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Mechanisms of nonhelical large-scale dynamos (shear-current dynamo and effect of homogeneous kinetic helicity fluctu-
ations with zero mean) in a homogeneous turbulence with large-scale shear are discussed. We have found that the shear-
current dynamo can act even in random flows with small Reynolds numbers. However, in this case mean-field dynamo
requires small magnetic Prandtl numbers (i.e., when Pm < Pmcr < 1). The threshold in the magnetic Prandtl number,
Pmcr = 0.24, is determined using second order correlation approximation (or first-order smoothing approximation) for
a background random flow with a scale-dependent viscous correlation time τc = (νk2)−1 (where ν is the kinematic
viscosity of the fluid and k is the wave number). For turbulent flows with large Reynolds numbers shear-current dynamo
occurs for arbitrary magnetic Prandtl numbers. This dynamo effect represents a very generic mechanism for generating
large-scale magnetic fields in a broad class of astrophysical turbulent systems with large-scale shear. On the other hand,
mean-field dynamo due to homogeneous kinetic helicity fluctuations alone in a sheared turbulence is not realistic for a
broad class of astrophysical systems because it requires a very specific random forcing of kinetic helicity fluctuations that
contains, e.g., low-frequency oscillations.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

An origin of solar, stellar and galactic large-scale mag-
netic fields is related to a mean-field dynamo. This dynamo
can be driven by the joint action of small-scale turbulent
flows with a nonzero mean kinetic helicity and large-scale
differential rotation (see, e.g., Moffatt 1978; Parker 1979;
Krause & Rädler 1980; Zeldovich et al. 1983; Ruzmaikin et
al. 1988; Ossendrijver 2003; Rüdiger & Hollerbach 2004;
Brandenburg & Subramanian 2005).

Recent numerical experiments by Yousef et al. (2008)
have demonstrated existence of a nonhelical large-scale dy-
namo in a turbulence with superimposed linear shear in
elongated shearing boxes whereby mean α effect vanishes.
The exponential growth of magnetic field has been found
at scales which are much larger than the outer scale of the
turbulence. An earlier indications of nonhelical turbulence
amplifying large-scale magnetic field in the presence of a
large-scale shear associated with mean flows has been found
by Brandenburg (2005) and Brandenburg et al. (2005) in nu-
merical experiments that used constant-in-time sinusoidal
forcing functions. This implies that the amplification effect
in a sheared nonhelical turbulence appears to be numerically
robust. Note also that numerical experiments with Taylor-
Green forcing is another example of a mean-field dynamo
produced by a combined effect of a nonhelical turbulence
and a complicated large-scale flow (Ponty et al. 2005).

One of the possible mechanism of the nonhelical large-
scale dynamo in a homogeneous sheared turbulence is a
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shear-current dynamo effect (see Rogachevskii & Klee-
orin 2003, 2004, 2007; Rogachevskii et al. 2006a, 2006b).
The physics of this phenomenon is following. Upward and
downward turbulent eddies result in deformations of the
original nonuniform magnetic field lines. In a turbulence
with a large-scale shear the inhomogeneity of the original
mean magnetic field breaks a symmetry between the influ-
ence of the upward and downward turbulent eddies on the
mean magnetic field. This causes the mean electric current
along the mean magnetic field and results in systematic am-
plification of the large-scale magnetic field.

The shear-current dynamo has been previously stud-
ied for large Reynolds numbers using the spectral tau-
approximation (see Rogachevskii & Kleeorin 2003, 2004,
2007). On the other hand, in a random flow with small
Reynolds numbers the dynamo action in nonhelical shear
flows has not yet been found in the framework of the sec-
ond order correlation approximation or first-order smooth-
ing approximation (see Rädler & Stepanov 2006; Rüdiger &
Kichatinov 2006). How generic is the latter result? In par-
ticular, how the dynamo action may depend on the spectral
properties of a random flow with small Reynolds numbers?
One of the goals of this study is to revise this problem for
the case of a random flow with small Reynolds numbers.

