A&A 400, 9-18 (2003)
DOI: 10.1051/0004-6361:20021859
© ESO 2003

Astronomy
& -
Astrophysics

Nonlinear magnetic diffusion and magnetic helicity transport
in galactic dynamos

N. Kleeorin', D. Moss?, I. Rogaohevskiil,and D. Sokoloff?

Department of Mechanical Engineering, Ben-Gurion University of Negev, POB 653, 84105 Beer-Sheva, Israel
e-mail: nat@menix.bgu.ac.il; gary@menix.bgu.ac.il

2 Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

e-mail: moss@maths.man.ac.uk

e-mail: sokoloff@dds.srcc.msu.su

Received 21 October 2002 / Accepted 13 December 2002

Department of Physics, Moscow State University, Moscow 119992, Russia

Abstract. We have extended our previous mean-field galactic dynamo model which included algebraic and dynamic alpha
nonlinearities (Kleeorin et al. 2002), to include also a quenching of the turbulent diffusivity. We readily obtain equilibrium
states for the large-scale magnetic field in the local disc dynamo model, and these fields have strengths that are comparable to
the equipartition field strength. We find that the algebraic nonlinearity alone (i.e. quenching of both the @ effect and turbulent
magnetic diffusion) cannot saturate the growth of the mean magnetic field; only the combined effect of algebraic and dynamic
nonlinearities can limit the growth of the mean magnetic field. However, in contrast to our earlier work without quenching
of the turbulent diffusivity, we cannot now find satisfactory solutions in the no-z approximation to the axisymmetric galactic

dynamo problem.

Key words. galaxies: magnetic fields

1. Introduction

Spiral galaxies possess large-scale magnetic fields whose spa-
tial scale is comparable with galactic radii (see for review Beck
et al. 1996). Galactic magnetic fields mainly lie in the galactic
plane and the corresponding magnetic lines are usually roughly
of spiral form. This form can be substantially distorted in the
presence of strong noncircular motions, e.g. in barred galaxies,
see Beck et al. (1999, 2002), Moss et al. (2001).

Galactic magnetic fields are believed to originate in a galac-
tic dynamo, driven by the joint action of the mean hydrody-
namic helicity of interstellar turbulence and differential rota-
tion. The linear stage of galactic dynamo action seems now
to be well-understood, see, e.g., Ruzmaikin et al. (1988). The
conventional approach to the nonlinear stage of the galactic dy-
namo is based on comparison of the relative intensity of three
quantities participating in dynamo action, namely the differen-
tial rotation 6€, turbulent diffusivity nr and a-effect, each of
which can be associated with a typical velocity: 200 kms™!,
10kms™" and 1 kms~! respectively. Because the typical veloc-
ity associated with « is the smallest, the mean hydrodynamic
helicity is believed to be the weakest part of the self-excitation
chain, and a scenario of nonlinear dynamo limitation via a-
quenching is the most commonly adopted.

Send offprint requests to: 1. Rogachevskii,
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A simple version of a-quenching prescribes the mean hy-
drodynamic helicity to be a decreasing function of mean mag-
netic field strength B. The critical magnetic field strength B,
at which quenching becomes significant, is estimated conven-
tionally from equipartition with the kinetic energy of interstel-
lar turbulence, ng ~ 4mpv?. When applied to specific galax-
ies, this picture results in robust magnetic field models which
are compatible with observations. However the picture is ob-
viously oversimplified and various attempts to suggest a more
developed version of nonlinear galactic dynamo theory have
been undertaken by several authors. In particular, Vainstein
& Cattaneo (1992) and Gruzinov & Diamond (1995) have
claimed that in fact B is much lower than the equiparti-
tion value, e.g. B = BegRm™'/2, where Rm is the magnetic
Reynolds number. In galaxies, magnetic Reynolds numbers are
very large, Rm ~ 10° even if the ambipolar diffusivity coeffi-
cient is used, so it was claimed that dynamo action saturates
at a magnetic field strength that is much lower than both the
equipartition value, and also the large-scale field strengths ob-
served in nearby spiral galaxies. This result follows from inves-
tigations that accept the idea of magnetic helicity conservation.
The galactic dynamo produces a large-scale magnetic field with
nonvanishing magnetic helicity, and when considering detailed
magnetic helicity conservation in a given volume, the above
“catastrophic” estimate for B, results.

