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Abstract. We study a simple model for the solar dynamo in the framework of the Parker migratory dynamo, with a nonlinear
dynamo saturation mechanism based on magnetic helicity conservation arguments. We find a parameter range in which the
model demonstrates a cyclic behaviour with properties similar to that of Parker dynamo with the simplest form of algebraic
α-quenching. We compare the nonlinear current helicity evolution in this model with data for the current helicity evolution
obtained during 10 years of observations at the Huairou Solar Station of China. On one hand, our simulated data demonstrate
behaviour comparable with the observed phenomenology, provided that a suitable set of governing dynamo parameters is
chosen. On the other hand, the observational data are shown to be rich enough to reject some other sets of governing parameters.
We conclude that, in spite of the very preliminary state of the observations and the crude nature of the model, the idea of using
observational data to constrain our ideas concerning magnetic field generation in the framework of the solar dynamo appears
promising.
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1. Introduction

The solar activity cycle is widely believed to be connected
with dynamo action which occurs somewhere inside the so-
lar convective zone or even in the overshoot layer. Starting
from the seminal paper of Parker (1955), various dynamo mod-
els have been suggested for the solar cycle (see e.g. R¨udiger
& Brandenburg 1995; Sofia et al. 1998; Tavakol et al. 2002;
Brooke et al. 2002; also Blackman & Brandenburg 2003,
whose dynamo model of solar cycle also includes magnetic
helicity balance). These models exploit particular parameter-
izations for sources of the dynamo activity, i.e. theα-effect,
which in turn is connected with the mean hydrodynamic helic-
ity of the convective motions, and acts in conjunction with the
nonuniform rotationΩ. If the dynamo action is strong enough,
a dynamo wave propagating somewhere inside the convective
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shell is excited. It is necessary to include some saturation mech-
anism to get a (quasi)stationary wave which can be compared
with the observed activity cycle, instead of a dynamo wave
with an exponentially growing amplitude. In principle, the phe-
nomenology of the solar cycle can be reproduced using a very
primitive α-quenching model of dynamo saturation, with the
energy of the dynamo generated magnetic field achieving ap-
proximate equipartition with the kinetic energy of the random
motions.

A deeper treatment of solar dynamo saturation requires
however some ideas concerning the physical processes that
give rise to quenching of the generation mechanism. A sce-
nario of dynamo saturation which is now widely discussed is
connected with the concept of magnetic helicity. The point is
that the weakest link in the dynamo self-excitation chain, i.e.
α, is a pseudoscalar quantity and cannot be directly connected
with the magnetic energy, which is a scalar (not pseudoscalar)
quantity. A magnetic helicityχm can however be introduced to
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describe the level of magnetic field mirror-asymmetry and this
quantity can be associated with the magnetic part ofα, i.e.αm,
which is thought to be responsible forα-quenching.

The magnetic helicityχm is an integral of motion for the
ideal MHD equation, similar to the hydrodynamic helicity
which is conserved in the hydrodynamical case. During the
solar activity cycle, magnetic helicity is redistributed between
the large and small scale magnetic field. Based on this con-
cept, a governing equation forαm has been suggested (Kleeorin
& Ruzmaikin 1982; Kleeorin & Rogachevskii 1999). Together
with the mean-field dynamo equations, this equation has solu-
tions in form of a propagating steady dynamo wave (Kleeorin
et al. 1994, 1995; Covas et al. 1998; Blackman & Brandenburg
2002).

For a long time, it was impossible to observe either the
magnetic helicityχm or the hydrodynamic helicity and these
values, crucial for dynamo theory, were taken from theoret-
ical estimates only. In last decade, basic progress here has
been achieved and the first observations of magnetic helic-
ity in active regions on the solar surface have been obtained
(Pevtsov et al. 1994, 1995; Zhang & Bao 1998, 1999; Canfield
& Pevtsov 1998; Longcope et al. 1998). It is possible to some
extent to isolate a latitudinal distribution of magnetic helicity
averaged over a solar cycle (Zhang et al. 2002) as well as to fol-
low the temporal evolution of magnetic helicity averaged over
latitude. The obvious aim now is to confront predictions of dy-
namo theory concerning the latitudinal distribution of magnetic
helicity and its evolution during a solar cycle with the corre-
sponding observational data; this is the aim of the present pa-
per. When carrying out our investigation, we take into account
that the available data concerning magnetic helicity of the solar
magnetic field are still quite uncertain, and it would be unre-
alistic to expect that more or less fine details can be isolated
using this data. Correspondingly, we restrict ourself to a very
crude theoretical model, that we confront with observations.
Specifically, we simplify the mean-field dynamo equations at
the level of the Parker migratory dynamo equations, and in-
clude the algebraicα-quenching and the dynamicα-quenching
associated with magnetic helicity evolution as the only satura-
tion mechanisms. Both hypotheses are obvious simplifications
and there is no problem in principle in including many more re-
alistic features into our dynamo model. However we consider
that to be a topic for further work.

