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We discuss a prediction of the solar activity on a short time-scale applying the method
based on a combination of a nonlinear mean-field dynamo model and the artificial
neural network. The artificial neural network which serves as a correction scheme
for the forecast, uses the currently available observational data (e.g., the 13 month
running average of the observed solar sunspot numbers) and the dynamo model output.
The nonlinear mean-field αΩ dynamo produces the large-scale magnetic flux which is
redistributed by negative effective magnetic pressure instability (NEMPI) producing
sunspots and active regions. The nonlinear mean-field dynamo model includes algebraic
nonlinearity (caused by the feedback of the growing magnetic field on the plasma
motion) and dynamic nonlinearities (related to the dynamics of the magnetic helicity
of small-scale magnetic field). We compare the forecast errors with a horizon of 1, 6,
12 and 18 months, for different forecast methods, with the same corrections on the
current monthly observations. Our forecast is in good agreement with the observed
solar activity, and the forecast error is almost stably small over short-medium ranges of
forecasting windows. Despite a strong level of chaotic component in the solar magnetic
activity we present quantitative evidence that the solar activity on a short range can
be stably well predicted, by the joint use of the physically based model with the neural
network. This result may have an immediate practical implementation for predictions
of various phenomena of solar activity and other astrophysical processes, so may be of
interest to a broad community.
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1 Introduction

Predictions of the solar activity is a crucial problem related to a fundamental solar
physics that have important applications. Various methods including the mean-field
dynamo models have been applied to predict the solar activity (see, e.g., Dikpati &
Gilman 2006; Choudhuri et al. 2007a; Kane 2007; Bushby & Tobias 2007; Obridko &
Shelting 2008; De Jager & Duhau 2009; Kitiashvili & Kosovichev 2011; Pesnell 2012;
Tlatov 2015; Kitiashvili 2016; Usoskin 2017; Safiullin et al. 2018). Besides that there
are other numerous methods to predict the solar activity using various sets of data as
precursors or signatures of the forthcoming solar activity level. Most of solar activity
predictions are focused on the magnitude of the nearest solar cycle maximum, or the
minimum, or even the magnitude of the further several cycles. However, in spite of
the numerous studies, improvement of the solar activity forecast is still a subject of
active discussions.

Our approach is aimed for prediction of the 13-monthly running average mean
solar sunspot number. This method yields a forecast of solar activity a month ahead
(or 6, 12, and 18 months ahead) with respect to the last available 13-month running
mean average (i.e., with correction by up-to-date observations). Our method has been
checked in real time with available observations over the last six years. The results
and statistical data on the forecast since 2021 are available on the web1.

In our approach to the forecast of solar activity, we take into account the following:

• We use a nonlinear dynamo model (Kleeorin et al. 2016; Safiullin et al. 2018)
that is able to reproduce properties and long-term dynamics of the mean mag-
netic field up to several hundreds of solar cycles. This model describes the main
cyclic oscillations of the large-scale magnetic field with an intrinsic chaotic be-
haviour caused by the dynamics of the magnetic helicity of small-scale magnetic
fields. The mean-field dynamo produces the large-scale magnetic flux (see, e.g.,
Moffatt 1978; Parker 1979; Krause & Rädler 1980; Zeldovich et al. 1983; Moffatt
& Dormy 2019; Rogachevskii 2021).

• The redistribution of the large-scale magnetic flux by the negative effective mag-
netic pressure instability (NEMPI) results in formation of sunspots and active
regions (Kleeorin et al. 1989, 1990). This instability has been investigated the-
oretically using various analytical approaches (Kleeorin & Rogachevskii 1994;
Kleeorin et al. 1996; Rogachevskii & Kleeorin 2007) and detected in direct nu-
merical simulations in various setups (see, e.g., Brandenburg et al. 2011, 2016;
Warnecke et al. 2013; Warnecke et al. 2016). NEMPI has a threshold in the
magnitude of the mean magnetic field. In the process triggered by this insta-
bility, no new large-scale magnetic flux is produced in contrast to the dynamo
process.

• There are three characteristic times of interest concerning the solar activity
prediction:
(i) long-term evolution of the mean magnetic field associated with the effect of
magnetic helicity relaxation (Kleeorin & Ruzmaikin 1982; Kleeorin et al. 1995);

1https://github.com/rodionstepanov/SolarActivityPrediction
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(ii) turbulent diffusion of the dynamo generated large-scale magnetic fields at
the scale of the solar convective zone depth. These processes are described by
the non-linear αΩ dynamo model which takes into account evolution of small-
scale magnetic helicity.
(iii) Short-term evolution at the scales of super-granulation related to formation
of sunspots and active regions. This is entirely connected with NEMPI process.
Decay of sunspots and active regions is included in this process, too.

