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Using numerical simulations of forced turbulence with and without mean kinetic

helicity, we show that for magnetic Reynolds numbers larger than unity, that is,

beyond the regime of quasilinear theory, the turbulent magnetic diffusivity attains an

additional negative contribution that is quadratic in the kinetic helicity. In particu-

lar, for large magnetic Reynolds numbers, the turbulent magnetic diffusivity without

helicity is about twice the value with helicity. Such a contribution was not previously

anticipated, but, as we discuss, it turns out to be important when accurate estimates

of the turbulent magnetic diffusivity are needed.
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1 INTRODUCTION

Large-scale magnetic fields in the turbulent convection zones

of stars or in supernova-driven turbulence of the interstel-

lar medium of galaxies evolve according to the equations of

mean-field electrodynamics and, in particular, the mean-field

induction equation. This equation is similar to the origi-

nal induction equation for the actual magnetic field, which

includes the fluctuations around the mean magnetic field. The

presence of turbulence leads to enhanced effective magnetic

diffusion, which is often orders of magnitude larger than the

microphysical value, although this is usually not the case in

numerical simulations and no restriction concerning this ratio

will be made in this paper. If the velocity field is helical, there

is, in addition to ordinary turbulent diffusion, also the 𝛼 effect,

which can destabilize an initially weak large-scale magnetic

field and lead to its exponential growth.

Mathematically, the evolution of the mean magnetic field

B is described by the equation

𝜕B
𝜕t

= 𝜵× [𝛼B − (𝜂t + 𝜂)𝜇0J], (1)

where J = 𝜵×B∕𝜇0 is the mean current density, 𝜇0 is the

vacuum permeability, and 𝜂 is the microphysical magnetic

diffusivity, and overbars denote spatial averaging, which we

will later specify to be horizontal averaging over two spa-

tial coordinates x and y. For the purpose of this discussion,

and throughout this paper, we assume the turbulence to be

isotropic; otherwise, 𝛼 and 𝜂t would have to be replaced by

tensors.

The relative importance of turbulent diffusion to micro-

physical diffusion is measured by the magnetic Reynolds

number

Rm = urms∕𝜂kf , (2)

where urms is the root-mean-squared (rms) velocity of the tur-

bulence, and kf is the wavenumber of the energy-carrying

eddies. The magnetic diffusivity and the 𝛼 effect are inversely

proportional to the electric conductivity in the low conductiv-

ity limit, that is, Rm ≪ 1, so we have (Krause & Rädler 1980)

𝜂t = − 1

3𝜂
(𝝍2 − 𝜙2) and 𝛼 = − 1

3𝜂
𝝍 ⋅ u, (3)

where u=𝛻×𝜓 +𝛻𝜙 is the turbulent velocity expressed
in terms of a vector potential 𝜓 and a scalar potential 𝜙. In
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the following, we perform averaging over two coordinate

directions.

One often considers the limiting case of incompressible tur-

bulence, so 𝜙= 0 and 𝝍2 = u2∕k2
f
, and 𝝍 ⋅ u = 𝝎 ⋅ u∕k2

f
,

where 𝝎=𝛻×u is the vorticity. In that case, we can write

𝜂t =
1

3
𝜏u2 and 𝛼 = −1

3
𝜏𝝎 ⋅ u (4)

with
𝜏 = (𝜂k2

f
)−1 (5)

being the microphysical magnetic diffusion time based on the

wavenumber kf. We reiterate that this expression applies only

to isotropic conditions. Indeed, simple anisotropic flows can

be constructed, where𝝎 ⋅ u = 0 but𝝍 ⋅ u ≠ 0, and so those do

yield an 𝛼 effect (Rädler & Brandenburg 2003). Furthermore,

in the compressible case, there is a negative contribution to 𝜂t,

so that it can even become negative, as has been demonstrated

for deterministic flows by Rädler et al. (2011).

By contrast, in the high-conductivity limit, Rm ≫ 1, Equa-

tion (4) still applies (Krause & Rädler 1980), but now with

𝜏 ≈ (urmskf)−1 (Rm ≫ 1) (6)

being the correlation time. This was also confirmed numer-

ically using the test-field method (Sur et al. 2008), although

our new results discussed below will show a slight twist to

the Rm dependence of their result.

Equation (4) is also motivated by symmetry arguments. In

particular, since 𝛼 is a pseudoscalar, it is clear that in the

present case, where the only pseudoscalar in the system is

𝝎 ⋅ u, there can be no other contribution to 𝛼. This is, how-

ever, not the case for 𝜂t, which is just an ordinary scalar. Thus,

in the present case, there may well be an additional contribu-

tion proportional to (𝝎 ⋅ u)2, for example. The purpose of this

paper is to show that this is indeed the case.

