
dipolar symmetry).

Figure 1 shows the distribution of the average helical charac-
teristics of the magnetic field in solar active regions in the form
of a butterfly diagram (latitude–time) for 1988–2005 (which
covers most of the 22nd and 23rd solar cycles). These results
are inferred from photospheric vector magnetograms recorded
at Huairou Solar Observing Station.

This, the longest available systematic data set covering the
period of two solar cycles, comprises 6205 vector magnetograms
of 984 solar active regions (most of the large solar active regions
of both solar cycles). Of these, 431 active regions belong to
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Figure 1. Observed current helicity (white/black circles for positive/negative values) for solar active regions in the 22nd and 23rd solar cycles as averaged over
two-year running windows over latitudinal bins of 7◦ wide, overlaid with sunspot density (color). The circle in the upper right corner of the panel indicates the typical
value of observational uncertainty defined by 95% confidence intervals scaled to the same units as the circles. The vertical axis gives the latitude in degrees and the
horizontal gives the time in years.

(A color version of this figure is available in the online journal.)

the 22nd solar cycle and 553 to the 23rd. We have limited
the latitudes of active regions to ±40◦ and most of them are
below ±35◦. The helicity values of the active regions have been
averaged over latitude by intervals of 7◦ in solar latitude, and
over overlapping two-year periods of time (i.e., 1988–1989,
1989–1990, . . . , 2004–2005). By this method of averaging we
were able to group sets of at least 30 data points in order to
make error estimations (computed as 95% confidence intervals)
reasonably small. In this sampling we find that 66% (63%) of
active regions have negative (positive) mean current helicity in
the northern (southern) hemisphere over the 22nd solar cycle
and 58% (57%) in the 23rd solar cycle.

There are some domains in the diagram where current helicity
has the “wrong” sign with respect to the global polarity law.
These domains of “wrong” sign are located at the very beginning
and the very end of the wings.

Concerning alternative explanations of the observations
(Zhang et al. 2010), Mackay & Van Ballegooijen (2005) and
Yeates & Mackay (2009) describe current helicity in solar ac-
tive regions in terms of generation of non-potential coronal
structures by surface differential rotation. Note that the surface
differential rotation cannot generate large-scale and small-scale
magnetic helicity. It can only redistribute the existing magnetic
helicity, as can any non-uniform large-scale motions. This pro-
cess is determined by the flux term in the evolutionary equation
for the magnetic helicity. The local change of the magnetic he-
licity inside a given active region by the surface differential
rotation plays an important role. In our paper, we study robust
global (rather than local) features of the evolution of the mag-
netic helicity, by averaging over an ensemble of active regions.
In this case the global evolution of the magnetic helicity mainly
depends on the sources of magnetic helicity inside the solar
convective zone.

4. AN ESTIMATE FOR THE CURRENT HELICITY
IN ACTIVE REGIONS

In this section, we estimate the current helicity in active
regions. There is a common belief that active regions are
formed due to some nonaxisymmetric instability of ∼100 kG
magnetic fields in the tachocline (e.g., Gilman & Dikpati 2000;
Cally et al. 2003; Parfrey & Menou 2007). However, the
existence of such strong fields and the role of this mechanism
remain questionable (Brandenburg 2005). Another promising
mechanism of formation of active regions is related to a
negative effective magnetic pressure instability of the large-
scale dynamo generated magnetic field. This instability was
predicted theoretically (Kleeorin et al. 1996; Rogachevskii
& Kleeorin 2007) and detected recently in direct numerical
simulations (Brandenburg et al. 2011). The instability is caused
by the suppression of turbulent hydromagnetic pressure by
the mean magnetic field. At large Reynolds numbers and
for sub-equipartition magnetic fields, the resulting negative
turbulent contribution can become so large that the effective
mean magnetic pressure (the sum of turbulent and non-turbulent
contributions) appears negative (Brandenburg et al. 2010, 2011).
In a stratified turbulent convection, this results in the excitation
of a large-scale instability that results in the formation of large-
scale inhomogeneous magnetic structures. This mechanism is
consistent with the suggestion that active regions are formed
near the surface of convective zone (Kosovichev 2010).

The spatial scale of an active region is much smaller than
the solar radius, but much larger then the maximum scale of
solar turbulent granulation. To estimate the current helicity in
an active region, we have to relate the large-scale magnetic field
B and its magnetic potential A inside the convective zone as well
as the corresponding small-scale quantities inside the convective
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zone (which determine the small-scale magnetic fluctuations),
with the surface magnetic field Bar and its magnetic potential
Aar inside active regions, which are the quantities available to
observations.