Another effect that might explain the large-scale dy-
namo in a sheared turbulence with a zero mean kinetic helic-
ity is associated with kinetic helicity fluctuations. Dynam-
ics of large-scale magnetic field in the presence of kinetic
helicity fluctuations with a zero mean in a shear-free tur-
bulence has been studied for the first time by Kraichnan
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(1976). This problem is formulated in the following way.
Let us consider a small-scale turbulence produced by a ran-
dom forcing F (u) located in small scales lν � lturb � l0
(and τν � τturb � τ0), while in larger scales l0 � l � lχ
(and τ0 � τ � τχ) there are kinetic helicity fluctuations
(or α̃ fluctuations) with a zero mean produced by a random
forcing F (χ).

The mean-field effects occur at very large scales L � lχ
(and times τ

L
� τχ), where the mean kinetic helicity is

zero. All mean quantities are determined by double averag-
ing over velocity fluctuations, 〈...〉, and over kinetic helic-
ity fluctuations 〈...〉(α) [see detailed discussion by Sokolov
(1997) about various mathematical aspects of this problem].
Numerical simulations of the magnetic field evolution in
accretion discs by Vishniac & Brandenburg (1997) have
demonstrated that kinetic helicity fluctuations with a zero
mean can result in generation of large-scale magnetic field
(see also Brandenburg et al. 2008).

Let us discuss theoretical aspects of this problem. In a
shear-free turbulence kinetic helicity fluctuations cause two
effects: (i) a negative contribution to the turbulent magnetic
diffusion, η(α)

T
= −τχ 〈α̃2〉(α); and (ii) a large-scale drift

velocity of the mean magnetic field, V (α) ∝ τχ ∇〈α̃2〉(α)

(see Kraichnan 1976; Moffatt 1978). In a turbulence with
large-scale shear, inhomogeneous kinetic helicity fluctua-
tions can produce a mean-field dynamo (Silant’ev 2000). In-
deed, a combined effect of the inhomogeneous fluctuations
and large-scale shear superimposed on turbulence, produces
a nonzero mean alpha effect: ᾱ(S,α) ∝ −τ2

χ S ∇z〈α̃2〉(α),
while 〈α̃〉(α) = 0. Here the mean vorticity due to the large-
scale shear is W̄ = S ez . The equation for ᾱ(S,α) has been
derived using the second order correlation approximation
and the spectral tau-approximation (see for details, Klee-
orin & Rogachevskii 2008). The large-scale shear and the
mean alpha effect can result in the mean-field dynamo that
acts similarly to the αΩ-dynamo.

Using phenomenological arguments, Proctor (2007) has
suggested that homogeneous kinetic helicity fluctuations in
a homogeneous turbulence with a large-scale shear may
generate a large-scale magnetic field. Such possibility for
a large-scale dynamo has been recently examined by Klee-
orin & Rogachevskii (2008) using the second order correla-
tion approximation and the spectral tau-approximation. This
study has not found large-scale dynamo produced by homo-
geneous kinetic helicity fluctuations alone with zero mean
value in a sheared homogeneous turbulence. However, how
generic is the latter statement? One of the goals of this study
is to revise this problem. We have demonstrated that only for
a specific random forcing of kinetic helicity fluctuations that
also contains low-frequency oscillations, the large-scale dy-
namo in a homogeneous turbulence with a large-scale shear
might be possible.

This paper is organized as follows. In Sect. 2 we in-
vestigate shear-current dynamo for a random flow with
small Reynolds numbers and different spectral properties.
In Sect. 3 we study the effect of homogeneous kinetic helic-

ity fluctuations with a zero mean in a sheared turbulence. In
Sect. 4 we draw concluding remarks.

2 The shear-current effect

In order to study the shear-current effect in a random flow
with small Reynolds numbers we use a second order corre-
lation approximation (SOCA). This approximation is valid
only for small hydrodynamic Reynolds numbers. Even in
a highly conductivity limit (large magnetic Reynolds num-
bers), SOCA can be valid only for small Strouhal numbers
(i.e., for very short correlation time).