• To predict the solar activity on a short time-scale, we combine the two ap-
proaches of the numerical solution of the nonlinear mean-field dynamo equations
and the artificial neural network. The latter serves here as a correction scheme
for the forecast, which uses the currently available observational data (the 13
month running average of the observed solar sunspot numbers time series) and
the dynamo model output.

The purpose of this paper is to comprehensively analyse the results of several
years of practical forecasting of solar activity by the novel method (Safiullin et al.
2018) which combines the solar dynamo model with magnetic helicity evolution and
the neural network, estimate the errors of forecasting and demonstrate its capabilities
through newly observable data in comparisons with other forecasting methods.

Despite a strong level of chaotic component in the solar magnetic activity we will
present quantitative evidence that the solar activity on a short range can be reliably
predicted, and it would give a positive example of the joint use of the physically based
model and the neural network.

2 Comparison of the solar activity forecast methods

It is not our goal to review all papers dealing with the forecast of solar activity. We
only want to point out inherent shortcomings of the basic forecasting methods that
we tried to avoid in this article.

The most common method is to predict the sunspot number based on the available
series of observations for 24 cycles, i.e., about 270 years. The advantage of this
method is the length of the series and the absence of any additional assumptions. In
fact, this is a statistical extrapolation method for long series with some additional
statistical details taken into account, such as the growth rate of magnetic field in the
cycle, the relationship between the length and height of the cycle, and the observed
relationship between the heights of two successive cycles of the Gnevyshev–Ohl type.
Unfortunately, all existing methods are extremely unstable and do not give reliable
results. Sometimes, the forecast comes true, sometimes it doesn’t. However, even if
the forecast does come true, it does not teach us anything, because it does not rely on
understanding the underlying physics and the basic generation mechanisms. The next
time, the same method may give a completely wrong result. Nevertheless, the above-
mentioned method known as “forecasting by current measurements” proved useful for
relatively short time intervals. In this method, the forecast is continuously refined by
direct extrapolation or by more sophisticated methods, such as neural networks. The
most widely known prediction methods for a term of several months are the McNish–
Lincoln method (McNish & Lincoln 1949), the standard method, and the combined
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method. The former forecasts are published by the National Geographic Data Center
and the two latter ones, by the Solar Influence Data Analysis Center (for more details
see Podladchikova & Van der Linden (2012)).

Dmitrieva et al. (2000) studied the relationship between the height of the cycle
and duration of the cycle and its different phases. Since the duration of the cycle
is not always clearly defined, the concept of the cycle current length determined
by the autocorrelation function has been introduced in this method. A statistically
significant relationship between the maximum sunspot number and the duration of
the cycle growth phase was confirmed. Besides that, a high correlation (of the order of
0.95) was shown to exist between the maximum amplitude of the cycle and the time
derivative of the monthly Wolf numbers at the very beginning of the cycle growth
phase.

Kane (2007) performed a spectral analysis of the sunspot number time series to
detect a periodicity using the maximum entropy method. He also used the obtained
periodicity to estimate the amplitude of Cycle 25 with the mean value of 119 and the
maximum in 2022–2023.

In 2009, De Jager & Duhau showed that solar activity was changing from a Grand
Maximum to a different regime (De Jager & Duhau 2009). The transition started
in 2000 and was expected to last until the maximum of Cycle 24. After that, a
short Grand Minimum similar to the Dalton one had to begin. This transition from
moderate to low activity was supposed to last for at least 60–100 years.

The precursor method can take into account many other indices that may be
indicative of still unknown relationships between various characteristics of the sunspot
formation activity. One can consider radio emission at different wavelengths, since it
is associated with different objects on the Sun (faculae, spots, corona), characteristics
of coronal holes, sector structure of the interplanetary magnetic field, the coronal
green line brightness etc.

In particular, Badalyan et al. (2001) predicted a strong decrease in the height of
Cycles 23 and 24. Tlatov (2009) examined the correlation of various characteristics
of the epoch of minimum activity (in particular, the dipole-octupole index, the area
and mean latitude of the field of dominant polarity in each hemisphere, the activity
in polar faculae and K Ca II bright dots, and the intensity of the 5303 Å coronal
emission line) with the amplitude of the forthcoming sunspot cycle. Obridko & Shelt-
ing (2008) applied different prediction methods to Cycle 24. They proposed three
forecasting indices: the polar field intensity, the mean field on the source surface,
and the geomagnetic disturbance recurrence index. As a rule, the forecast based on
the polar field and extrapolation of local fields predicts a lower height for Cycle 24 in
comparison with that for Cycle 23. Later, Obridko & Shelting (2009) showed that the
intensity of the polar magnetic field was steadily decreasing over the past three solar
cycles. It is due to the fact that the increase in the dipole magnetic moment observed
from 1915 to 1976 was followed by a decrease. At the same time, the medium-scale
magnetic fields (e.g., the fields of isolated coronal holes) were unusually strong. The
large effective contribution of the medium-scale fields to the total energy of the large-
scale fields is also confirmed by calculations of the effective multipolarity index. The
aa-index at the cycle minima correlates with the height of the subsequent maxima.
All this was interpreted as precursors of several low or medium cycles.