The other point to be clarified from the very beginning is
the following. Magnetic helicity can be understood as a mea-
sure of the linkage of magnetic lines and it is necessary to re-
construct the complete 3D magnetic field structure to deduce
this helicity from observations. Clearly, this is a very compli-
cated observational problem and various intermediate quanti-
ties such as current helicity〈b·(∇×b)〉, i.e. the linkage between
electric current lines, are used to this end (whereb represents
magnetic fluctuations). These quantities are useful in theoreti-
cal studies of dynamo saturation also and we use them below.
Our work needs a clear distinction between such concepts asα-
effect and the corresponding helicity, and between helicities of
total magnetic field, large-scale magnetic field and small-scale
magnetic field; these distinctions can be neglected to some ex-
tent in other areas of dynamo theory.

2. Magnetic and current helicity data obtained at
the Huairou Solar Observing Station

The averaged value of the small-scale magnetic helicity, i.e.
〈a · b〉, evidently would be a convenient quantity to confront
with a dynamo saturation scenario based on a magnetic he-
licity conservation argument. In practice however, the vector
potentiala, being a non-gauge invariant quantity is inconve-
nient observationally, and it is the current helicity〈b · (∇×b)〉 =
〈bx(∇×b)x〉 + 〈by(∇×b)y〉 + 〈bz(∇×b)z〉 which can be extracted
from the observations (herex, y, z are local cartesian coordi-
nates connected with a point on the solar surface and thez-axis
is normal to the surface). The observations are restricted to ac-
tive regions on the solar surface and we obtain information con-
cerning the surface magnetic field and helicity only. Monitoring
of solar active regions while they are passing near to the central
meridian of the solar disc enables observers to determine the
full magnetic field vector. The observed magnetic field is sub-
jected to further analysis to obtain the value∇×b. Because it is
calculated from the surface magnetic field distribution, the only
electric current component that can be calculated is (∇×b)z. As
a consequence of these restrictions, the observable quantity is

Hc = 〈bz(∇×b)z〉, (1)

which can be rewritten in the form

Hc = 〈hz(∇×h)z〉 − Bz(∇×B)z ,

whereh = B + b is the total magnetic field,B is the mean
magnetic field andb are the magnetic fluctuations.

Because the surface magnetic field is almost force-free, it
is also useful to consider the magnetic field twistaff (Woltjer
1958) which is defined as the proportionality coefficient be-
tween magnetic field and electric current (j = affb). The ob-
servational restrictions discussed above imply that the observa-
tional equivalent of twist is

aff = jz/bz. (2)

The observational data used in our analysis were obtained at the
Huairou Solar Observing station of the National Astronomical
Observatories of China. The magnetographic instrument based
on the FeI 5324 Å spectral line determines the magnetic field
values at the photospheric level. The data are obtained from
a CCD camera with 512× 512 pixels over the whole magne-
togram, whose entire size is comparable with the size of an
active region, as well as with the depth of the solar convective
zone (about 2× 108 m). However, because of the observational
technique, the line-of-sight field componentbz can be deter-
mined with a much higher precision than the transverse com-
ponents (bx andby). There are a number of other observational
difficulties such as in resolving the so-called “180◦ ambiguity”
in the direction of the transverse field etc. The observational
technique is described in detail by Wang et al. (1996), see also
Abramenko et al. (1996).

An observational programme to reveal the values of the
twist and the current helicity density over the solar surface
requires a systematic approach, both to the monitoring of mag-
netic fields in active regions and to the data reduction, in or-
der to reduce the impact of noise. This work has been car-
ried out by a number of research groups (e.g. Seehafer 1990;
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Table 1. The first column gives the central latitudeΘ = 90◦ – θ of
the data bin, with the averaging interval in brackets, the twist〈aff〉 is
measured in units of 10−8 m−1, the current helicity〈Hc〉 in units of
10−3 G2m−1, and N is the number of active regions involved in the
analysis. The errors correspond to the 95% confidence level, i.e. about
two standard deviations.

Θ 〈aff〉 〈Hc〉 N
28 (24–32) −0.4± 1.2 −1.6± 1.7 18
20 (16–24) −0.9± 0.8 −0.9± 0.4 51
14 (12–16) −1.7± 1.3 −0.6± 0.4 34
10 (8–12) −2.2± 0.6 −0.4± 0.2 49
4 (0–8) −1.9± 0.8 −0.6± 0.2 44
−4 (−8–0) 0.3± 0.7 0.7± 0.5 31
−10 (−12–−8) 1.2± 0.7 0.7± 0.4 59
−14 (−16–−12) 0.9± 0.7 0.9± 0.7 46
−20 (−24–−16) 1.0± 0.8 0.4± 0.2 68
−28 (−32–−24) 1.6± 1.7 0.5± 0.9 14

Table 2. The data of Table 1 binned by hemisphere and year of
observation.