We base our estimate on the following idea. Consider a
newborn magnetic tube at the layer in convective zone from
which the active region is developing. We assume that the rise
of magnetic tubes is a fast adiabatic process. Let us also assume
that the mean magnetic field and the total magnetic helicity
vanish at the initial instant, and take into account the magnetic
helicity conservation law (as solar plasma is highly conductive,
and so we consider the magnetic helicity conservation law to
hold at all scales, including that of the whole Sun). If this tube
rises rapidly to the surface to produce an active region, the total
magnetic helicity in the tube is conserved because the process is
rapid. Rising large-scale magnetic field and magnetic potential
give the corresponding quantities for active regions, which may
thus differ substantially from the corresponding quantities in the
surrounding medium. Because the initial total magnetic helicity
of the tube, which was almost nonmagnetized, was negligible,
the magnetic helicity conservation law reads

〈Aar·Bar〉 ≈ −A·B, (3)

where the angular brackets denote averaging over the surface
occupied by the active region.

Now we relate the mean current helicity 〈Bar·curl Bar〉 with the
magnetic helicity 〈Aar·Bar〉. We rewrite it from the first principles
with the use of permutation tensors as

〈Bar·curl Bar〉 ≈ 1

L2
ar

〈Aar·Bar〉 + O

(
L2

ar

R2�

)
, (4)

(see Appendix A), where R� is the solar radius and Lar is the
spatial scale of an active region. Equations (3) and (4) yield

〈Bar·curl Bar〉 ≈ − 1

L2
ar

A·B. (5)

Therefore, the observed current helicity in active regions is
expected to be a proxy for −A · B. This idea will be checked
using mean-field dynamo numerical modeling and comparison
of the numerical results with the observed current helicity in
active regions.

5. DYNAMO MODELS

Our approach to compare the dynamo models with observa-
tions is as follows. We consider two types of dynamo models.
Both types of models are two-dimensional mean-field models
with an axisymmetric magnetic field which depends on radius
r and polar angle θ . The third (azimuthal) coordinate is φ and
∂/∂φ = 0. The dynamo action is based on differential rotation,
with a rotation curve which resembles that of the solar convec-
tion zone, as known from helioseismological observations, and
there is a conventional α-effect.

The first type of model assumes a very naive algebraic α-
quenching. Then we suppose that the total magnetic helicity
is locally vanishing, so the magnetic helicity of the large-scale
magnetic field produced in the course of mean-field dynamo
action has to be compensated by small-scale magnetic helicity.
(Thus, we are assuming that at an initial instant the medium is
non-magnetic, so that helicity conservation means that the sum
of large- and small-scale helicities remain zero.) We assume

also that there is a separation of scales so that characteristic
turbulence scales are much smaller than the characteristic
spatial scales of mean magnetic field variations. This allows
a link between current and magnetic helicities (Kleeorin &
Rogachevskii 1999) to be made. This concept underlies the
observational procedure for determining the current helicity of
active regions, and for calculating the current helicity from
the magnetic helicity of the small-scale fields. Based on the
same concept we estimate the large-scale magnetic helicity as
BφAφ , where A(r, θ )φ̂ is the magnetic potential for the poloidal
field. As a result we obtain (for a given radius r) a theoretical
model for the current helicity as a function of t and θ which
we overlay on the butterfly diagram for Bφ . We compare the
result with the current helicity butterfly diagram known from
observations and obtained using similar underlying concepts.

A further point is that the primitive model allows a simpli-
fication to the level of the one-dimensional Parker migratory
dynamo, and this opportunity has been investigated in this re-
spect by Xu et al. (2009). We will use the results of that work
for reference and comparison.

We do not consider this primitive scheme as realistic. We are
sure that any more or less realistic scenario for solar dynamo
suppression will have to be much more sophisticated. On the
other hand, we can see whether this primitive model produces a
helicity butterfly diagram that is quite similar to that observed.
The only shortcoming of the model is that the maximal current
helicity occurs later then the maximum Bφ , while it is observed
to come up earlier. If magnetic helicity conservation determines
the nonlinear dynamo suppression, we expect that a careful
reproduction of this balance, including helicity fluxes and the
link between magnetic helicity and α-effect, will result in an
even better theoretical butterfly diagram, and possibly improve
the phase relations between helicity and toroidal magnetic field.