We use equation of motion and induction equation for
fluctuations of velocity and magnetic fields, exclude the
pressure term from the equation of motion by calcula-
tion ∇×(∇×u), where u are velocity fluctuations. We
rewrite the obtained equation and the induction equation in a
Fourier space and apply the two-scale approach (i.e., we use
large-scale and small-scale variables). We neglect nonlinear
terms but keep molecular dissipative terms in the equations
for fluctuations of velocity and magnetic fields. We seek for
a solution of the obtained equations for fluctuations of ve-
locity, u, and magnetic, b, fields as an expansion for a weak
velocity shear:

u(k, ω) = u(0)(k, ω) + u(1)(k, ω) + ... , (1)

b(k, ω) = b(0)(k, ω) + b(1)(k, ω) + ... , (2)

where

b
(0)
i (k, ω) = Gη(k, ω)

[
i(k·B̄)u(0)

i −
(
km

∂u
(0)
i

∂kn

+ δim u(0)
n

)
(∇nB̄m)

]
, (3)

u
(1)
i (k, ω) = Gν(k, ω)

[
2kiq u(0)

p + kq
∂u

(0)
i

∂kp

− δiq u(0)
p

]
(∇pŪq) , (4)

b
(1)
i (k, ω) = Gη(k, ω)

{[
i(k·B̄)u

(1)
i −

(
km

∂u
(1)
i

∂kn

+ δim u(1)
n

)
(∇nB̄m)

]
+

[
kq

∂ b
(0)
i

∂kp

+ δiq b(0)
p

]
(∇pŪq)

}
. (5)

Here Ū and B̄ are the mean velocity and magnetic fields,
k and ω are the wave number and frequency, Gν(k, ω) =
(νk2 − iω)−1 and Gη(k, ω) = (ηk2 − iω)−1, η is the mag-
netic diffusion coefficient due to electrical conductivity of
the fluid, and ν is the kinematic viscosity of the fluid. For
derivation of Eqs. (3)-(5) we use an identity∫

Ūq(Q) bn(k − Q) dQ = i(∇pŪq)
∂bn

∂kp
,

that is valid at least for a linear velocity field. Equations (3)–
(5) coincide with that derived by Rädler & Stepanov (2006).
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These equations allow us to determine the cross-helicity
tensor g

(1)
mn = 〈u(0)

m b
(1)
n 〉 + 〈u(1)

m b
(0)
n 〉 and the contribu-

tions, E(S)
i = εimn

∫
g
(1)
mn(k, ω) dk dω, to the electromo-

tive force caused by sheared turbulence. For the integration
in k-space we have to specify a model for the background
shear-free turbulence (with B̄ = 0), which is determined
by equation

〈ui uj〉(0)(k, ω) = 〈u2〉(0) Pij(k)E(k)
8π2 k2 τc (ω2 + τ−2

c )
, (6)

where E(k) is the energy spectrum (e.g., a power-law spec-
trum), τc is the correlation time, Pij(k) = δij − kikj/k2

and δij is the Kronecker tensor. This model corresponds to
the correlation function: 〈ui(t)uj(t + τ)〉 ∝ exp(−τ/τc).
Straightforward calculations yields the contributions to the
electromotive force caused by sheared turbulence:

E(S)
i = l20 [A1 εipk (∂Ū)pq (∂B̄)qk + A2 W̄k (∂B̄)ik

+A3 J̄k (∂Ū)ik + A4 (W̄×J̄)i] , (7)

where (∂Ū)ij = (∇iŪj + ∇jŪi)/2, W̄ = ∇×Ū is the
mean vorticity, l0 is the maximum scale of turbulent mo-
tions (the energy containing scale), J̄ = ∇×B̄ is the mean
electric current, and the coefficients An are given in Ap-
pendix. The equation for the evolution of the mean magnetic
field, B̄ = (B̄x(z), B̄y(z), 0), reads