T 〈aff〉 〈Hc〉 N
North

1988-89 −1.1± 0.8 −1.0± 0.5 50
1990-91 −1.0± 0.7 −1.0± 0.5 61
1992-93 −2.1± 0.7 −0.7± 0.3 45
1994-95 −2.6± 0.9 −0.3± 0.1 34
1996-97 −1.2± 1.0 −0.2± 0.2 9

South
1988-89 1.0± 1.2 0.2± 0.3 38
1990-91 0.9± 0.7 0.8± 0.6 65
1992-93 1.2± 0.5 0.9± 0.3 77
1994-95 0.7± 0.9 0.1± 0.1 35
1996-97 0.3± 2.0 0.2± 0.3 8

Pevtsov et al. 1994; Rust & Kumar 1996; Abramenko et al.
1997; Bao & Zhang 1998; Kuzanyan et al. 2000). While this
work is still in progress, the largest systematic data-set of active
regions presently available consists of 422 active regions over
the 10 years 1988–1996 (Bao & Zhang 1998). We use averages
and confidence intervals calculated from these data (Table 1).
Note that both the averaged quantities of twist and current
helicity density are positive/negative over Southern/Northern
solar hemispheres respectively, and thus obey the so-called
hemispheric rule (Table 2).

Observations at Huairou Observing Station also give dopp-
lergrams of velocity fieldsu over active regions from the
FeI 5324 Å spectral line in the photosphere and from theHβ
line in the chromosphere. The processing of these data could
provide values ofvzbz (which is related to the so-called cross-
helicity) in the foreseeable future. However, at present this
quantity is not available for statistical studies.

3. The dynamo model

We describe the solar dynamo by means of the mean-field equa-
tion (e.g. Moffatt 1978; Parker 1979; Krause & R¨adler 1980;
Zeldovich et al. 1983) which in general form is

∂B
∂t
= ∇×(V×B + E − η0∇×B) , (3)

whereV is a mean velocity (e.g. the differential rotation),η0 is
the magnetic diffusion due to the electrical conductivity of the
fluid, E = 〈u × b〉 is the mean electromotive force,u andb are
fluctuations of the velocity and magnetic field respectively, and
angular brackets denote averaging over an ensemble of fluctu-
ations. The electromotive forceE can be separated into several
contributions, which include theα-effect, turbulent magnetic
diffusivity η and other terms such as the magnetic turbulent
diamagnetic effect. For now, we restrict ourself to the two first
terms, and considerα andη to be isotropic quantities. We take
the turbulent diffusivity as a prescribed quantity and take into
account the nonlinearity of theα-effect only, i.e. we use the
parameterization

E = α(B)B − η∇×B, (4)

whereα depends in principle on the entire evolution of the
magnetic field, rather on its value in a given instant. This depen-
dence is described by an evolution equation (such as Eqs. (8)
and (13) below).

Using spherical coordinatesr, θ, φ, we represent an axisym-
metric mean magnetic field asB = Bφeφ +∇×(Aeφ). Following
Parker (1955) we consider dynamo action in a thin convective
shell, averageA andBφ over the depth of the convective shell
and consider these quantities as functions of colatitudeθ only.
Then we neglect the curvature of the convective shell and re-
place it by a flat slab to get the following equations (we drop
the suffix on Bφ for the sake of brevity)

∂B
∂t
= gD sinθ

∂A
∂θ
+
∂2B
∂θ2
− µ2B, (5)

∂A
∂t
= αB+

∂2A
∂θ2
− µ2A (6)

(see Appendix A). Here we measure lengths in units of the so-
lar radius and time in units of a diffusion time based on the so-
lar radius and turbulent magnetic diffusivity. The terms−µ2B
and−µ2A represent the role of turbulent diffusive losses in the
radial direction – the valueµ = 3 corresponds to a convec-
tive zone with a thickness of about 1/3 of the solar radius.
g = ∂Ω/∂r is the radial shear of differential rotation. We ne-
glect any latitudinal dependence of the rotation curve as well
as the link between poloidal and toroidal magnetic field via the
α-effect, and so consider a simpleαω-dynamo.α and g are
normalized with respect to their maximal values and incorpo-
rated into the dimensionless dynamo numberD, which gives
the intensity of the dynamo action (see Sokoloff et al. 1995 for
mathematical details of the derivation of Eqs. (5) and (6) from
Eqs. (3) and (4)).

These equations are obviously oversimplified. Starting
from the fundamental paper of Parker (1955) they can be used
however to reproduce basic qualitative features of solar and
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stellar activity and appear to be viable for this purpose. Taking
into account the nature of the approach, we use the simplest
profiles of dynamo generators compatible with symmetry re-
quirements, i.e.α(θ) = cosθ andg = 1.

The pointsθ = 0 andθ = 180◦ correspond to North and
South poles respectively. We take here zero boundary condi-
tions for A and B. (Because we neglect the convective shell
curvature, these boundary conditions necessarily are approx-
imate.) In principle, we could use a slightly more elaborate
version of Eqs. (5) and (6) which take into account some cur-
vature effects, so the diffusion term becomes formally singu-
lar at the poles and a more realistic finiteness condition can
be exploited (see Galitski & Sokoloff 1999). Magnetic helicity
data are available for middle latitudes and the equatorial re-
gion (−30◦ < Θ < 30◦ where the latitudeΘ = 90◦ − θ and
Θ = 0 corresponds to the equator) only and so here we are not
very interested in details of dynamo wave behaviour near to the
poles. We keep a factor sinθ in Eq. (5) which reflects the fact
that the length of the parallelsθ = const vanishes at the poles
(Kuzanyan & Sokoloff 1995). Neglecting this term results in an
unphysical coupling between the dynamo wave behaviour near
to the pole and near to the equator.