As a specific example of the second-type model that takes into
account the influence of magnetic helicity balance on dynamo
action we use the dynamo model described by Zhang et al.
(2006). Whereas simple α-quenching provides a quite robust
suppression of a spherical dynamo and give (more or less) steady
nonlinear magnetic field oscillations for a very wide range of
parameters, in contrast it is far from clear a priori that a dynamo
suppression based on magnetic helicity conservation is effective
enough to suppress magnetic field growth and result in steady
oscillations. In fact it works more or less satisfactorily only in a
quite narrow parameter range (Kleeorin et al. 2003; Zhang et al.
2006), which appears inadequate to fit observations.

We note two crucial points here. First of all, both types of
models ignore any direct action of magnetic force on the rotation
law. In the more primitive models, there is a crude parameteri-
zation of feedback onto the (purely hydrodynamic) alpha effect
(see Equation (6)) below. The latter more sophisticated model
describes the back reaction of the generated magnetic field on
the dynamo process in terms of the magnetic contribution of the
current helicity onto the magnetic part of α-effect. On the other
hand, the feedback of the generated large-scale magnetic field
on turbulent convection is described in our model by the alge-
braic quenching of α-effect, pumping velocities, and turbulent
magnetic diffusion.

We assume that helicity conservation is not the only mech-
anism of dynamo suppression. The fact that we see a manifes-
tation of helicity on the solar surface tells us that the buoyancy
indeed plays some role, and we add it to the model. We stress that
the buoyancy which we include in the model transports current
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helicity and magnetic helicity as well as large-scale magnetic
field.

Below we discuss the detailed dynamo models. We use
spherical coordinates r, θ, φ and describe an axisymmetric
magnetic field by the azimuthal component of magnetic field B,
and the component A of the magnetic potential corresponding
to the poloidal field.

We measure length in units of the solar radius R�, and time
in units of a diffusion time based on the solar radius and the
reference turbulent magnetic diffusivity η

T 0 . The magnetic field
is measured in units of the equipartition field Beq = u∗(4πρ∗)1/2,
the vector potential of the poloidal field A in units of R�Beq, the
density ρ is normalized with respect to its value ρ∗ at the bottom
of the convective zone, and the basic scales of the turbulent
motions � and turbulent velocity u at the scale � are measured in
units of their maximum values through the convective zone. The
α-effect is measured in terms of α0, defined below, and angular
velocity in units of the maximum surface value, Ω0.

5.1. The Primitive, Alpha-quenched Model

In the primitive dynamo model the α-effect is given by

α = αv = χvΦv, (6)

where χv is proportional to the hydrodynamic helicity, Hu,
multiplied by the turbulent correlation time τ , and Φv =
(1 + B2)−1 is the model for the α-quenching nonlinearity.
For convenience, we use for most of these computations the
code of Moss & Brooke (2000)—see also Moss et al. (2011).
This code has the possibility of a modest reduction in the
diffusivity, to ηmin, in the innermost part of the computational
shell (“tachocline”), below fractional radius 0.7. We define
ηr = ηmin/ηT 0 . We also used this primitive formulation of
alpha-quenching in the (otherwise very similar) model used
in Section 5.2 when producing Figure 4. In the latter case, the
diffusivity is everywhere uniform.

At the surface r = 1 the field is matched to a vacuum external
field, and “overshoot” boundary conditions are used at the lower
boundary.

5.2. The Model Based on Helicity Balance

Here we use the code described in Zhang et al. (2006), with
two new features: we allow the possibility of meridional circu-
lation and/or vertical motions attributed to magnetic buoyancy.
The dynamo equations for Ã = r sin θA and B̃ = r sin θ B read

∂Ã

∂t
+

(
V A

θ + V M
θ

)
r

∂Ã

∂θ
+ Vr

∂Ã

∂r
= Cα α B̃

+ η
A

[
∂2Ã

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂Ã

∂θ

)]
, (7)

∂B̃

∂t
+

sin θ

r

∂

∂θ

[(
V B

θ + V M
θ

)
B̃

sin θ

]
+

∂[Vr B̃]

∂r

= Cω sin θ

[
Gr

∂

∂θ
− Gθ

∂

∂r

]
Ã +

sin θ

r2

∂

∂θ

[
ηB

sin θ

∂B̃

∂θ

]