The evolution of magnetic helicity appears however to be a
more complicated process than can simply be described by a
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balance of magnetic helicity in a given volume, and it is
necessary to take into account, as for the evolution of other
conserved quantities, transport by the fluid flows including
turbulent transport of magnetic helicity through the galactic
boundaries and the destruction of mean magnetic helicity by
turbulent diffusion. The governing equation for magnetic he-
licity was suggested by Kleeorin & Ruzmaikin (1982; see
also the discussion by Zeldovich et al. 1983) for an isotropic
turbulence, and investigated by Kleeorin et al. (1995) for
stellar dynamos, and self-consistently derived by Kleeorin &
Rogachevskii (1999) for an arbitrary anisotropic turbulence. A
quantitative model for the flux of magnetic helicity was pro-
posed by Kleeorin & Rogachevskii (1999) and Kleeorin et al.
(2000). Note that Schmalz & Stix (1991), Covas et al. (1998)
and Blackman & Brandenburg (2002) have also investigated re-
lated solar dynamo models that included a dynamical equation
describing the evolution of magnetic helicity. Magnetic helicity
transport through the boundary of a dynamo region is reported
by Chae (2001) to be observable at the solar surface. The role
of a flux of magnetic helicity in the dynamics of the mean mag-
netic field in accretion discs was also discussed by Vishniac &
Cho (2001).

The equation governing the magnetic helicity is much more
complex than the conventional parametrization used to rep-
resent a-quenching. Kleeorin et al. (2000) suggested that a
nonlinear galactic dynamo governed by a consistently derived
equation for magnetic helicity results in a steady magnetic field
comparable with the equipartition magnetic field estimate, and
Kleeorin et al. (2002) demonstrated that a detailed galactic dy-
namo model based on the equation under discussion gives re-
sults very similar to one based on conventional a-quenching.
In other words, the real physical description of the nonlinear
stage of galactic dynamo is quite complicated but, if we are in-
terested in pragmatic results only, an adequate description can
be found by using only a conventional @-quenching.

We stress that the scenario of Kleeorin et al. (2000, 2002)
does not include all possible types of nonlinear processes
which can occur at the nonlinear dynamo stage (see, e.g.,
Brandenburg & Subramanian 2000; Brandenburg & Dobler
2001), but rather is restricted by a minimal number of processes
involved in the magnetic helicity conservation. In particular,
we consider transport of mean helicity of small-scale magnetic
field only and note that this helicity may be transported out of
the galactic disc without significant loss of large-scale mag-
netic field. Moreover, this picture is formulated in terms of
mean-field electrodynamics, which gives a natural constraint
on the description of small-scale details. When attention is fo-
cussed on these details (e.g. Brandenburg & Sokoloff 2002;
Blackman & Brandenburg 2002), the mean-field description
should be considered as a parametrization of the turbulence.

In the spirit of the basic ideas about the nonlinear saturation
of galactic dynamos, the analysis presented by Kleeorin et al.
(2000, 2002) was restricted to the evolution of @ only, while
a detailed simulation (e.g. Brandenburg & Sokoloff 2002) also
demonstrates a quenching of the turbulent magnetic diffusiv-
ity. A quantitative model for a nonlinear quenching of tur-
bulent magnetic diffusivity has been recently suggested by
Rogachevskii & Kleeorin (2001).

The aim of the present paper is to include a turbulent mag-
netic diffusivity quenching into the mean-field dynamo equa-
tions. This effect is expected to be quite modest. Speaking prag-
matically, we do not know the turbulent magnetic diffusivity
of interstellar turbulence well enough to recognize its satura-
tion, by some dozens of percent. However, our analysis be-
low demonstrates that the problem is not restricted by some
specific variation of magnetic diffusivity coefficient. Because
of nonlinear effects, the turbulent magnetic diffusion coeffi-
cients for the two basic magnetic field components, i.e. poloidal
and toroidal, become different (see Rogachevskii & Kleeorin
2001). Since the magnetic field distribution is spatially nonuni-
form, a nonuniform magnetic diffusivity saturation arises, that
results in new terms in the dynamo equations governing the
nonlinear magnetic field evolution. In general, the situation ap-
pears to be less trivial then might be thought initially, and a
quantitative analysis of a specific dynamo model becomes de-
sirable. Below we present results of the corresponding analysis
and numerical simulations.