∂B̄x

∂t
= −σ

B
S l20 B̄′′

y + (η + η
T
) B̄′′

x , (8)

∂B̄y

∂t
= S B̄x + (η + η

T
) B̄′′

y , (9)

where l0 = τ0

√
〈u2〉(0), we use linear velocity shear

Ū = (0, Sx, 0), B̄′′
i = ∂2B̄i/∂z2, η

T
∝ τ0 〈u2〉(0) is

the turbulent magnetic diffusion coefficient, and we neglect
small contributions to the coefficient of turbulent magnetic
diffusion caused by the shear motions because we consider a
small shear, Sτ0 � 1. The coefficient σB entering in Eq. (8)
is given by

σ
B

=
ν

15πτ2
0

∫
dk [I4 − νk2I3 + ηk2(I1 − I2)] E(k) k2,

(10)

the functions In(k) for τc = 1/(νk2) are given in Ap-
pendix. Using the explicit form of the functions In(k), we
obtain the following expression for the coefficient σ

B
:

σ
B

=
1

60 (τ0 ν)2
Pm(1 − 4Pm− Pm2)

∫
E(k)
k4

dk,

(11)

where Pm = ν/η is the magnetic Prandtl number. The
solution of Eqs. (8) and (9) we seek for in the form ∝
exp(γ

B
t + iKz z), where the growth rate, γ

B
, of the mean

magnetic field is given by

γ
B

= S l0
√

σ
B

Kz − (η + η
T
)K2

z . (12)

and σ
B

> 0 when Pm < 0.24.
In the present study we use the SOCA procedure that is

valid only for Re � 1. It follows from Eqs. (11) and (12)

that for Re � 1, the dynamo instability due to the shear-
current effect occurs when Pm < 0.24 (i.e., for small
magnetic Prandtl numbers). This result has been obtained
for a model of the background shear-free turbulence deter-
mined by Eq. (6) with τc = 1/(νk2). Note that Rädler and
Stepanov (2006) used a model of the background shear-free
turbulence with a constant scale-independent correlation
time τc. A possibility for the shear-current dynamo for small
magnetic Prandtl numbers in the case of Re � 1 has been
pointed out by Rüdiger (2007), although this was not explic-
itly mentioned in his previous study using the SOCA proce-
dure and a more simple model for the background shear-free
turbulence: 〈ui uj〉(0)(k, ω) ∝ 〈u2〉(0) Pij(k)E(k) δ(ω)
(see Rüdiger & Kitchatinov 2006). For turbulent flows with
large Reynolds numbers shear-current dynamo occurs for
arbitrary magnetic Prandtl numbers (see Rogachevskii &
Kleeorin 2003, 2004, 2007).

3 Effect of kinetic helicity fluctuations

In order to study effect of kinetic helicity fluctuations with
a zero mean on large-scale dynamo we use a second order
correlation approximation. This procedure yields the equa-
tion for the evolution of the magnetic field B:

∂B

∂t
= ∇×

(
α̃B + V ×B − (η + ηT )J

)
+ BN , (13)

where J = ∇×B is the electric current, BN are the non-
linear terms, V +u is the total velocity and 〈u〉 = 0. In this
section we do not consider the shear-current effect.

In the scales l0 � l � lχ there are fluctuations of α̃.
Let us consider homogeneous kinetic helicity fluctuations.
In order to derive equation for the the mean magnetic field
B̄ = 〈B〉(α), we determine the contribution to the mean
electromotive force caused by the sheared turbulence and
the kinetic helicity fluctuations, E(S,α)

j = 〈α̃Bj〉(α). To this
end we use Eq. (13) in which we neglect the nonlinear terms
BN . Solving this equation in a Fourier space we determine
the magnetic field Bj(k, ω), where the wave vector k and
the frequency ω are located in the spatial scales l0 � l �
lχ and in the time scales τ0 � τ � τχ. Multiplying the
magnetic field By(k, ω) by α̃ and averaging over kinetic

helicity fluctuations we determine E(S,α)
y :

E(S,α)
y = S J̄x

∫
G2

T (k, ω) fα(k, ω) dk dω , (14)

where GT (k, ω) = [(η + η
T
)k2 − iω]−1, fα(k, ω) =

〈α̃(ω)α̃(−ω)〉(α), Ū = (0, Sx, 0) is the background shear
velocity, and J̄ = ∇×B̄ is the mean electric current.
We assume that the mean magnetic field has the form:
B̄ = (B̄x(z), B̄y(z), 0), and neglect small contributions

∼ O(τ0/τχ) to the mean electromotive force E(S,α)
y .