Upton & Hathaway (2023) analyzed sunspot data for three years after the mini-
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mum of Cycle 24 and concluded that the sunspot number at the maximum of Cycle 25
should be 135 ± 10, i.e., slightly higher than in Cycle 24 (116.4). They also considered
forecasts of Cycle 25 based on a number of precursors. The geomagnetic precursor
(aa-index) suggested that Cycle 25 would be slightly higher than Cycle 24, with a
maximum sunspot number of 132 ± 8. According to magnetic precursors (the polar
field intensity and the axial dipole moment at the minimum), Cycle 25 was expected
to be similar to Cycle 24, with a maximum sunspot number of 120 ± 10 or 114 ± 15.
Some forecasts are based on geomagnetic field variations (aa-index) during two years
before and two years after the sunspot minimum. When this method was proposed
in the mid-50s of the last century (Ohl 1966, 1968, 1976; Ohl & Ohl 1979), it was
purely empirical. But now, it is clear that geomagnetic activity during the minimum
is closely related to large-scale magnetic fields on the Sun, namely the ones that form
the sunspots of the upcoming cycle. A disadvantage of this method is the need to
use smoothed data for two years after the minimum. Since the length of the raise
branch is often very short, the forecast lead time turns out to be no more than 2
years. Obridko (1995) proposed an improvement, which increased the lead time of
the forecast. It is interesting to note that this work was the first to point out a
possible violation of the Gnevyshev–Ohl rule in the pair of Cycles 22–23, which was
confirmed 10 years later.

Another method is based on direct use of large-scale magnetic field measurements.
According to the generally accepted theory, the field of local regions arises from the
poloidal magnetic field. A proxy of the latter can be the field in the polar regions,
which is measured directly by magnetographs. It is true that these measurements are
not too precise, since the field at the pole is mainly perpendicular to the line of sight,
and, therefore, the magnetographs give a large error. Nevertheless, the data available
show a high correlation between the magnitude of the polar field and the number of
sunspots (Biswas et al. 2023).

However, the polar field reaches its maximum in the vicinity of the sunspot mini-
mum and not simultaneously in both hemispheres. Therefore, one has to wait about
a year after the sunspot minimum to take reliable measurements. The main problem
is that the forecast of the polar field itself is not a fully solved problem. Recently,
forecasts of the polar field with increased lead time (i.e., several years before the
onset of the minimum) have appeared. Thus, the amplitude of a solar cycle can be
predicted as early as a few years after the field reversal in the previous cycle, thereby
shifting the solar cycle forecast to much earlier times than usual (Kumar et al. 2021,
2022; Pishkalo & Vasiljeva 2023). The forecast made with such an increased lead
time is generally consistent with others, including that of the Royal Observatory of
Belgium (ROB) service (https://sidc.be/SILSO/forecasts,2023) and yields values of
about 135.

Finally, the most promising method is the direct application of the dynamo mech-
anism with appropriately selected parameters. The difficulty here is in choosing the
optimal parameters. There are so many of them that it is simply impossible to go
through them all directly. In addition, the question of how one cycle differs from
another has not yet been finally resolved. In fact, it is necessary to select the con-
tribution of the stochastic component for each cycle separately. To what extent the
solar dynamo is determined by stochastic or deterministic processes is still unclear
(Mininni et al. 2002).
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Furthermore, the existing dynamo models are dealing with a mean-field dynamo;
so, the output of any theory is the field structure, not the sunspot number that should
be predicted. Bushby & Tobias (2007) generally concluded that models based on a
mean-field dynamo cannot be used to predict the solar cycle: “Given the inherent
uncertainties in determining the transport coefficients and nonlinear responses for
mean-field models, we argue that this makes it impossible to predict the solar cycle
using the output from such models”.

Kitiashvili & Kosovichev (2008, 2011) used data assimilation methods to solve this
problem. These methods combine observational data and models to estimate most
accurately the physical properties that cannot be observed directly. The methods
are able to provide a forecast of the future state of the system. It was shown that
the ensemble Kalman filter (EnKF) method could be used to assimilate sunspot data
into a nonlinear mean-field αΩ dynamo model taking into account the dynamics of
turbulent magnetic helicity. The forecast of Cycle 24 given in the old V1 system
proved to be quite successful (approximately 60 units). Kitiashvili (2016) assumed
that Cycle 25 will be slightly lower than Cycle 24 and its maximum will take place in
2024.