+
∂

∂r

[
η

B

∂B̃

∂r

]
, (8)

where Vr = V A
r + V M

r + VB , V A(B) and V B(B) are the
nonlinear drift velocities of poloidal and toroidal mean magnetic

fields, V M is the meridional circulation velocity, VB is the
vertical buoyancy velocity, η

A
(B) and η

B
(B) are the nonlinear

turbulent magnetic diffusion coefficients for the mean poloidal
and toroidal magnetic fields, and the non-dimensional dynamo
parameters are Cα = α0 R�/η

T 0 , Cω = Ω0 R2
�/η

T 0 . The
nonlinear turbulent magnetic diffusion coefficients and the
nonlinear drift velocities are given in Appendix B. The non-
dimensional gradients of differential rotation are

Gr = ∂Ω
∂r

, Gθ = ∂Ω
∂θ

.

In this dynamo model with magnetic helicity evolution the total
α-effect is given by

α = αv + αm = χvΦv +
Φm

ρ(z)
χc, (9)

with αv = α0 sin2 θ cos θ Φv . The magnetic part of the α-effect
is based on the idea of magnetic helicity conservation and the
link between current and magnetic helicities. Here χv and χc

are proportional to the hydrodynamic and current helicities
multiplied by the turbulent correlation time, and Φv and Φm

are quenching functions. The analytical form of the quenching
functions Φv(B) and Φm(B) is given in Appendix B. The density
profile is chosen in the form:

ρ(z) = exp[−a tan(0.45π z)], (10)

where z = 1 − μ(1 − r) and μ = (1 − R0/R�)−1. Here,
a ≈ 0.3 corresponds to a tenfold change of the density in the
solar convective zone, a ≈ 1 by a factor of about 103.

The equation for χ̃ c = r2 sin2 θ χc is

∂χ̃c

∂t
+

χ̃ c

T
=

(
2R�

�

)2 {
1

Cα

[
η

B

r2

∂Ã

∂θ

∂B̃

∂θ
+ η

B

∂Ã

∂r

∂B̃

∂r

− η
A
B̃

sin θ

r2

∂

∂θ

(
1

sin θ

∂Ã

∂θ

)
− η

A
B̃

∂2Ã

∂r2

+
(
V A

r −V B
r

)
B̃

∂Ã

∂r
+

(
V A

θ −V B
θ

) B̃

r

∂Ã

∂θ

]
− αB̃2

}

− ∂[F̃r + (VB + V M
r ) χ̃ c]

∂r

− sin θ

r

∂

∂θ

[
F̃θ + V M

θ χ̃c

sin θ

]
, (11)

where F̃ = r2 sin2 θF , F = F/(18πη
T
ρ) is related to the flux

F of the small-scale magnetic helicity and given in Appendix B,
R�/� is the ratio of the solar radius to the basic scale of
solar convection, T = (1/3) Rm (�/R�)2 is the dimensionless
relaxation time of the magnetic helicity, Rm = � u/η0 is
the magnetic Reynolds number, with η0 the “basic” magnetic
diffusion due to the electrical conductivity of the fluid.

The meridional circulation (single cell in each hemisphere,
poleward at surface) is determined by

V M
θ = − 1

sin θ r ρ(r)

∂[r Ψ(r, θ )]

∂r
, (12)

V M
r = 1

sin θ r ρ(r)

∂Ψ(r, θ )

∂θ
, (13)
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Figure 2. Current helicity of active regions estimated as −A · B (see Equation (5)), overlaid on toroidal field for the primitive dynamo model—left panel: deep layer;
right: surface layer. Cα = −6.5, Cω = 6 × 104, Rv = 0 (i.e., no meridional circulation), no buoyancy. The diffusivity constant ηr = 0.5 and the bottom of the
computational region is at r0 = 0.64. The color palette is hereafter chosen as follows: yellow is positive, red is negative, and green is zero.

(A color version of this figure is available in the online journal.)

where Ψ(r, θ ) = Rv sin2 θ cos θf (r)ρ, f (r) = 2(r − rb)2(r −
1)/(1 − rb)2, rb is the base of the computational shell. This
is normalized so that the max of V M

θ at the surface is unity.
We introduce a coefficient Rv = R� U0/ηT 0 , where U0 the
maximum surface speed.