A particularly useful diagnostics is the ratio 𝜂t/𝛼, because

it is expected to be independent of 𝜏 and equal to u2∕𝝎 ⋅ u
in the limit of small magnetic Reynolds numbers, where

Equation (4) is obeyed exactly. In this paper, we shall con-

firm that this is indeed the case when Rm ≪ 1, but we find a

departure from this simple result as Rm is increased. We shall

use the test-field method (Schrinner et al. 2005, 2007), which

has been highly successful in measuring turbulent trans-

port coefficients in isotropic turbulence (Brandenburg et al.

2008b; Sur et al. 2008), shear flow turbulence (Brandenburg

2005; Brandenburg et al. 2008a; Gressel 2010; Gressel et al.

2008; Madarassy & Brandenburg 2010), cosmic ray driven

turbulence (Rogachevskii et al. 2012), and magnetically

quenched turbulence (Brandenburg et al. 2008c; Karak et al.

2014).

2 TEST-FIELD METHOD IN TURBULENCE
SIMULATIONS

As in a number of previous cases (e.g., Brandenburg 2001),

we reconsider isotropically forced turbulence either with or

without helicity using an isothermal equation of state. Since

the magnetic field is assumed to be weak, there is no backre-

action of the magnetic field on the flow. Furthermore, instead

of solving for the magnetic field, we just solve for the fluctu-

ations of the magnetic field that arise from a set of given test

fields. This equation is given by

𝜕bT

𝜕t
= 𝜵× (u × B

T
+ U × bT + u × bT − u × bT)

+𝜂𝛻2bT. (7)

Here, U+u≡U is the time-dependent flow, which we take

to be the solution to the momentum and continuity equations

with constant sound speed cs, a random forcing function f,
density 𝜌, and the traceless rate of strain tensor Sij = 1

2
(Ui,j +

Uj,i) − 1

3
𝛿ij 𝜵 ⋅U (commas denote partial differentiation),

𝜕U
𝜕t

= −U ⋅ 𝜵U − c2
s 𝜵 ln 𝜌 + 1

𝜌
𝜵 ⋅ (2𝜈𝜌S) + f, (8)

𝜕 ln 𝜌

𝜕t
= −U ⋅ 𝜵 ln 𝜌 − 𝜵 ⋅ U. (9)

The following four test fields, B
T
, are used:(

cos k1z
0
0

)
,

(
sin k1z

0
0

)
,

(
0

cos k1z
0

)
,

(
0

sin k1z
0

)
. (10)

For each B
T
, the solutions bT allow us to compute the mean

electromotive force, 
T

= u × bT, and relate it to B
T

and

𝜇0J
T
≡ 𝜵×B

T
via


T

i = 𝛼ijB
T

j − 𝜂ij𝜇0J
T

j . (11)

The four independent test fields constitute eight scalar

equations for the x and y components of 
T

i with i= 1 and

2, which can be solved for the eight unknown relevant com-

ponents of 𝛼ij and 𝜂ij with i, j= 1, 2. The i= 3 component

does not enter because we use averaging over x and y, so

B3 = const = 0 owing to 𝜵 ⋅ B = 0 and the absence of a

uniform imposed field.

For isotropically forced turbulence, we expect

𝛼12 = 𝛼21 = 𝜂12 = 𝜂21 = 0, 𝛼11 = 𝛼22 = 𝛼, and 𝜂11 = 𝜂22 = 𝜂t.

This is, however, only true in a statistical sense, and since

𝛼 and 𝜂t are still functions of z and t, we must average over

these two coordinates; so we compute

𝛼 = 1

2
⟨𝛼11 + 𝛼22⟩zt, 𝜂t =

1

2
⟨𝜂11 + 𝜂22⟩zt, (12)

where ⟨⋅⟩zt denotes averaging over z and t.
We use the forcing function f which consists of random,

white-in-time, plane waves with a certain average wavenum-

ber kf (Brandenburg 2001):

f(x, t) = Re{N f̃ (k, t) exp[ik ⋅ x + i𝜙]}, (13)

where x is the position vector. We choose N = f0
√

c3
s |k|,

where f 0 is a nondimensional forcing amplitude. At each

timestep, we select randomly the phase −𝜋 <𝜙≤𝜋 and the

wavevector k from many possible discrete wavevectors in
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FIGURE 1 Dependence of 𝛼 on Rm for the models with maximum helicity

a certain range around a given value of kf. The Fourier

amplitudes

f̃ (k) = R ⋅ f̃ (k)(nohel) with Rij =
𝛿ij − i𝜎𝜀ijkk̂√

1 + 𝜎2

, (14)

where the parameter 𝜎 characterizes the fractional helicity of

f, and

f̃ (k)(nohel) = (k × ê)∕
√

k2 − (k ⋅ ê)2 (15)

is a nonhelical forcing function. Here, ê is an arbitrary unit

vector not aligned with k; k̂ is the unit vector along k; and|f̃ |2 = 1.

We will consider both 𝜎 = 0 and 𝜎 = 1, corresponding to

nonhelical and maximally helical cases. We vary Rm, defined

in Equation (2), by changing 𝜂while keeping 𝜈 = 𝜂 in all cases.