As a rule, the physically based forecasting methods involve a scheme for calculat-
ing the polar field as a precursor of the following cycle. Such predictions use the flux
transport dynamo (FTD) models, surface flux transport (SFT) models, or their com-
bination. Thus, calculations by Dikpati et al. (2006) and Choudhuri et al. (2007b)
based on similar initial assumptions, yield forecasts for Cycle 24 that differ by more
than a factor of two. The convergence of the forecasts for Cycle 25 obtained using
the physically based models (Upton & Hathaway 2018; Jiang et al. 2018; Bhowmik
& Nandy 2018; Labonville et al. 2019) is somewhat better (110, 125, 118, and 89,
respectively). The mean value according to calculations of Nandy (2021) is 110.5
±13.5 SSN, i.e., slightly lower than in Cycle 24 (116.4).

The recent physically based models created using state-of-the-art data also predict
values somewhat higher than those of Cycle 24. Guo et al. (2021) argue that Cycle
25 will be about 10% higher than Cycle 24, with an amplitude of 126 (International
Sunspot Number, version 2.0). Jiang et al. (2023) examined seven models, two of
which are based on the Flux Transport Dynamo, four, on the surface flux transport
(SFT), and one is a mixed model. All of them strongly depend on the input data.
Generally speaking, the physically based solar forecast is still in its early stage. It is
an effective way to verify our understanding of the solar cycle. This work confirms
that the polar field determines the subsequent cycle and that the Babcock–Leighton
mechanism seems preferable. A similar conclusion was drawn by Bhowmik et al.
(2023).

The main trends described above underlie all the numerous forecasts that appear
at the beginning of each cycle and have so far given rather unconvincing results (e.g.,
see a detailed review by Nandy (2021)). We will not cite and analyze all of them here.
Nandy cites in his work 77 forecasts for Cycle 24 ranging from 60 to 250 SSN with
the average of 163.1 ±42.2 (the real value from smoothed annual means in April 2014
was 116.4) and 34 forecasts for Cycle 25 ranging from 50 to 220 SSN with a mean of
136.2±41.6.

Unfortunately, we must acknowledge that these forecasts, despite their good con-
vergence, are not precise. In May 2023, the smoothed SSN number reached 123.9
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and continued to grow steadily. Most likely, Cycle 25 should be at least 10% higher
than Cycle 24 (Obridko et al. 2023a,b,c). But this forecast also turned out to be
underestimated. The strong increase in activity in the second half of 2024 changed
the course of the cycle, and the smoothed value for March 2024 was 141.3. At present,
according to the ROB forecast service ((https://sidc.be/SILSO/forecasts), the maxi-
mum is expected sometime between July and November 2024 and its height is about
160.

In this paper, we attempt to combine the advantages of all the methods and
eliminate the above-mentioned disadvantages. Our general idea is that the mean field
dynamo creates a flux of the toroidal mean magnetic field, which by some mechanism
breaks up into separate magnetic flux tubes. In this case, if the transverse size of
the tube is small enough, we can expect that the field in the tubes will be noticeably
stronger than the original toroidal mean field, and this will lead to the appearance
of a photometrically detectable sunspot. In fact, this is no longer a dynamo, since
no new magnetic flux is generated. This is another mechanism, which transforms the
mean magnetic field generated at the dynamo stage into a set of sunspots. In this
case, the equations involve stochastic parameters that account for cycles of different
heights.

The model contains 9 parameters, but only 5 parameters are important. The
parameters are selected by comparing the calculations with the full set of sunspot
data since 1750. After processing the model results, we obtain a time series of model
sunspot numbers, which, although they do not reflect all observed solar cycles exactly,
nevertheless, show a very good correlation with them (above 85%), including the
amplitude and shape of these cycles. Thus, the model gives us approximate future
cycles that can be brought to a real forecast by using the neural network method
based on assimilation of current observations of the smoothed series of monthly mean
sunspot numbers.

The model was created and tested in several stages. The data for the last four
activity cycles were divided into training, validation and test samples. At the last
stage, it is possible to move on to the forecast of smoothed sunspot numbers based
on current measurements. Our task was not to give a forecast of the height of the
upcoming cycle, but since the expected maximum phase of the 25th cycle is currently
included in our forecast horizon, we provide the height and date of the maximum
within the current forecast.