We use the following model for the spectral function
fα(k, ω):

fα(k, ω) = 〈α̃2〉(α) Eα(k)
πτχ(ω2 + τ−2

χ )
. (15)
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This model corresponds to the following correlation func-
tion 〈α̃(t)α̃(t + τ)〉(α) ∝ exp(−τ/τχ). In earlier stud-
ies by Kleeorin & Rogachevskii (2008), a more simple
model for the spectral function has been used: fα(k, ω) =
〈α̃2〉(α) Eα(k)δ(ω).

The contribution to the mean electromotive force caused
by the sheared turbulence and the kinetic helicity fluctua-
tions is given by E(S,α)

j = −σα S 〈α̃2〉(α) τ2
χ B′

y , where the
parameter

σα =
∫

Eα(k)
[1 + τχ (η + ηT ) k2]2

dk > 0 . (16)

Here we use an identity
∫

G2
η Ga G∗

a dω = π/[a (η k2 +
a)2], where Ga(k, ω) = (a − iω)−1 with a = τ−1

χ . The
equation for the evolution of the mean magnetic field, B̄ =
(B̄x(z), B̄y(z), 0), reads

∂B̄x

∂t
= σα S 〈α̃2〉(α) τ2

χ B̄′′
y + η̃T B̄′′

x , (17)

∂B̄y

∂t
= S B̄x + η̃

T
B̄′′

y , (18)

where η̃
T

= η + η
T

+ η(α)
T

. Here we neglect small con-
tributions to the coefficient of turbulent magnetic diffu-
sion caused by the shear motions because Sτ0 � 1. Note
that for enough general model (15) of the spectral func-
tion fα(ω, k), the parameter σα is always positive. It is
also positive when τχ = (νk2)−1 (see the spectral model
used in Sect. 2). This implies that homogeneous kinetic he-
licity fluctuations alone with zero mean value for general
model (15) in a sheared homogeneous turbulence cannot
cause a large-scale dynamo (see Eqs. 17 and 18).

However, for a specific random forcing of kinetic he-
licity fluctuations that also contains low-frequency oscilla-
tions, e.g.,

〈α̃(t)α̃(t + τ)〉(α) ∝ exp(−τ/τχ) cos(ωwτ) , (19)

there is a possibility for a large-scale dynamo action due
to homogeneous kinetic helicity fluctuations in a sheared
homogeneous turbulence. In this case the spectral function
fα(k, ω) is given by:

fα(k, ω) = 〈α̃2〉(α) Eα(k)
2π

[
a

ω2 + a2
+

a∗

ω2 + (a∗)2

]
,

with a = τ−1
χ + iωw, and the parameter σα,

σα =
∫

dk
[1 + τχ (η + ηT ) k2]2 − (ωwτχ)2

{[1 + τχ (η + η
T
) k2]2 + (ωwτχ)2}2

×Eα(k) , (20)

is negative when ωwτχ > 1 + τχ (η + ηT ) k2. This im-
plies that for model (19) a large-scale dynamo due to ho-
mogeneous kinetic helicity fluctuations in a sheared homo-
geneous turbulence can occurs. However, this model for the
function fα(k, ω) of kinetic helicity fluctuations seems to
be not realistic.