We are interested in dynamo waves propagating from mid-
dle solar latitudes towards the equator. This corresponds to
negative dynamo numbers providedα is chosen to be pos-
itive in the Northern hemisphere andg is positive near to
the solar equator. According to various models, the ranges of
|D| ≈ 103–106 can be considered as realistic for the solar case.

We nondimensionalize the dynamo equations by measuring
length in units of the solar radiusR, time in units of the turbu-
lent magnetic diffusion timeR2/η, and the differential rotation
δΩ in units of the maximal value ofΩ. α is measured in units of
the maximum value of the hydrodynamic part of theα-effect.

It is convenient to present the dynamo number asD =

RαRω, whereRα = αR/η ∼ 1 − 200 andRω = δΩR2/η ∼
(1−4)×103 (where typical values of parameters have been used
for these estimates) represent the contributions of theα-effect
and differential rotation, respectively. We use the equipartition
magnetic fieldB∗ = u

√
4πρ as the unit of magnetic field. The

vector potential of the poloidal fieldA is measured in units of
RαRB∗, the densityρ normalized to its value at the bottom of
the convective zone, and the basic scale of the turbulent mo-
tions l and turbulent velocityu at the scalel are measured in
units of their maximum values through the convective region.
The magnetic Reynolds number Rm= lu/η0 is defined using
these maximal values.η = lu/3 is an estimate for the turbulent
diffusivity.

We stress that all physical ingredients of the model vary
more-or-less strongly with the depthh∗ below the solar surface
and we have to use some average quantities in the Parker dy-
namo equations. We use mainly estimates of governing param-
eters taken from models of the solar convective zone (see, e.g.,
Spruit 1974; Baker & Temesvary 1966; more modern treat-
ments make little difference to these estimates). In particular,
at depthh∗ ∼ 2× 1010 cm, Rm∼ 2× 109, u ∼ 2× 103 cm s−1,
l ∼ 8× 109 cm,ρ ∼ 2× 10−1 g cm−3, η ∼ 5.3× 1012 cm2 s−1.
The density stratification scale is estimated here asΛρ =
ρ/|∇ρ| ∼ 6.5 × 109 cm and the equipartition mean magnetic

field B∗ = 3000 G. In the upper part of the convective zone,
say at depthh∗ ∼ 2× 107 cm, these parameters are Rm∼ 105,
u ∼ 9.4× 104 cm s−1, l ∼ 2.6× 107 cm, ρ ∼ 4.5× 10−7 g cm−3,
η ∼ 0.8× 1012 cm2 s−1 andΛρ ∼ 3.6× 107 cm; the equiparti-
tion mean magnetic field isB∗ = 220 G here. This estimate for
the equipartition magnetic field at the base of the convection
zone (B∗ = 3000 G) is roughly consistent with the magnetic
field strength in sunspots (about 1 kG). However obviously it
should be distinguished from the mean magnetic field at the
solar surface; a deeper discussion of this distinction is outside
of the scope of the paper. For the Parker migratory dynamo,
the toroidal magnetic field usually dominates and below we ig-
nore the poloidal magnetic field when calculating the magnetic
energy.

4. The nonlinearities

A key idea of the dynamo saturation scenario exploited below
is a splitting of the totalα effect into the hydrodynamic (αv)
and magnetic (αm) parts

α(r, θ) = αv + αm, (7)

as first suggested by Frisch et al. (1975). We need to parameter-
ize both contributions,αv andαm, in terms of the magnetic field
components and helicities. Two types of effect should be taken
into account. First of all, the link betweenα-effect and the rele-
vant helicities can be modified by the dynamo-generated mag-
netic field. Correspondingly, we introduce quenching functions
φv (αv = χvφv with χv = −(τ/3)〈u·(∇×u)〉) andφm (αm = χcφm,
andχc is defined below) to obtainα = χvφv + χcφm, whereτ is
the correlation time of the turbulent velocity field.

The second problem to be addressed is that magnetic he-
licity is not a very convenient quantity because it involves a
gauge-noninvariant quantity, i.e. the vector potential. We con-
nect magnetic helicity with the current helicity〈b · (∇×b)〉,
by using the approximation of locally homogeneous turbu-
lent convection (see Kleeorin & Rogachevskii 1999). Then we
need to obtain a quantity of suitable dimension, and intro-
duce the densityρ to obtain the correctly dimensionedχc ≡
(τ/12πρ)〈b · (∇×b)〉. Thus,

α(r, θ) = χvφv + χ
cφm. (8)

The issue of the large-scale and small-scale current helic-
ities was discussed by Dikpati & Gilman (2001) and by
Brandenburg et al. (2002).