3 Dynamo model and sunspot formation

We adopt the following model (Kleeorin et al. 2016, 2020, 2023; Safiullin et al. 2018)
related to the axisymmetric mean-field αΩ dynamo, which produces the large-scale
magnetic flux that can be redistributed to form sunspots by NEMPI. The axisym-
metric large-scale magnetic field is written as B = Bϕeϕ + ∇×(Aeϕ), where r, θ, ϕ
are the spherical coordinates and eϕ is the unit vector. The αΩ dynamo equations
as in the framework of the no-r model are given by:

∂Bϕ
∂t

= D sin θ
∂

∂θ
A+

(
∂2

∂θ2
− µ2

)
Bϕ, (1)
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∂A

∂t
= αBϕ +

(
∂2

∂θ2
− µ2

)
A, (2)

where the coordinate r is measured in the units of the solar radius R�, the time t
is measured in the units of turbulent magnetic diffusion time R2

�/ηT
; the toroidal

field, Bϕ(t, r, θ), is measured in the units of B∗, where B∗ = ξ Beq with ξ = 2`0/R�
and Beq = u0

√
4πρ∗. The magnetic potential, A(t, r, θ), of the poloidal field is

measured in the units of RαR�B∗, where Rα = α∗R�/ηT
, the fluid density ρ(r, θ)

is measured in the units ρ∗, the differential rotation δΩ is measured in units of the
maximal value of the angular velocity Ω and the α effect is measured in units of the
maximum value of the kinetic α effect, α∗. The integral scale of the turbulent motions
`0 and the characteristic turbulent velocity u0 at the scale `0 are measured in units
of their maximum values in the convective zone. The turbulent magnetic diffusion
coefficient is η

T
= `0 u0/3. The dynamo number is defined as D = RαRω, where

Rω = (δΩ)R2
�/ηT

.
The turbulent diffusion of the mean magnetic field in the radial direction in this

no-r model is described by equations (1) and (2) by −µ2Bϕ and −µ2A (Kleeorin et
al. 2003). The differential rotation is determined by factor G = ∂Ω/∂r, which is
taken zero in the vicinity of the equator

G =

{
0, π/2− ε < θ < π/2 + ε
1, else

. (3)

The parameter µ is defined through
∫ 1

2/3
(∂2Bϕ/∂r

2) dr = −(µ2/3)Bϕ. The value

µ = 3 describes a convective zone with a thickness of 1/3 of the solar radius.
The total α effect,

α = χKΦK(B) + σρχMΦM(B), (4)

is the sum of the kinetic and the magnetic α effects, where χ
K

= −(τ0/3) 〈u · (∇×u)〉
is determined by kinetic helicity 〈u · (∇×u)〉 and χM = (τ0/12πρ∗) 〈b · (∇×b)〉 is
determined by current helicity of the fluctuation field χc = 〈b · (∇×b)〉(Frisch et al.
1975; Pouquet et al. 1976), and χ

K
and χ

M
are measured in units of maximum value

of the α-effect, α∗. Here τ0 is the correlation time of the turbulent velocity field,

u and b are velocity and magnetic fluctuations, and σρ =
∫ 1

2/3
(ρ(r)/ρ∗)−1 dr. We

adopted the profile of kinetic α-effect in the form

χK(θ) =
3
√

3

2 cos(π/6)
cos (θ) ·

[
1−

(
cos (θ)

cos (π/6)

)2
]
.

The quenching functions Φ
K

(B) and Φ
M

(B) in Eq. (4) describe algebraic nonlinearity
and are given by Field et al. (1999) and Rogachevskii & Kleeorin (2000, 2004):

ΦK(B) =
1

7

[
4ΦM(B) + 3ΦB(B)

]
, (5)

and

ΦM(B) =
3

ξ2B
2

[
1− arctan(ξ B)

ξ B

]
, (6)

ΦB(B) = 1− 2ξ2B
2

+ 2ξ4B
4

ln
[
1 + (ξ2B

2
)−1
]
, (7)
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where the mean magnetic field is given by

B
2

= B
2

ϕ +R2
α

[
µ2A

2
+

(
∂A

∂θ

)2
]
. (8)

The densities of the kinetic and current helicities, and quenching functions are asso-
ciated with a middle part of the convective zone. The parameter σρ > 1 is a free
parameter.