Buoyancy is implemented by the introduction of a purely
vertical velocity VB = γB2

φ r̂ in Equations (7), (8), and (11),
where γ > 0 (Moss et al. 1999). We justify the apparent non-
conservation of mass by adopting the argument of K.-H. Rädler,
presented as a private communication in D. Moss et al. (1990),
that the return velocity will be in the form of a more-or-less
uniform “rain.” In some ways the process represents pumping
by a “fountain flow.” As a result the regular velocity VB appears
in the governing equations for the large-scale magnetic field
and magnetic and current helicities but not the equation for
density. From the viewpoint of probability theory, in the first
case VB is a mean quantity taken under the condition that an
elementary volume is magnetized so it does not vanish, while
in the second case this mean is taken without any condition
and vanishes. In our opinion, this idea can also be constructive
for other problems with magnetic helicity advective fluxes, e.g.,
Shukurov at al. (2006).

At the surface of the Sun, r = 1, we use vacuum boundary
conditions on the field, i.e., B = 0 and the poloidal field fits
smoothly onto a potential external field. At the lower boundary
(the bottom of the solar convective zone), r = r0 = 0.64, B =
Br = 0. At both r = r0 and r = 1, we set ∂χc/∂r = 0, where
χc is proportional to the current helicity (see Equation (9)).

6. SIMULATED BUTTERFLY DIAGRAMS
FOR CURRENT HELICITY

We performed an extensive numerical investigation of the
models in a parametric range which is considered to be adequate
for solar dynamos. We estimate the values of the governing
parameters for different depths of the convective zone, using
models of the solar convective zone, e.g., Baker & Temesvary
(1966) and Spruit (1974)—more modern treatments make little
difference to these estimates. In the upper part of the convective
zone, say at depth (measured from the top) h∗ = 2 × 107 cm,
the parameters are Rm = 105, u = 9.4 × 104 cm s−1, � =
2.6 × 107 cm, ρ = 4.5 × 10−7 g cm−3, the turbulent diffusivity

η
T

= 0.8 × 1012 cm2 s−1; the equipartition mean magnetic field
is Beq = 220 G and T = 5×10−3. At depth h∗ = 109 cm, these
values are Rm = 3 × 107, u = 104 cm s−1, � = 2.8 × 108 cm,
ρ = 5×10−4 g cm−3, η

T
= 0.9×1012 cm2 s−1; the equipartition

mean magnetic field is Beq = 800 G and T ∼ 150. At the
bottom of the convective zone, say at depth h∗ = 2 × 1010 cm,
Rm = 2 × 109, u = 2 × 103 cm s−1, � = 8 × 109 cm,
ρ = 2 × 10−1 g cm−3, η

T
= 5.3 × 1012 cm2 s−1. Here the

equipartition means magnetic field Beq = 3000 G and T ≈ 107.
If we average the parameter T over the depth of the convective
zone, we obtain T ≈ 5, see Kleeorin et al. (2003).

We start with the results for the primitive model. Figure 2
presents the current helicity butterfly diagrams overlaid on those
for the toroidal field. We estimate this quantity based on the idea
that the observed current helicity in active regions is expected
to trace −A · B, and so we plot in this section −A · B.

We see that the plots successfully represent main feature of
the observed helicity patterns. The pattern presented in Figure 2
is quite typical for the model. Of course, one can choose a set
of dynamo governing parameters which is less similar to the
observations. For example one can concentrate magnetic fields
in the deep layer of convective zone (say, in the overshoot layer)
by choosing a reduction ηr = 0.1 in the nominal “overshoot
layer,” instead of ηr = 0.5 (our standard case), as used in
Figure 2. This tends to make the helicity wave in the overshoot
layer look more like a standing wave, but keeps the main features
of surface diagram (Figure 3). The highly anharmonic standing
patterns of the butterfly diagram that were discussed as a possible
option for some stars, see Baliunas et al. (2006), look however
irrelevant for the solar case.

Of course, the helicity pattern in the butterfly diagram ob-
tained in the models for particular choices of dynamo governing
parameters can be slightly different from the observed helicity
patterns. Xu et al. (2009) demonstrated that meridional circula-
tion can be used to make the simulated pattern resemble more
closely that observed.