The quenching functionsφv andφm in Eq. (8) are given by

φv(B) = (1/7)[4φm(B) + 3L(B)], (9)

φm(B) =
3

8B2
[1 − arctan(

√
8B)/

√
8B] (10)

(see Rogachevskii & Kleeorin 2000, 2001), whereL(B) = 1−
16B2 + 128B4 ln(1 + 1/(8B2)). Thusφv = 1/(4B2) andφm =

3/(8B2) for B � 1/3; andφv = 1 − (48/5)B2 andφm = 1 −
(24/5)B2 for B� 1/3. Hereχv andχc are measured in units of
the maximal value of theα-effect.

The functionφv describes conventional quenching of theα
effect. A simple form of such a quenching,φv = 1/(1+B2),was
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introduced long ago (see, e.g. Iroshnikov 1970). This form is
quite close to the more sophisticated form presented in Eq. (9).
The magnetic partαm includes two types of nonlinearity: the al-
gebraic quenching described by the functionφm (see e.g. Field
et al. 1999; Rogachevskii & Kleeorin 2000, 2001) and the dy-
namic nonlinearity which is determined by Eq. (13).

The quenching of theα-effect is caused by the direct and
indirect modification of the electromotive force by the mean
magnetic field. The indirect modification of the electromotive
force is caused by the effect of the mean magnetic field on the
velocity fluctuations and on the magnetic fluctuations, while
the direct modification is due to the effect of the mean magnetic
field on the cross-helicity (see, e.g., Rogachevskii & Kleeorin
2000, 2001).

We can calculate also the cross-helicity〈u · b〉 which may
in the future be compared with observational data

〈u · b〉 = (η/2)[3Λ−1
u Br + φch(B) (B · ∇)B2], (11)

where Λ−1
u = |∇〈u2〉|/〈u2〉, φch(B) = (2/35B2)[(15 +

224B2)φm(2B) + 6L(2B) − 21], andφch(B) = −128/5 for B�
1/3, andφch(B) = −3π/(20

√
2 B3) for B� 1/3.When deriving

Eq. (11) we used Eqs. (A14)–(A17) and (A21) of Rogachevskii
& Kleeorin (2001).

Now we need to average Eq. (8) over the depth of the con-
vective zone. The first term in the averaged equation seems to
be determined by the values taken at some sort of mean po-
sition in the convective zone, while the situation concerning
the second term is much less clear, because the density used
to calculateχc decreases strongly with radius. The clarification
of this problem is obviously beyond the Parker approximation;
however to address this problem as far as it possible here we
introduce a phenomenological parameterσ by

α(θ) = χvφv + σχcφm, (12)

where the helicities and quenching functions are associated
with some sort of mean position in the convective zone. We
emphasize that below we considerσ as a free parameter in the
context of the averaging process used to derive the Parker equa-
tions; probably we can only safely assert thatσ >∼ 1.

For the sake of brevity of notation, we keep in Eq. (12)
the same notation as in Eqs. (7) and (8). We stress that now
we consider a parameterization for helicities which depends on
colatitudeθ only. Of course, this is not more than a phenomeno-
logical description, to be improved in more detailed models of
the nonlinear solar dynamo.

The functionχc(B) is determined by a dynamical equation
which follows from the conservation law for magnetic helicity
(see Kleeorin & Rogachevskii 1999). A general dimensional
form of this equation reads

∂χc

∂t
+
χc

T
= − 1

9π η ρ∗
(E·B + ∇ ·Φ) + κ∆χc. (13)

Here Φ = CχvφvB2 l2er /Λρ is a nonadvective flux of the
magnetic helicity (hereer is the unit vector in radial direc-
tion), −κ∇χc is the diffusive flux of the magnetic helicity (see
Kleeorin & Rogachevskii 1999; Kleeorin et al. 2000, 2002,
2003), andT = l2/η0 is the relaxation time of magnetic
helicity.

Magnetic helicity transport through the boundary of a dy-
namo region is reported by Chae (2001) to be observable at
the solar surface. The flux of magnetic helicity for the sun
has been estimated by Berger & Ruzmaikin (2000). The evo-
lution of large-scale magnetic helicity as well as the associ-
ated magnetic helicity fluxes have been calculated from two-
dimensional models by Brandenburg et al. (2002).

We also take into account that for an axisymmetric problem
the term which determines the advective flux of the magnetic
helicity,∇ · (Vχc), vanishes (V = eφΩ r sinθ is the differential
rotation). The parameterC is a numerical coefficient andκ is of
orderη. In principle, these parameters can be calculated given
some model of convection, however we here take into account
our real level of knowledge and keep them as free parameters.
Note that in estimating the helicity fluxΦ we have to include
density gradients in the radial direction which are neglected in
other parts of the analysis.

The physical meaning of Eq. (13) is that the total magnetic
helicity is a conserved quantity and if the large-scale mag-
netic helicity grows with magnetic field, the evolution of the
small-scale helicity should somehow compensate this growth.
Compensation mechanisms include dissipation and various
kinds of transport.