The function χ
M

(B) describes dynamic nonlinearity, that is determined by the
non-dimensional differential equation on current helicity of the fluctuation field χc =
〈b · (∇×b)〉:

∂χc

∂t
+
(
τ−1
χ + κ

T
µ2
)
χc = 2

(
∂A

∂θ

∂Bϕ
∂θ

+ µ2ABϕ

)
−αB2 − ∂

∂θ

(
Bϕ

∂A

∂θ
− κ

T

∂χc

∂θ

)
, (9)

where Fχ = −κ
T
∇χc is the turbulent diffusion flux of the magnetic helicity density of

small-scale fields that determines its transport (see, e.g., Kleeorin & Ruzmaikin 1982;
Kleeorin & Rogachevskii 1999, 2022; Kleeorin et al. 2000, 2002; Blackman & Field
2000; Brandenburg & Subramanian 2005; Gopalakrishnan & Subramanian 2023) and
κ

T
is the coefficient of the turbulent diffusion of magnetic helicity. In equation (9),

the time τχ = `2/η is the relaxation time of magnetic helicity. The average value of
τ−1
χ is given by the estimation

τ−1
χ = H−1

∗

∫ 1

rc

τ̃−1
χ (r) dr ∼ H`R

2
∗ η

H∗ `2 ηT

, (10)

whereH∗ is the depth of the convective zone, H` is the characteristic scale of variations
`0, and τ̃χ(r) = (η

T
/R2

∗)(`20/η) is the non-dimensional relaxation time of the density
of the magnetic helicity. The values H`, η, `0 in equation (10) are associated with the
upper part of the convective zone.

An important possible mechanism of sunspot formation is NEMPI. For post-
processing of the model solution we amplify global dipole magnetic field by reflec-
tion transformation 0.5

[
B (θ, t)−B (π − θ, t)

]
+ 0.05

[
B (θ, t) +B (π − θ, t)

]
. Based

on the ideas of NEMPI, we derive a budget equation for the surface density of the
solar sunspot number (Kleeorin et al. 2016; Safiullin et al. 2018):

∂W̃

∂t
= I(t, θ)− W̃

τs(B)
, (11)

which includes the rate of production of the surface density of the solar sunspot
number, W̃ (t, θ), due to the formation of sunspots:

I(t, θ) =
|γinst||B −Bcr|

Φs
Θ(B −Bcr), (12)

and the rate of decay of the surface density of the solar sunspot number, W̃/τs(B),
which mimic the decay of sunspots. Here τs(B) is the decay time of sunspots, Θ(x)
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is the Θ function defined as Θ(x) = 1 for x > 0, and Θ(x) = 0 for x ≤ 0, Φs is the
magnetic flux inside a magnetic spot, and γinst is the growth rate of NEMPI, given
in Appendix (see also, Rogachevskii & Kleeorin 2007; Brandenburg et al. 2016). The
solar sunspot number is defined as a surface integral: W = R2

�
∫
W̃ (t, θ) sin θ dθ dφ =

2π R2
�
∫
τs(B) I(t, θ) sin θ dθ. To determine the function τs(B), we take into account

that when the solar activity increases (decreases), the average life time of sunspots
increases (decreases), so that τs(B) is τs(B) = τ∗ exp

(
Cs ∂B/∂t

)
with Cs = 5.47 ×

10−4 and τ∗ γinst ∼ 10. Here the non-dimensional rate of the mean magnetic field,
∂B/∂t, is measured in units ξBeq/ttd, and ttd is the turbulent magnetic diffusion
time. A particular form of function τs(B) weakly affects the dynamics of solar sunspot
numbers. Equation (11) provides the correspondence between the surface density of
the total sunspot number and dynamo generated magnetic fields. The equation has
no stochastic ingredient except the mean magnetic field itself that is obtained by
solution of equations (1), (2), and (9).

Equations (1), (2), (9) and (11) have been solved numerically. We use MATLAB
code, which solves initial-boundary value problems for systems of partial-differential
equations that employs a second-order explicit finite differences scheme in space. We
use the spatial resolution of 203 mesh points in co-latitude θ (this odd number provides
mesh intervals below 1 degree). We choose ε = 2π/203 that means clipping just one
mesh point in G near the equator. The time grid in simulations varied between
6× 105 and 18× 105 time instants for a different set of initial parameters due to long
transitional processes.

We apply the following initial conditions: Bφ(t = 0, θ) = S1 sin θ + S2 sin(2θ)
and A(t = 0, θ) = 0 corresponding to a combination of the dipole and the quadruple
type of solutions. The boundary conditions are Bφ(t, 0) = Bφ(t, π) = 0; A(t, 0) =
A(t, π) = 0, and ∂χc(t, 0)/∂θ = ∂χc(t, π)/∂θ = 0. We use the following values of the

Figure 1 The butterfly diagram of the solar sunspot number variation rate
2π sin θ I(t, θ) obtained using the dynamo model (colour) and the real monthly ob-
servational data (black).
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Figure 2 The height of solar cycles computed with various threshold values Bcr

required for the excitation of NEMPI, where the black line corresponds to the real
monthly observational data and the solid magenta line corresponds to Bcr = 265 G.