2. The mean-field equations

The mean-field dynamo equation (e.g. Krause & Rédler
1980) is

oB

5 = VX(VXB +&-1VxB), (1)

where V is a mean velocity (e.g., the differential rotation), n
is the magnetic diffusion due to the electrical conductivity of
fluid together with ambipolar diffusion, & = (u X b) is the mean
electromotive force, # and b are fluctuations of the velocity and
magnetic field, respectively, angular brackets denote averaging
over an ensemble of fluctuations. When a small-scale back-
ground turbulence (i.e. turbulence with a zero mean magnetic
field) is isotropic and the energy of small-scale magnetic fluc-
tuations of the background turbulence is much smaller than that
of the kinetic energy, the mean electromotive force is given by

& = a;j(B)B; + (V""(B)xB); — n;j(B)(VXB); , ()

where

1n:;(B) = [na(B) — ng(B)] 6;; + ns(B) B;j, 3)

Ve'(B) = lﬂv(B)V—Bz , )
2 B2

(see Rogachevskii & Kleeorin 2001), B;; = B;B;/B*, a;;(B) =
a(B)o;j, nv(B) = na(B) — nz(B) — ng(B) and a(B), na(B),
ns(B), ng(B) are determined by Egs. (8), (11), (12) and (14),
respectively.

2.1. The local thin-disc dynamo problem

We begin by considering the simplest local disc dynamo prob-
lem. Using cylindrical polar coordinates , ¢, z, from Eqgs. (1)—
(4) we obtain the equations for the mean radial field B, = R, b,
and toroidal field By for the local thin-disc axisymmetric aQ-
dynamo problem as

ob,
ot

= —(a(B)By) + (na(B)by) = (Va(B)b,)', )
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0By L,

e Db, + (15(B)By) (6)
(Ruzmaikin et al. 1988; Rogachevskii & Kleeorin 2001). Here
a prime denotes d/0z, a(B) is the total nonlinear « effect, 174(B)
and np(B) are the nonlinear turbulent magnetic diffusion co-
efficients of poloidal and toroidal mean magnetic fields, and
the nonlinear function V4(B) = [na(B) — np(B)](In B)’, with
B = |B|. These nonlinearities are specified and discussed in the
next section.

We adopt here the standard dimensionless form of the
galactic dynamo equations from Ruzmaikin et al. (1988); in
particular, length is measured in units of the disc thickness #,
time in units of #%/nt and B is measured in units of the equipar-
tition energy Beq = \/é?p U, a is measured in units of a, (the
maximum value of the hydrodynamic part of the « effect), the
nonlinear turbulent magnetic diffusion coefficients 14(B) and
ng(B) are measured in units of nr. We define R, = ha./nr,
R, = r(dQ/dr) h*/5r, and the dynamo number D = R,R,,
where [ is the maximum scale of the turbulent motions, Rm =
lu, /n is the magnetic Reynolds number. Also u, is the char-
acteristic turbulent velocity at the scale /, p is the gas density,
and the characteristic value of the turbulent magnetic diffusiv-
ity nt = lu. /3.

Throughout this paper, unless otherwise stated, we measure
magnetic field in units of the equipartition value. Here we as-
sumed that the background turbulence (i.e., the turbulence with
a zero mean magnetic field) is isotropic and has only velocity
fluctuations, even though a nonzero mean magnetic field can
be expected to produce an anisotropy of turbulence from the
generated magnetic fluctuations.

3. The nonlinearities

3.1. The nonlinear « effect

The total nonlinear « effect is given by

a(B) = o' + ™, (7

where o is the hydrodynamic part of the « effect, and @™ is the
magnetic part of the a effect. These quantities are determined
by the corresponding helicities and quenching functions, ¢,(B)
and ¢ (B). In particular, @' = y ¢y (B), @™ = x*(B)¢m(B) and
X' =-(/3)u - (Vxu)), x° = (t/12np){(b - (Vxb)) is related
with current helicity, where 7 is the correlation time of turbu-
lent velocity field and (u - (VXu)) is the hydrodynamic helicity.
Thus,

a(B) = x"¢v(B) + x“(B)pm(B), ®)
where the quenching functions ¢,(B) and ¢,,(B) are given by

¢u(B) = (1/T)[4¢m(B) + 3L(V8B)], )
$m(B) = (3/B°)(1 — arctan(B)/B) (10)
(see Rogachevskii & Kleeorin 2000), where 8 = V8B and

LB) = 1 -2 +28*In(1 + g72). Thus ¢(B) = 2/B°
and ¢n(B) = 3/8% for B > 1; and ¢y(B) = 1 — (6/5)8>
and ¢n(B) = 1 — (3/5)8% for § < 1. The function y°(B)

entering the magnetic part of the « effect is determined by the

dynamical equation (see Eq. (15)). Here " and x¢ are mea-
sured in units of «...