The dynamical Eq. (13) for the functionχc(B) in nondi-
mensional form in the context of the Parker migratory dynamo
reads

∂χc

∂t
+ (T−1 + κµ2)χc =

(
2R
l

)2(
∂A
∂θ

∂B
∂θ
− B
∂2A
∂θ2

−αB2 + 2µ2AB+CB2φvχ
v(θ)

)
+κ
∂2χc

∂θ2
(14)

(see Appendix A), where we have averaged Eq. (13) over the
depth of the convective zone, so that the averaged value ofT−1

is

T−1 = H−1
∫

T−1(r) d r ∼ Λl R2 η0

H l2 η
≈ 0.2− 0.5, (15)

Λl is the characteristic scale of the variationsl, T(r) =
(η/R2)(l2/η0) is the nondimensional relaxation time of mag-
netic helicity, and the quantitiesΛl , η0, l in Eq. (15) are
associated with the upper part of the convective zone. The pa-
rametersC and κ can be chosen asC ∼ (0.1–1)× 10−1 and
κ = 0.1–1. The factor 10−1 in the coefficientC arises from the
parameter (l2/Λρ)/R∼ 0.1 (see Appendix A).

5. Results

We simulated numerically the model of the nonlinear solar dy-
namo based on the Parker approximation and conservation of
magnetic helicity arguments, as presented in previous sections.
We found that the model gives a stable nonlinear wave-type so-
lution similar to the solar cycle phenomenology from the gener-
ation threshold of the nonlinear system (Dnonl,crit ≈ −940 with
σ = κ = 1,C = 0.1) up toD = −104. It is quite interesting that
a slightly stronger generation is needed to get stable nonlinear
oscillations with a nonvanishing amplitude than to excite the
linear dynamo, whereDcrit ≈ −910. The temporal behaviour of
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Table 3. Parameters of activity cycles:Bmax is the value of the di-
mensionless amplitude of the toroidal magnetic field in units of the
equipartition field (estimated as 3000 G at the bottom of the convec-
tive zone),Tc is the dimensionless cycle length, SP and DP denote
singly and doubly periodic solutions respectively; “runs away” means
that no stable finite amplitude solution was found, although in some
cases there is a long pseudo-stable initial phase. The other governing
parameters areσ = 1, T = 3, (2R/l)2 = 300. For the DP solutions, the
amplitude of the stronger cycles and the shorter period are given.

C κ D Bmax Tc

0.1 1 −103 0.12 0.37 SP
0.1 1 −104 5.28 0.25 DP
0.1 1 −2× 104 - - runs away
0.1 0.1 −103 0.09 0.345 SP
0.1 0.1 −104 - - runs away
0.1 3 −103 0.13 0.355 SP
0.1 3 −3× 103 1.47 0.46 SP
0.1 3 −104 - - runs away
0.01 1 −103 0.11 0.35 SP
0.01 1 −3× 103 1.35 0.37 SP
0.01 1 −104 4.50 0.30 DP
0.01 1 −2× 104 - - runs away
0 1 −104 4.25 0.29 weakly DP
0 1 −2× 104 - - runs away

nonlinear dynamo waves is quite similar to that with the sim-
ple algebraicα-quenching, and we give here, instead of quite
standard plots, details of the cycle parameters in Table 3. A
feature of the activity cycles illustrated by this Table is a tran-
sition from singly to doubly periodic solutions with growth of
dynamo intensity.

In the present paper we have concentrated on the dynamics
of the current helicity (which is proportional to the functionχc)
and its comparison with the observations. At the present state
of observations we can compare latitudinal distributions ofχc

averaged over the activity cycle or the temporal behaviour ofχc

averaged over a hemisphere. Such comparisons are presented in
Figs. 1–3 forD = −103,σ = 1,T = 3, (2R/l)2 = 300. In Figs. 1
and 3 the parameterκ = 0.1. We restrict ourselves to discussing
dynamo models with singly periodic behaviour (although there
are hints of a double periodicity in the sunspot record). Two
types of behaviour are demonstrated. Provided thatC is nega-
tive (magnetic helicity inflow, see Fig. 2b) or small and posi-
tive (C < 0.1, moderate magnetic helicity outflow, see Fig. 2a)
the value ofχc is always negative in the Northern hemisphere,
in accordance with naive theoretical expectations as well as
the available observations. IfC is large and positive (strong
magnetic helicity outflow), we obtain a cycle during whichχc

changes sign. Both types of behaviour are shown in Fig. 1, for
C = 0.01 (solid curve) andC = 0.1 (broken). Comparing ob-
servational and theoretical results we have to fit the numerical
data forχc with its observational equivalentHc. We normalize
the data to make them equal atΘ = 28◦ (〈χc〉Θ=28◦ = 23.5〈Hc〉).
Because of this fitting procedure, the agreement between the
observational and numerical data is much better in the Northern
hemisphere than in the Southern.
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Fig. 1. The latitude dependence of the time-averaged function〈χc〉
for various parameter sets (see description in the text). The observed
values of the time-averaged〈Hc〉 are shown by filled squares, the
error-bars are shown by vertical lines. A fitting factor of 23.5, (i.e.,
〈χc〉Θ=28◦ = 23.5〈Hc〉) has been used – see text.