governing parameters: D = −8450, σρ = 3, κ
T

= 0.1, Rα = 2, T = 6.3, S1 = 0.051,
S2 = 0.95. We have used these parameters and initial conditions for various modelling
of the solar and stellar activity by the axisymmetric mean-field αΩ dynamo (Kleeorin
et al. 2016, 2020, 2023; Safiullin et al. 2018), where the mechanism of the sunspot
formation by NEMPI have been taken into account. In addition, the parameter
µ = 3 corresponds to the solar convective zone, while the parameter ξ = 0.3 is used
to compute τs(B). This particular choice of model and post-processing parameters
has been made as providing the best fit of model time series W to the observational
data of solar sunspot number ( version 2.0) for solar cycles 20–24 taken from the
World Data Center SILSO, Royal Observatory of Belgium, Brussels. In Figure 1 we
show the butterfly diagram of the solar sunspot number obtained from the dynamo
model compared with the observational data. We take into account that NEMPI has
a threshold for the magnetic field. The effect of the threshold is illustrated in Fig. 2,
where we show the height of solar cycles computed with various cut-off values for the
excitation of NEMPI.

4 Forecast of the solar activity

Mean-field dynamo models are relevantly applicable on a time-scale that is larger
than, say, one year, and alone it cannot provide an accurate forecast of the solar
activity on a time-scale of a few months. To predict the solar activity on a short
time-scale, we use a method based on a combination of the numerical solution of the
nonlinear mean-field dynamo equations and the artificial neural network approach [see
for details, Safiullin et al. (2018), and references therein]. To apply this approach,
we initially used the original simulations of the solar sunspot number series Wmodel

i

based on the dynamo model described in Section 3, as the basis for the forecast,
and as the exogenous input in the neural network scheme. Another input is the
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data W obs
i obtained from observations (the 13 month running average of the observed

solar sunspot number time series). To perform the forecast W forecast
i , we adopt a “two-

layer artificial neural network”, which is a recurrent dynamic nonlinear autoregressive
network, with feedback connections enclosing two layers of the network, defined by
the following equation:

W forecast
i = fout [K2 fhidden (K1 w + c1) + c2] , (13)

where fhidden(x) = [1+exp(−x)]−1 is a function of a hidden layer of neurons, fout(x) =
x, K1 is the weight matrix 24× 8 of a hidden layer neurons, K2 is the weight matrix
1 × 24 of an outer layer neurons, c1 and c2 are the corresponding bias vectors, w is
the input vector 8× 1 consisting of 4 prior observations W obs

i−1, · · · , W obs
i−4 and 4

corresponding model estimations Wmodel
i , · · · , Wmodel

i−3 .
The learning procedure by Bayesian regularization back-propagation was based

on epignose using the data of the solar sunspot numbers from Cycles 20–21, while
Cycle 22 has been used for the validation process. The input data of the solar sunspot
numbers for the neural network consist of two parts: the prior real observations and
the dynamo model estimations at the same instant. The output of this neural network
is the forecasted monthly solar sunspot number. We do not use the artificial neural
network for any type of optimisation or parameter estimation for the initial basic
(physical) model, that has already been carried out earlier (Kleeorin et al. 2016).
During the learning procedure of the artificial neural network, we minimize the error
between the forecast and the actual observations not at every instant separately but
over an entire cycle. The dynamo model output is used as an initial forecast, and the
artificial neural network is a correction scheme for the final forecast by means of the
currently available observational data and the dynamo model output. The forecast
confidence intervals of the one-month forecast of the solar activity compared with the
observed solar sunspot numbers running average over 13 months and the test sample
forecast are shown in Fig. 3. The forecast of the solar activity is shown in Fig. 4,
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Figure 3 The one-month forecast of the solar activity (red line) compared with
the observed solar sunspot numbers running average over 13 months (blue line) and
the test sample forecast (black line).
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Figure 4 Results of forecasting the solar activity obtained by our approach.

Table 1 Comparison of the forecast errors with a horizon 1, 6, 12, and 18 months for differ-
ent forecasting methods. Forecast errors are calculated in the interval from Sept 1997 to May
2010 except the line marked ∗ which corresponds to the interval from Nov 2017 to Oct 2024 for
which the data are available on https://github.com/rodionstepanov/SolarActivityPrediction.