The function ¢,(B) describes conventional quenching of
the a effect. A simple form of such a quenching, ¢, = 1/(1 +
B?), was introduced long ago (see, e.g., Iroshnikov 1970). The
splitting of the total « effect into the hydrodynamic (a") and
magnetic (™) parts was first suggested by Frisch et al. (1975).
The magnetic part @™ includes two types of nonlinearity: the
algebraic quenching described by the function ¢,(B) (see e.g.
Field et al. 1999; Rogachevskii & Kleeorin 2000, 2001) and the
dynamic nonlinearity which is determined by Eq. (15).

3.2. Nonlinear turbulent magnetic diffusion coefficients
of the toroidal and poloidal mean magnetic fields

The nonlinear turbulent magnetic diffusion coefficients of
poloidal and toroidal mean magnetic fields n74(B) and np(B),
and the nonlinear function V4(B) = [14(B) — np(B)](In B)" are
given in dimensionless form by

na(B) = Aj(V2B) + (1/2)A2(B) ,
n8(B) = A1(V2B) — (1/2)Ax(B) + A2(V2B)

11

+(B/ V2)¥(V2p) (12)
Va(B) = [Ax(B) — Ax(V2B)

~(B/ V2)¥(V2B)1(In BY (13)
(see Rogachevskii & Kleeorin 2001), where Y(x) =
(d/dx)[A;(x) + (1/2)A2(x)], and
15(B) = (1/2)A(8) . (14)

The functions A;(8) and A,(B) are given by

3 9 arctan 8 ERTS 5
a9 = S5 o) g 5

1, 2] 2 5]
When 8 < 1 these functions are given approximately by
AB) = 1-@Q/5F . AB)=-(4/58,

and for 8 > 1 they are given by

AB) = 3n/58-4/58>, AxB)=-3n/58+14/56.

The asymptotic formulae for the functions n4(B), ng(B) and
Va(B) for B < 1 are

na(B) = 1-(6/5)8%, ns(B)=1-(18/5)8",
Va(B) = (12/5)8*(In BY

6
Ay(B) = —g[

and for 8> 1

3
na(B) = Wﬁmﬁ— D,
3r 1
np(B) = m@ - 75) ,
Va(B) = _3_71'(1 — > \/z)(lnB)' .

3 8
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The quenching of the a effect and the turbulent magnetic dif-
fusion are caused by the direct and indirect modification of the
electromotive force by the mean magnetic field. The indirect
modification of the electromotive force is caused by the effect
of the mean magnetic field on the velocity fluctuations (de-
scribed by the tensors (u;u;)) and on the magnetic fluctuations
(determined by the tensor (b;b)), while the direct modification
is due to the effect of the mean magnetic field on the cross-
helicity tensor (u;b ;) (see, e.g., Rogachevskii & Kleeorin 2000,
2001).

Our algebraic quenching model differs from that used
by Kichatinov (1991), Riidiger & Kichatinov (1993) and
Kichatinov et al. (1994). In these papers a modified second-
order correlation approximation was used for an originally
isotropic turbulence. In particular, the nonlinear terms in the
equations for the velocity and magnetic field fluctuations were
dropped from the onset. It was further assumed that v = n =
/., where v and 7 are respectively kinematic viscosity and
magnetic diffusivity, and /. and 7. are the correlation length
and time of the turbulent velocity field.

The approach used in our model is different (see
Rogachevskii & Kleeorin 2001), and uses a T-approximation
in the equations describing the deviation of the cross—helicity
tensor and the second moments of velocity and magnetic fields
from those of an originally (i.e. background) anisotropic turbu-
lence. In contrast to the often used second-order correlation ap-
proximation this does not totally ignore correlations of higher
than second-order, but considers their influence in a summary
way (i.e. the deviations of the third moments are expressed in
terms of those of the second moments in the T-relaxation form,
where 7 is the correlation time of the turbulent velocity field).
The 7T-approximation in this sense applies in the limit of high
hydrodynamic Reynolds numbers. In our algebraic quench-
ing model the turbulent magnetic diffusion coefficients for the
poloidal and toroidal mean magnetic field components, become
different (see Rogachevskii & Kleeorin 2001), which causes
new terms ocV4(B) to appear in the dynamo equations govern-
ing the nonlinear evolution of the mean magnetic field.