We illustrate the importance of the fitting procedure for
various parameter sets in Fig. 2 where we give the results for
C = 0.01 in panel a and forC = −0.1 in panel b. The results
for κ = 0.1 are shown by broken curves and those forκ = 1
by solid. Both cases represent a model which does not exhibit
helicity reversals. We appreciate that the agreement between
numerical and observational data in the Northern hemisphere
can be partially attributed to the fitting procedure; however the
agreement obtained looks quite impressive for the primitive
models considered. A disagreement between the model and ob-
servations atΘ = 4◦ can be explained, for example, as a result
of a non-perfect North-South symmetry in the observed cycle.
We conclude from Fig. 2 that the minimal value of〈χc〉 de-
creases withκ; experience from numerical simulations show
that it decreases withσ as well. Note however that the contri-
bution ofχc to the magnetic part of theα-effect is determined
byσ〈χc〉 and this value is more or less stable.

Moving to the comparison of the temporal helicity evolu-
tion presented in Fig. 3, we note that the fitting procedures now
have to be more complicated. The first two measured points
(1988–89) and (1990–91) with approximately equal values of
the latitude-averaged〈Hc〉 are chosen to be located symmet-
rically about the minimum of the function〈χc〉 for Θ > 0.
The distance between the observational points is (2/11)(Tc/2),
whereTc is the period of oscillations of the toroidal magnetic
field. The fitting factor is 44.3, determined by the condition
〈χc〉t=3.527td = 44.3〈Hc〉t=1988, wheretd is the turbulent diffusion
time at the bottom of the convective zone.

The point is that we can base the fitting procedure on a com-
parison between the simulated value of the toroidal magnetic
field and some tracer of cyclic solar activity, say, the averaged
group sunspot numberRg (Hoyt et al. 1994)1. This fitting is also

1 The data forRg were taken from the URL
ftp.ngdc.noaa.gov/STP/
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Fig. 2. The latitude dependence of the time-averaged function〈χc〉
for various parameter sets (see description in the text). The observed
values of the time-averaged〈Hc〉 are shown by filled squares, the error-
bars are shown by vertical lines. We have used a fitting factor ina) of
23.5, (i.e.,〈χc〉Θ=28◦ = 23.5〈Hc〉) and in panelb) it is 32.

shown in Fig. 3 as follows. The dashed-dotted line shows the
time dependence of the latitude-averaged function−6〈B2〉 for
the same parameters. The fitting factor 6 is determined by the
condition 6〈B2〉t=3.527td = 0.07. The values –Rg/2160 are shown
in Fig. 3 by the filled diamonds. The fitting factor 1/2160 is
determined by the condition:Rg(t = 1988)/2160= 0.07. (Our
slightly awkward looking choice of scale for some of the quan-
tities plotted in Fig. 3 arises because we choose to fit our model
in the Northern hemisphere where〈χc〉 and〈Hc〉 are negative.)

It can be seen from Fig. 3 that the maxima of the magnetic
energy〈B2〉 nearly coincide with the minima of the functionχc.
A similar behaviour was observed also for the quantityRg (a
tracer of cyclic solar activity) andHc (the tracer of the current
helicity), cf. Bao & Zhang (1998).

6. Discussion and conclusions

We have presented above a simple model of the nonlinear so-
lar cycle with a dynamo saturation mechanism based on mag-
netic helicity conservation. The model is obviously oversimpli-
fied, however it reproduces some features of real stellar cycles
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Fig. 3.The time dependence of the latitude-averaged function〈χc〉 for
D = −103, σ = 1, C = 0.01 andκ = 0.1. The observed values of the
latitude-averaged function〈Hc〉 are shown by filled squares (forΘ > 0
– Northern hemisphere, lower panel) and filled circles (forΘ < 0 –
Southern hemisphere, upper panel), the error-bars for〈Hc〉 are shown
by vertical lines. The dashed-dotted line indicates the time dependence
of the latitude-averaged function−6〈B2〉. The filled diamonds in the
lower panel give the scaled averaged group sunspot numbers,Rg – see
text for further details.

as far as they are known from, say, the Wilson sample data
(Baliunas et al. 1995). In particular, we obtain both singly peri-
odic and doubly periodic cycles. As expected from qualitative
arguments as well from observational data (see e.g. Bruevich
et al. 2001) the transition from singly periodic to doubly peri-
odic cycles is associated with a general trend from cycles with
smaller amplitude to those with larger amplitude.

Our model of dynamo saturation gives stable oscillations
for a limited region of parameter space. If the dynamo gener-
ation becomes stronger the numerical solution runs away. On
one hand, we have not included in the model all kinds of non-
linear dynamo saturation; e.g. buoyancy and spot formation ob-
viously lead to some losses of toroidal magnetic field and thus
contribute to dynamo saturation. In addition, increasing the dy-
namo number can reduce the radial spatial scale of the toroidal
magnetic field and effectively enlarge the parameterµ which
determines the toroidal magnetic field dissipation. Ifµ is inde-
pendent ofD, we thus artificially overestimate the generation
effect for larger dynamo numbers. On the other hand, experi-
ence from dynamo simulations as well as observational data
suggests that cyclic behaviour is typical for moderate dynamo
action only and chaotic behaviour occurs when the dynamo ac-
tion is stronger. It is more than natural to expect that a parame-
ter range with chaotic temporal behaviour will also exist in our
model.
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We have concentrated our attention here on current helicity
data, so a deeper comparison of the cycle parameters with ob-
servational data is beyond the scope of this paper. Also, we
should keep in mind that we compare the simulated current
helicity ∝χc with just one part of the surface current helicity
〈bz(∇ × b)z〉.