Method RMS

1 m 6 m 12 m 18 m

NARX (Nonlinear Autoregressive Exogenous Model)
with corrections∗ 1.24 5.10 6.21 7.03
NARX without corrections 1.54 8.09 10.32 17.92
M&L method 3.6 5.9 10.9 15.2
M&L method with KF 3.1 4.9 9.3 12.4
Standard Method (SM) 3.4 6.1 12.3 17.6
Standard Method with KF 2.9 5.3 11.3 16.7
Combined Method (CM) 4.7 10.4 17.5 17.5
Combined Method with KF 3.2 6.0 13.1 16.4

where we compare the results of the one-month forecast of the solar activity based on
the described method and the observed solar sunspot numbers averaged by 13 month
sliding window.

Qualitative comparison of the forecast errors with a horizon of 1, 6, 12 and 18
months, for different forecasting methods is presented in Table 1. This implies that
the forecast is shifted a month ahead (or 6, 12, and 18 months ahead) in comparison
with the last available 13-month running mean (i.e., with correction by up-to-date
observations). The notations in Table 1 are the following: our method (Nonlinear
Autoregressive Exogenous Model, NARX) with monthly corrections with current ob-
servations and without the corrections (just using only the mean-field dynamo model),
the McNish–Lincoln method (McNish & Lincoln 1949) (M&L) with and without
Kalman filter (KF), the standard method (SM), and the combined method (CM),
see for details Podladchikova & Van der Linden (2012). For qualitative assessment
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of accuracy of our forecast, we use the data from Table 5 in the paper published by
Podladchikova & Van der Linden (2012) with the correction of standard forecasting
methods by means of data assimilation method such as Kalman filter. These data
are chosen because the modern forecasts of the average monthly number of sunspots
presented on the website of the Royal Belgian Observatory2 are being produced on
their basis. One can see that at the shorter interval the errors are somehow greater
as the statistical properties of the process are not stationary (compare the first two
lines in Table 1). Even though the forecasts are fundamentally different from ours,
they use the same corrections every month based on the current observations.

5 Discussion and conclusions

The comparison of our forecast with the observed solar activity demonstrate good
agreement (see Fig. 3). We compared our results of forecasting with those by other
methods (see Table 1). It is notable that our prediction error is almost stable over
short and longer ranges of forecasting windows.

We would like to stress that the advantage of our method is the combination of
the numerical solution of the nonlinear mean-field dynamo equations and the artificial
neural network. The mean-field dynamo model alone while gives plausible magnitudes
of the forthcoming solar cycle level, is not able to produce correct details of the sunspot
number dynamics over the phases of the solar cycle. Using only the neural network
without an account of the mean-field solution provides reasonable agreement with
available observations for just a few years because in this case there is no long-term
memory in the magnetic field evolution.

The currently available data series is non-stationary and the duration of this time
series is very short. So, the scientifically meaningful forecast can use the 13-monthly
running average. This averaging smooths the most prominent typical noise of the
signal. This is possible because the typical correlating times of the dynamo process
is much longer than the statistical background turbulence noise signal.

The disadvantage of this approach is that the results of prediction cannot be
verified immediately as one has to wait several months for the observable values. The
significant advantage is that the range of forecasting can easily be extended to 6, 12
or even 18 months, which with correction by up-to-date observations has stably small
forecasting error.

Despite a high level of chaotic component in the solar magnetic activity, we demon-
strate that the solar activity on a short time scale (up to 1.5 years) can be predicted
with a good accuracy using a physically based model of the solar activity and the
neural network. This result may have an immediate practical implementation for
predictions of various characteristics of solar activity and other astrophysical pro-
cesses so may be of interest to a broad community.

2https://www.sidc.be/SILSO/home
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Appendix A Characteristics of NEMPI

The growth rate of NEMPI is given by

γinst ≈

[
2V 2

Ak
2
x

H2
ρk

2 + 1/4

∣∣∣∣dPeff

dβ2

∣∣∣∣− 4H2
ρ(Ω · k)2 + (Ω sinφ)2

H2
ρk

2 + 1/4

]1/2

−η
T

(
k2 +

1

(2Hρ)2

)
, (A1)

where VA = B/
√

4πρ is the mean Alfvén speed, k is the wave number, Ω is the
angular velocity, φ is the heliographic latitude, Peff = 1

2 [1− qp(β)]β2 is the effective
magnetic pressure, the nonlinear function qp(β) is the turbulence contribution to the
mean magnetic pressure and β = B/Beq. NEMPI is excited in the upper part of the
convective zone, where the Coriolis number Co = 2Ω τ0 is small. This implies that
the instability is excited (γinst > 0), when the mean magnetic field is larger than a
critical value, Bcr that is given by

Bcr

Beq

≈ `0
50Hρ

1 +

(
10 CoH2

ρ

`20

)2
1/2

. (A2)

For the upper part of the convective zone, Bcr ≥ Beq/50 is small. The characteristic
time of the solar sunspot number variations is of the order of the characteristic time
for excitation of the instability, γ−1

inst.
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