3.3. The dynamical equation for the function x(B)

The function y°(B) entering the magnetic part of the « effect is
determined by the dynamical equation

c 2
N _ —4(2) [EB+V-F]-V-[Vy
ot l
—kVx1 = x°/T,
where F = Cx'¢,(B)B*174(B)(Vp)/p is the nonadvective flux
of the magnetic helicity which serves as an additional nonlinear
source in the equation for ¢, Vx° is the advective flux of the
magnetic helicity and —«Vx° is the diffusive flux of the mag-
netic helicity (see Kleeorin & Rogachevskii 1999; Kleeorin
et al. 2000, 2002), V = e; Qr is the differential rotation, and
T = (1/3)(1/h)*>Rm. Equation (15) was obtained using argu-
ments based on the magnetic helicity conservation law (see
Kleeorin & Rogachevskii 1999). The function y° is propor-
tional to the magnetic helicity, y¢ = x™/(187nrp) (see e.g.

15)

Kleeorin & Rogachevskii 1999), where y™ = (a - b) is the
magnetic helicity and a is the vector potential of small-scale
magnetic field. Here we assume that the helical part of the vec-
tor potential a is a locally isotropic and homogeneous random
field, which is a natural gauge condition used in our approach.
Thus, Eq. (15) describes the evolution of magnetic helicity, i.e.
its production, dissipation and transport.

The turbulent diffusion of the magnetic helicity x plays an
important role and can be interpreted as follows. The random
flows existing in the interstellar medium consist of a combi-
nation of small-scale motions, which are affected by magnetic
forces resulting in a steady-state of the dynamo, and a micro-
turbulence which is supported by a strong random driver (su-
pernovae explosions) which can be considered as independent
of the galactic magnetic field. The large-scale magnetic field
is smoothed over both kinds of turbulent fluctuations, while
the small-scale magnetic field is smoothed over microturbulent
fluctuations only. It is the smoothing over the microturbulent
fluctuations that gives the coefficient .

For galaxies the relaxation term y¢/T is very small and can
be dropped in spite of the fact the small yet finite magnetic dif-
fusion is required for the reconnection of magnetic field lines.
For example, we will show below that the magnetic Reynolds
number, Rm, does not enter into the steady state solution of
Eq. (15) in the limit of very large Rm, because of the effect of
the magnetic helicity flux. In particular, keeping the term x¢/T
we obtain from Eq. (15) that in a steady state

@y + 7. Rm¢pn(B) [B - (VXB) — div Fy]

*= 1+ 1, Rm ¢u(B) B : (16)

where 7, = [/u, and Fy = F + Vy° —«kVy*© is the total flux of the
magnetic helicity. In the limit of very large Rm, Eq. (16) reads

B - (VxB) —div F;

a= .
B2

This implies that in this limit the total « is independent of the

magnetic Reynolds number.
In the local approximation Eq. (15) reads:

A7)

C

oy
ot

h 2
_ 4(7) [1a(B)(Bob, — Byb,) - a(B)B’

+C§Z(LYV(Z)|¢V(B)BZUA(B))] + k()Y (18)
Here we do not take into account any inhomogeneity of the
turbulent magnetic diffusion at B = 0. The turbulent magnetic
diffusion is inhomogeneous due to inhomogeneity of the mean
magnetic field B.

The turbulent magnetic diffusion «x of the magnetic helicity
(and the function x°) can depend on the mean magnetic field.
The nonlinear quenching of the turbulent magnetic diffusion of
the magnetic helicity is given by ¢.(B),

1 1
$(B) = ~ |1 +A( V2p) + S4a V2p)|. (19)

For 8 <« 1 we have approximately

3
¢(B) =1-3F,
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and for 8 > 1 we have

6.(B) = 1(1+ 3r )

) 2\ 10v28
The turbulent magnetic diffusion «(B) of the magnetic helicity
is determined by the tensor 7{(u;u;). Thus, Egs. (8), (11)-(13)
and (18) contain the main nonlinearities.