The properties of current helicity simulated with our model
have been compared with the available observational data. The
results of this comparison look quite promising in spite of the
quite limited extent of the observational data, as well as the
crude nature of the model. We have been able to choose a set
of governing parameters which give helicity properties compa-
rable with the available phenomenology. From another view-
point, the observational data are rich enough to indicate a
disagreement between the available observations and the pre-
dictions of the model with other parameter sets.

The parameters which gives an agreement between simu-
lations and observations are quite plausible. However we feel
that it is too early to insist that this agreement is more than a
coincidence. Really, we base our comparison on the 10 year
observational data of one scientific team. We stress that an ex-
tension of the observational programme to cover several cycles
as well the inclusion of data obtained by other scientific teams
and from other tracers would be very important. In particular
it would be valuable to include the cross-helicity data into the
analysis.

Note, that although the available observations cover just the
period of 10 years, these data extend over parts of two differ-
ent solar cycles, namely the 22nd (1988–1995) and the 23rd
(1996–1997). The available data suggest that the shape of the
current helicity distribution is the same for both cycles, and
further, more recent, current helicity studies (Bao et al. 2000;
2002) support this interpretation. In particular, the hemispheric
rule is obeyed from cycle to cycle (e.g. Pevtsov et al. 2001).

We stress that the scenario described in the present pa-
per does not include all possible types of nonlinear processes
which can occur at the nonlinear stage of the dynamo (see, e.g.,
Brandenburg & Subramanian 2000; Brandenburg & Dobler
2001), but rather is restricted to a minimal number of pro-
cesses involved in magnetic helicity conservation. In the spirit
of the basic ideas about the nonlinear saturation of solar dy-
namos, the analysis presented here has been restricted to the
evolution ofα only, while detailed simulations (e.g. Blackman
& Brandenburg 2002; Brandenburg & Sokoloff 2002) also
demonstrate a quenching of the turbulent magnetic diffusiv-
ity. A quantitative model for a nonlinear quenching of tur-
bulent magnetic diffusivity has been recently suggested by
Rogachevskii & Kleeorin (2001) and used in a galactic dynamo
model by Kleeorin et al. (2003).

We appreciate that alternative interpretations for the current
helicity observations could be suggested, e.g. helicity could
in principle be produced during active region formation rather
than being connected with the magnetic field properties in the
region of intensive dynamo action. A development of such
an alternative explanation to the point where it could be con-
fronted with the observational data looks highly desirable.

We conclude with the expression of a guarded but real op-
timism that magnetic helicity observations can result in the

foreseeable future in a new level of understanding in dynamo
theory, which will base the acceptedα-profiles not only on
order-of-magnitude arguments and numerical simulations, but
also on the observational data. It would be very important
to support this progress in solar dynamo theory by similar
progress in other areas of dynamo theory, in particular for
galactic dynamos. We mention in this respect a recent sugges-
tion of Enßlin & Vogt (2003) concerning the possibility of ob-
serving the magnetic helicity of galactic magnetic fields.
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Appendix A: The nonlinear system of dynamo
equations

The system of nonlinear equations in nondimensional form for
an axisymmetric mean magnetic fieldB = Beφ+∇×(Aeφ) reads

∂B
∂t
= D Ω̂A+ ∆sB, (A.1)

∂A
∂t
= αB+ ∆sA, (A.2)

∂χc

∂t
+
χc

T
=

(
2R
l

)2(
sin2 θ(∇sA) (∇sB) − B∆sA

−αB2 +
C
R
∇ · (l2Λ−1

ρ χ
v φv B

2 er )

)
+ κ∆χc, (A.3)

whereα = χvφv+χcφm/ρ(r), ∆s = sin2 θ∇2
s ≡ ∆−1/(r2 sin2 θ),

and

Br =
Rα

r sinθ
∂

∂θ
(sinθ A), Bθ = −Rα

r
∂

∂r
(r A),

∇sA =
1

r sinθ

(
er
∂

∂r
(rA) + eθ

1
sinθ

∂

∂θ
(sinθ A)

)
,

Ω̂A =
1
r
∂(Ω,Ar sinθ)
∂(r, θ)

·

Now we consider dynamo action in a thin convective shell, av-
erageA, B andα over the depth of the shell and consider these
quantities as functions of colatitudeθ only. Then we neglect
the convection shell curvature and replace it by a flat slab. This
implies that∆s = ∆ = ∂

2/∂θ2 − µ2, sinθ∇s = eθ(∂/∂θ) + µer

and Ω̂A = g(∂A/∂θ).We also redefineCµ l2/ΛρR asC. This
yields Eqs. (5), (6) and (14).
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