4 Conclusions

Two types of nonhelical large-scale dynamos due to shear-
current effect and homogeneous kinetic helicity fluctuations
with zero mean in a sheared turbulence are investigated us-
ing a second order correlation approximation. The mecha-
nism for the shear-current dynamo is following. The large-
scale velocity shear creates anisotropy of turbulence that
produces a contribution to the electromotive force, W̄×J̄ ,
caused by the shear. Joint effects of the electromotive force
W̄×J̄ and stretching of the mean magnetic field due to the
large-scale shear motions cause the shear-current dynamo
instability. This effect occurs even for small Reynolds num-
bers. However, the dynamo instability in this case requires
small magnetic Prandtl numbers (Pm < 0.24). This dy-
namo threshold is found for a model of a random flow with
the correlation time τc = (νk2)−1. The shear-current dy-
namo for large Reynolds numbers is independent of mag-
netic Prandtl numbers.

Another possible mechanism for the nonhelical large-
scale dynamo is associated with homogeneous kinetic helic-
ity fluctuations in a sheared turbulence. However, this kind
of mean-field dynamo is not universal and can occur only
for a specific random forcing of kinetic helicity fluctuations
that contains, e.g., low-frequency oscillations.

The discussed effects in this study might be important in
a broad class of astrophysical flows. For instance, sheared
turbulence is a universal feature in astrophysical flows, e.g.,
in stellar interiors, accretion disks, irregular galaxies (Bal-
bus & Hawley 1998; Chyzy et al. 2000; Ossendrijver 2003;
Brandenburg & Subramanian 2005; Donati et al. 2005;
Gaensler et al. 2005), and in liquid-metal laboratory dy-
namo experiments (see, e.g., Monchaux et al. 2007).

Non-symmetrical explosions of supernova may produce
fluctuations of kinetic helicity located in larger scales than
small-scale turbulence existing in convective zones inside
stars. On the other hand, the shear-current dynamo acts to-
gether with the α-shear dynamo. The shear-current effect
does not quenched (see Rogachevskii & Kleeorin 2004; Ro-
gachevskii et al. 2006b) contrary to the quenching of the
nonlinear α effect, the turbulent magnetic diffusion, etc.
This implies that the shear-current dynamo might be the
only surviving effect, which can explain the origin of large-
scale magnetic fields in sheared astrophysical turbulence.
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A Appendix: coefficients An and functions
In(k)

The coefficients An entering in Eq. (7) are given by

A1 =
ν

30 π

∫
[2I5 − 2I4 + 5I8 + 2νk2(2I3 + I6)

+ 2ηk2(2I2 − I7)] E(k) k2 dk ,

A2 =
ν

60 π

∫
[6I4 + 5I8 − 6νk2I3 + 2ηk2(3I1 − 3I2

− 2I7)] E(k) k2 dk ,

A3 =
ν

60 π

∫
[5I8 − 2I5 − 2νk2(I3 + I6)

− 2ηk2(I1 + I2 + I7)] E(k) k2 dk ,

A4 = − ν

24 π

∫
I8 E(k) k2 dk ,

where the functions In(k) for τ−1
c = νk2 are given by

I1(k) =

∫
G2

η G2
ν G∗

ν dω =
π

2 ν2 (ν + η)2 k8
,

I2(k) =

∫
G2

η Gν (G∗
ν)2 dω =

π (5ν + η)

2 ν2 (ν + η)3 k8
,

I3(k) =

∫
Gη Gν (G∗

ν)3 dω =
π

4 ν3 (ν + η)3 k8

× [2ν(ν + η) + (ν + η)2 + 4ν2] ,

I4(k) =

∫
Gη Gν (G∗

ν)2 dω =
π (3ν + η)

2 ν2 (ν + η)2 k6
,

I5(k) =

∫
Gη G2

ν G∗
ν dω =

π

2 ν2 (ν + η) k6
,

I6(k) =

∫
Gη G3

ν G∗
ν dω =

π

4 ν3 (ν + η) k8
,

I7(k) =

∫
G3

η Gν G∗
ν dω =

π

ν (ν + η)3 k8
,

I8(k) =

∫
G2

η Gν G∗
ν dω =

π

ν (ν + η)2 k6
.
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