We produced the same type of plots for models based on
helicity conservation Figure 4. We also present in Figure 5
the small-scale current helicity χc. Here the migration diagrams
are presented for the middle radius of the dynamo region:
nearer the surface χc displays only relatively weak vacillatory
behavior. We see that the small-scale current helicity is strongly

6
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Figure 3. Current helicity of active regions estimated as −A · B (see Equation (5)), overlaid on toroidal field for the primitive dynamo model with enhanced dynamo
activity in the overshoot layer—left panel: deep layer; right: surface layer. The values of Cα , Cω , Rv , and r0 are the same as in the previous figure but diffusivity
contrast ηr = 0.1.

(A color version of this figure is available in the online journal.)
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Figure 4. Current helicity of active regions estimated as −A · B (see Equation (5)), overlaid on toroidal field contours for the dynamo model based on helicity balance,
near the middle radius of the dynamo region (r = 0.84, left panel) and near the surface (r = 0.96, right panel) for Cα = −5, Cω = 6 × 104, Rv = 10 (i.e., with
meridional circulation), and buoyancy parameter γ = 1.

(A color version of this figure is available in the online journal.)
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Figure 5. Small-scale current helicity χc overlaid on toroidal field contours
for the dynamo model based on helicity balance, near the middle radius of the
dynamo region. Cα = −5, Cω = 6 × 104, Rv = 10 (i.e., with meridional
circulation), buoyancy parameter γ = 1. The plots are for fractional radius
0.84.

(A color version of this figure is available in the online journal.)

concentrated in middle latitudes and helicity oscillations which
are present in the model are almost invisible on the background
of the intensive belt of constant helicity in middle latitudes. We
doubt that such oscillations would be observable. We stress that,
if this model produces any traveling helicity pattern, it is situated
in the deep layers only. The pattern usually is much more similar
to that presented in the right-hand panel of Figure 3 rather than
to a traveling wave such as presented in Figure 2.

Taking our models as a whole, determination of further details
of the location of the dynamo layer or the helicity sign inversion
at some latitudes and phases of the solar cycle is beyond the
scope of this investigation. Such a study would require a more
complex simulation, which we hope to perform in the future.

The numerical models used here are extremely simple and
cannot be expected to sample the full range of solutions that are
accessible to a three-dimensional, highly stratified, extremely
turbulent system with complex and unknown boundary condi-
tions. In the present paper, we have only shown the theoretical
possibility that the current helicity observed in solar active re-
gions may trace the magnetic helicity of the large-scale dynamo
generated field. We demonstrated that the results obtained with

7
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our simplified dynamo model are compatible with the obser-
vations. At the same time we note that such computationally
complex and expensive simulations are still far from being able
to reproduce the range of observed solar phenomena, and that for
the immediate future mean field models will continue to play
an important role. Indeed, they may provide more immediate
physical insight.

The simple models which we have considered here were
not intended to reproduce very fine details of the spatial-
time distribution of helicity observable in the form of butterfly
diagrams. We may again note that our modeling of helicity
in the solar convective zone and active regions is still too
simplified to be able to detect more detailed properties of the
helicity dynamics.

While we feel that it is remarkable that there is a class of
kinematic models that are able to reproduce the current helicity
observations from vector magnetograms, we may again note that
some contribution to the observed current helicity may be due to
the surface effects caused by the differential rotation (Mackay
& Van Ballegooijen 2005; Yeates & Mackay 2009) and not from
the dynamo.

7. CONCLUSIONS

We conclude that current helicity of the magnetic field in
active regions is a tracer of the magnetic helicity of the large-
scale magnetic field in the solar interior. We believe that this
provides a unique option for tracing this quantity, which is very
important for the solar dynamo. According to the observational
data (Zhang et al. 2010), the current helicity in active regions is
mainly negative in the northern hemisphere. Numerical models
give a negative value for −A · B in the surface layer of the
convective zone in the northern hemisphere.

Summarizing, we conclude that the current helicity of the
magnetic field in active regions is expected to have the opposite
sign to A·B, evaluated at the depth at which the active region
originates. Thus, the models presented here are consistent with
the interpretation that the mechanism responsible for the sign
of the observed helicity operates near the solar surface, cf. e.g.,
Kosovichev (2010). The mechanism of formation of the current
helicity in active regions still requires further investigation.
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APPENDIX A

CURRENT HELICITY VERSUS THE
MAGNETIC HELICITY

Here, we relate the mean current helicity 〈Bar·curl Bar〉 with
the magnetic helicity 〈Aar·Bar〉. First we rewrite the mean current
helicity from first principles with the use of permutation tensors

as

〈Bar·curl Bar〉 = εmpq εmij lim
x→y

∇x
p ∇y

i

〈
Aar

q (x)Bar
j (y)