We use the Pencil Code1 with a numerical resolution of up

to 2883 mesh points in the case with Rm ≈ 120, which is the

largest value considered here.

3 RESULTS

3.1 Dependence of 𝛼 and 𝜂t on Rm

As theoretically expected (Krause & Rädler 1980; Moffatt

1978) and previously demonstrated using the test-field

method (Sur et al. 2008), 𝛼 and 𝜂 increase linearly with Rm for

Rm < 1; see Figures 1 and 2 for nonhelical and helical cases.

Here, the error bars have been evaluated as the maximum

departure from the averages for any one-third of the full time

series. In the helical case, both 𝛼 and 𝜂 saturate around unity,

but in the nonhelical case, 𝜂 overshoots the helical value by

almost a factor of two; see Figure 2.

3.2 Ratio of 𝛼 to 𝜂t

In Figure 3 we plot the ratio 𝜂t/𝛼, normalized by 𝜂t0/𝛼0, where

𝛼0 =−urms/3 and 𝜂t0 = urms/3kf. The minus sign in our expres-

sion for 𝛼0 takes into account that we are forcing with positive

helicity, which then leads to a negative 𝛼 effect (Krause &

1 https://github.com/pencil-code

FIGURE 2 Dependence of 𝜂t on Rm for models with maximum helicity

(dashed blue) and with zero helicity (solid black)

FIGURE 3 Ratio of 𝜂t/𝛼

Rädler 1980; Moffatt 1978). For small values of Rm, this ratio

is unity, but it reaches a value of ∼2 when Rm ≈ 50.

3.3 Difference between nonhelical and helical cases

It turns out that the difference between 𝜂t in the nonhelical

and helical cases increases quadratically in Rm; see Figure 4.

This shows, first of all, that the difference vanishes for small

Rm, but it also suggests that there is a correction to 𝜂t

due to the presence of helicity that is not captured by the

second-order correlation approximation, which is exact for

Rm ≪ 1. It should be possible, however, to capture this effect

of helicity on 𝜂t using a higher order approximation, which

has not yet been attempted, however.

3.4 Relation to earlier results

A similar situation has been encountered previously in

the case of the Galloway–Proctor flow (Galloway & Proc-

tor 1992), where, in addition to an 𝛼 effect and turbu-

lent diffusion, also a turbulent pumping effect was found

(Courvoisier et al. 2006). This result was not obtained

under the second-order correlation approximation (Rädler

& Brandenburg 2009). Using the test-field method, they

showed, however, that the value of 𝛾 , which quantifies the

https://github.com/pencil-code


BRANDENBURG ET AL. 793

FIGURE 4 Rm dependence of the difference between 𝜂t for models with

zero helicity and maximum helicity

turbulent pumping velocity, does indeed vanish for Rm ≪ 1,

but it was found to increase with Rm as Rm
5; see Rädler &

Brandenburg (2009), who interpreted this as a higher order

effect that should be possible to capture with a sixth-order

approximation. Our present result therefore suggests that the

difference between nonhelical and helical cases can also

be described as a result of a higher order approximation,

which, in this case, would be a fourth-order approximation. It

should also be possible to obtain this result via a path-integral

approach for turbulence with finite but small correlation time,

as in Kleeorin et al. (2002), but this is the subject of a separate

study.

4 CONCLUSIONS

Our present results have demonstrated that, at least for inter-

mediate values of Rm in the range between 1 and 120, there

is a contribution to the usual expression for the turbulent

magnetic diffusivity 𝜂t = 𝜏u2∕3 that depends on (𝝎 ⋅ u)2.

This is somewhat surprising in the sense that such a result

had not previously been reported, but it is fully compati-

ble with all known constraints: no correction for Rm ≪ 1 and

no dependence on the sign of 𝝎 ⋅ u. On the other hand, our

results may still be compatible with the 𝜏 approximation in

the high-conductivity limit if the difference between the tur-

bulent diffusivity in the nonhelical and helical cases vanishes

for Rm →∞. However, our numerical results do not clearly

confirm this because our largest value of Rm was only ∼120.

There is a practically relevant application to this phe-

nomenon, at least in the case of forced turbulence, where its

effect on the large-scale magnetic field evolution can now

be quantified to high accuracy. A factor of nearly two in

the value of 𝜂t is clearly beyond the acceptable accuracy

for this case. This was noticed in recent studies of the 𝛼

effect and turbulent diffusion in the presence of the chi-

ral magnetic effect (Schober et al. 2017). Our present result

therefore removes an otherwise noticeable discrepancy rela-

tive to the theoretical predictions. Future applications hinge

obviously on the overall accuracy of analytic approximations

to particular circumstances. In most cases, naturally driven

flow turbulence will be anisotropic, so we expect more com-

plicated tensorial results for turbulent diffusion.
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