4. Equilibrium states of the local dynamo model

4.1. Asymptotic expansions and an equilibrium
solution

We now present asymptotic expansions for a galactic dynamo
model determined by Egs. (5), (6) and (18). For the aQ-
dynamo B = By. This assumption is justified if [D] > R,, i.e.
|R,| > 1. In a steady-state for fields of even parity with respect
to the disc plane, Egs. (5), (6) and (18) with x = 0 gives

[18(B)B']> + 2CD¢(B)na(B)B’lx" (2)| = 0. (20)
The solution of Eq. (20) for negative D is given by
B 1
[ 6#yas = vaciol [ Vi@ @1
0 Iz

where G(B) = ng(B)/[¢y(B)14(B)B?]1'/2. For an arbitrary pro-
file [¥V(2)|, negative dynamo number D and for B > 1/ V8,
there is an explicit steady solution of this equation with the
boundary conditions Bg(z = 1) = 0 and B;}(z =0)=0,

1
B ~ (2/5)C|DI( f| | @ dz)

where z is measured in the units of 4, and we have used that
for B> 1/ V8 we have na(B) ~ 2/5B, ng(B) ~ 3/58, ¢,(B) ~
2/B%. Here B = V8B.Ina steady state b,(z) = (ns(B)B’)’'/|D|.
For the specific choice of the profile |y"(z)| = sin’(7z/2) we
obtain

2
P

(22)

Q

4
By ==C|D| Beq cos? (%) s

25

1 nz
B, ~ ——B, cos2[= R
IR, ( 2 )

where we have now restored the dimensional factor Bey. The
boundary conditions for B, are B.(z = 1) = 0 and B(z = 0) =
0. Note, however, that our asymptotic analysis performed for
B > 1/ V8 is not valid in the vicinity of the point z = 1 because
B(z=1)=0.

(23)

R

(24)

4.2. Numerical solutions for the one-dimensional
model

We found solutions of Egs. (5), (6) and (18) by step by step
integration, from arbitrarily chosen initial conditions. Various
properties of the solutions for the mean magnetic field and the
z-profiles of the main nonlinearities — the a—effect, turbulent
magnetic diffusion of the toroidal and poloidal fields — are illus-
trated in Figs. 1-6. It can be seen clearly that the field strength

(~|Byl) is typically of order 1 (equipartition), and increases
with |D].

New features were found in comparison with the results of
Kleeorin et al. (2002), where the quenching of the turbulent
magnetic diffusion was not taken into account. In particular,
the maximum of the toroidal magnetic field for |D| > 40 is
not located at z = 0 but is shifted to z = 0.5k (see Figs. la
and 3a). The equipartition toroidal field is attained for smaller
values of the dynamo numbers and parameter C than in the
model studied by Kleeorin et al. (2002). The reason is that
the asymptotic behavior of the steady-state solution is differ-
ent in these two cases: in the present study By oc C|D| Beq (see
Eq. (23)) whereas when the quenching of the turbulent mag-
netic diffusion vanishes we have By oc V/C D] Bq (see Eq. (18)
in Kleeorin et al. 2002). Note that for galaxies reasonable esti-
mates are |[D| ~ 10 —-30, |C| ~ 0.1 and « ~ 0.3 —0.5. With these
parameters the present model gives toroidal field strengths of
about the equipartition value.

Figure 2c demonstrates the change of sign of the effective
drift velocity with z, so that in one part of the disc it is dia-
magnetic, and in the other it is paramagnetic. A diamagnetic
velocity implies that the field is pushed out from regions with
stronger mean magnetic field, while a paramagnetic velocity
causes the magnetic field to be concentrated in regions with
stronger field.

Figure 6 shows the solutions for different values of the
turbulent diffusion « of the magnetic helicity. It is apparent
from Fig. 6 that the magnitude of the saturated toroidal mag-
netic field increases with k. The reason is clear; the increase of
this parameter increases the flux of the magnetic helicity, and
causes a decrease of the magnetic part of the a—effect, thus in-
creasing the total a—effect.

When comparing the numerical and asymptotic solutions
we need to take into account that the asymptotic solution (23)—
(24) was obtained only for k = 0. Thus such a comparison can
only be performed for very small values of . If we compare the
field By at z = 0 for, e.g., C = 0.1 and « = 0.05 we find that the
difference between the asymptotic and numerical solutions is
about 15 percent when D = —100. The novel feature, the maxi-
mum of the toroidal field By at z > 0 rather than z = 0, appears
in the numerical solutions for x > 0.1, and is not described in
the framework of the above asymptotic analysis. Note also that
a discrepancy between the numerical and asymptotic solutions
is perhaps not so surprising even for large values of |D|, as re-
lation (24) diverges near z = 1.