〉
= lim

x→y

[
(∇x · ∇y) 〈Aar(x) · Bar(y)〉 − ∇x

p ∇y
q

〈
Aar

q (x)Bar
p (y)

〉]
,

(A1)

where εijn is the fully antisymmetric Levi–Civita tensor, R� is
the solar radius, Lar is the spatial scale of an active region, and
r = x − y. The use of the full tensor notation and limits are
needed here in order to separate the large-scale and small-scale
variables and to obtain a simple final answer in scalar form when
there is separation of scales. Since r = x − y is a small-scale
variable, R = (x + y)/2 is a large-scale variable, the derivatives

∇x
p ≡ ∂

∂xp

= ∂

∂rp

+
1

2

∂

∂Rp

= −∇y
p +

∂

∂Rp

,

∇y
p ≡ ∂

∂yp

= − ∂

∂rp

+
1

2

∂

∂Rp

= −∇x
p +

∂

∂Rp

.

This implies that

∇x · ∇y = −
(

∂2

∂r2
− 1

4

∂2

∂R2

)
,

∇x
p∇y

q = ∇y
p∇x

q − ∇y
p

∂

∂Rq

− ∇x
q

∂

∂Rp

+
∂2

∂Rp∂Rq

.

We take into account that div Bar = 0 (i.e., ∇y
pBar

p (y) = 0) and
div Aar = 0 (i.e., ∇x

qA
ar
q (x) = 0). We also take into account that

the characteristic scale of an active region is small compared
with the thickness of the convection zone or the radius of the
Sun. This implies that

∇x
p ∇y

q

〈
Aar

q (x)Bar
p (y)

〉 = ∂2

∂Rp∂Rq

〈
Aar

q (x)Bar
p (y)

〉 ∼ O

(
L2

ar

R2�

)
,

and therefore this term vanishes. This yields

〈Bar·curl Bar〉 = −
(

∂2

∂rp∂rp

〈Aar·Bar〉
)

r→0

+ O

(
L2

ar

R2�

)
. (A2)

Now we take into account that the second derivative of the
correlation function(

∂2

∂rp∂rp

〈Aar·Bar〉
)

r→0

should be negative since as r → 0 the correlation function has
a maximum. Thus, we finally obtain

〈Bar·curl Bar〉 ≈ 1

L2
ar

〈Aar·Bar〉 + O

(
L2

ar

R2�

)
. (A3)

Similar calculations relating the current helicity and the mag-
netic helicity in k-space can be found in Appendix C of Kleeorin
& Rogachevskii (1999).

APPENDIX B

DETAILED DESCRIPTION OF THE DYNAMO MODEL

The flux of the small-scale magnetic helicity is chosen in the
form

F = η
A
(B) B2 {C1 ∇[χv φv(B)]

+ C2 χv φv(B) Λρ} − C3 κ ∇ χc , (B1)

8
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with Λρ = −∇ρ/ρ and κ is the coefficient of turbulent
diffusion of small-scale magnetic helicity (see below).

The quenching functions Φv(B) and Φm(B) appearing in the
nonlinear α effect are given by

Φv(B) = 1

7
[4φm(B) + 3L(

√
8B)], (B2)

Φm(B) = 3

8B2

[
1 − arctan(

√
8B)√

8B

]
(B3)

(Rogachevskii & Kleeorin 2000), where L(y) = 1 − 2y2 +
2y4 ln(1 + y−2).

The nonlinear turbulent magnetic diffusion coefficients for the
mean poloidal and toroidal magnetic fields, η

A
(B) and η

B
(B),

are given in dimensionless form by

η
A
(B) = A1(4B) + A2(4B), (B4)

η
B
(B) = A1(4B) +

3

2
[2A2(4B) − A3(4B)], (B5)

(Rogachevskii & Kleeorin 2004). For the case of weak magnetic
field the turbulent diffusion coefficients are (in units of the
reference value η

T 0 )

η
A

= 1 − 96

5
B2, η

B
= 1 − 32B2, (B6)

while for strong magnetic fields the scaling is

η
A

= 1

8B2
, η

B
= 1

3
√

2B
. (B7)

The transition from one asymptotic form to the other can be
thought of as occurring in the vicinity of B ∼ Beq/4.

The nonlinear drift velocities of poloidal and toroidal mean
magnetic fields, V A(B) and V B(B), are given in dimensionless
form by

V A(B) = V1(B)
ΛB

2
+

V2(B)

r
(er + cot θ eθ ) + V ρ(B), (B8)

V B(B) = V3(B)

r
(er + cot θ eθ ) + V ρ(B), (B9)

where

V1(B) = 3

2
A3(4B) − 2A2(4B),

V2(B) = 1

2
A2(4B),

V3(B) = 3

2
[A2(4B) − A3(4B)],

V ρ(B) = 1

2
Λρ

[
−5A2(4B) +

3

2
A3(4B)

]
.

The asymptotic formulae for these velocities are given by

V A = 32

5
B2

[
ΛB + 3Λρ − er + cot θ eθ

r

]
,

V B = 32

5
B2

[
3Λρ − er + cot θ eθ

r

]

for a weak magnetic field, and

V A = − 1

3
√

8B

[
ΛB + 2

er + cot θ eθ

r

]
+

5

16B2
Λρ,

V B = 4

3
√

8B

er + cot θ eθ

r
+

5

16B2
Λρ

for strong fields. Here ΛB = (∇B2)/B2, er and eθ are unit
vectors in the r and θ directions of spherical polar coordi-
nates, [Λρ]r = −d ln ρ/dr , and [ΛB]r = d ln B2/dr . See,
for details, Rogachevskii & Kleeorin (2004, Equations (18),
(19), (22)–(24)), which have been rewritten here in spherical
geometry.

The functions Ak(y) are

A1(y) = 6

5

[
arctan y

y

(
1 +

5

7y2

)
+

1

14
L(y) − 5

7y2

]
,

A2(y) = − 6

5

[
arctan y

y

(
1 +

15

7y2

)
− 2

7
L(y) − 15

7y2

]
,

A3(y) = − 2

y2

[
arctan y

y
(y2 + 3) − 3

]
.

The nonlinear quenching of the turbulent magnetic diffusion
of the magnetic helicity is given by

κ(B) = 1

2

[
1 + A1(4B) +

1

2
A2(4B)

]
. (B10)

The coefficient of turbulent diffusion of magnetic helicity κ also
has a dependence on B, namely, κ(B) = 1 − 24B2/5 for a weak
magnetic field and

κ(B) = 1

2

(
1 +

3π

40B

)
(B11)

for the strong field limit.

REFERENCES

Baker, N., & Temesvary, S. 1966, Table of Convective Stellar Envelope Models
(New York: Goddaid Inst.), 312

Baliunas, S., Frick, P., Moss, D., et al. 2006, MNRAS, 365, 181
Bao, S. D., & Zhang, H. Q. 1998, ApJ, 496, L43
Blackman, E. G., & Brandenburg, A. 2003, ApJ, 584, L99
Blackman, E. G., & Field, G. B. 2000a, ApJ, 534, 984
Blackman, E. G., & Field, G. B. 2000b, MNRAS, 318, 724
Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A. 2007, Highlights Astron., 14, 291
Brandenburg, A., Kemel, K., Kleeorin, N., Mitra, D., & Rogachevskii, I.

2011, ApJ, 740, L50
Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2010, Astron. Nachr., 331,

5
Brandenburg, A., & Subramanian, K. 2005, Phys. Rep., 417, 1
Cally, P. S., Dikpati, M., & Gilman, P. A. 2003, ApJ, 582, 1190
Choudhuri, A. R., Chatterjee, P., & Nandy, D. 2004, ApJ, 615, L57
Dikpati, M., & Gilman, P. A. 2001, ApJ, 559, 420
Gilman, P. A., & Dikpati, M. 2000, ApJ, 528, 552
Hagino, M., & Sakurai, T. 2004, PASJ, 56, 831
Kleeorin, N., Kuzanyan, K., Moss, D., et al. 2003, A&A, 409, 1097
Kleeorin, N., Mond, M., & Rogachevskii, I. 1996, A&A, 307, 293
Kleeorin, N., Moss, D., Rogachevskii, I., & Sokoloff, D. 2000, A&A, 361, L5
Kleeorin, N., & Rogachevskii, I. 1999, Phys. Rev. E, 59, 6724
Kleeorin, N., Rogachevskii, I., & Ruzmaikin, A. 1995, A&A, 297, 159
Kosovichev, A. G. 2010, Sol. Phys., in press (arXiv:1010.4927)
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