In order to separate the study of the algebraic and
dynamic nonlinearities we define a function Dy(B)/D =
¢u(B)/[na(B)ng(B)], using only the hydrodynamic part of the
@ effect. Thus, for B > 1/ V8 the function Dy(B)/D is a
nonzero constant, because then n4(B) ~ 2/58, ng(B) ~ 3/58,
éo(B) ~ 2/B2, with B = V8B. The saturation of the growth
of the mean magnetic field in the case with only an algebraic
nonlinearity present can be achieved when the derivative of the
function dDy/(B)/dB < 0. Thus, taking into account quenching
of the turbulent magnetic diffusion we find that the algebraic
nonlinearity alone (i.e. quenching of both the @ effect and tur-
bulent magnetic diffusion) cannot saturate the growth of the
mean magnetic field because dDy(B)/dB — 0 for B > 1/ V3.
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Fig.1. The z-dependence of solutions for the local model; 4/l = 5;
C =-0.1,xk=0.3and [y (2)| = sin?(zz/2). The various curves indi-
cate results with dynamo numbers D = —20 (dashed-dotted), D = —40
(dashed) and D = —100 (solid). a) The toroidal magnetic field By(z),
b) the poloidal magnetic field B,(z), ¢) the total a-effect, a(z).

We will show here that the combined effect of the algebraic
and dynamic nonlinearities limits the growth of the mean mag-
netic field. The dynamic nonlinearity is determined by Eq. (18)
for y¢. We introduce the parameter Dy(B)/D = a(B)/[a(B =
0)n4(B)nnp(B)] which characterizes both the algebraic and dy-
namic nonlinearities, while the parameter Dy(B)/D charac-
terizes only the algebraic nonlinearity. The saturation of the
growth of the mean magnetic field is achieved when the deriva-
tive of the nonlinear dynamo number satisfies dDy(B)/dB < 0.
We see in Fig. 7 that this condition is satisfied. However, we
see also that dDy(B)/dB > 0. This implies that the algebraic
nonlinearity alone (i.e. quenching of both the « effect and tur-
bulent magnetic diffusion) cannot saturate the growth of the
mean magnetic field. The same follows from the above asymp-
totic analysis.

5. Simple models with radial extent

Detailed numerical modelling of galactic dynamos is quite a
complicated numerical problem. Dynamo models with conven-
tional @-quenching are however very robust and allow drastic
simplifications that nevertheless reproduce adequately the ba-
sic features of galactic magnetic field structure as reflected in
the observational data. The aim of this section is to discuss to
what extent these simplified models are comparable with the
quenching discussed above.

nA
1,

0.5¢

0.8 z
Fig.2. As Fig. 1. The functions: @) 174(2), b) n5(2), ¢) Va(2).

0.4 0.6

0.2

The basic no-z dynamo model for disc galaxies has proved
to be a useful tool for studying dynamo action in these objects,
and is described in Moss (1995). Here we also include the tun-
ing suggested by Phillips (2001), namely the multiplication by
factors f = n?/4 of the terms representing the z-diffusion of B,
and By. The no-z model differs from the local model of Sect. 2.1
in that it describes magnetic fields over the entire radial range,
0 < r < R, but all explicit dependence on the vertical coor-
dinate z has been removed, with the first-order z-derivatives
being replaced by 1/h and the second-order z-derivatives be-
ing replaced by —f/h?. The field components B,, By appearing
in the no-z equations can either be thought of as representing
mid-plane values, or as some sort of vertical average of values
through the disc.

For the no-z model in the axisymmetric case the mean-field
dynamo equations take the form
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and A = h/R is the aspect ratio, R, = A @y h/no, A;l =|V,pl/p
and 79 is the maximum (unquenched) value of r. The quench-
ing functions ¢y, ¢m, 174, np and ny contain in their arguments
the factor 1/+jo because they are based on local equipar-
tition at radius r. To determine the magnetic field distribu-
tion along the radius we use a Brandt rotation law, Q(r) =
Qo/[1 + (r/ry,)*1'/* with r,, = 0.2, and the radial density profile
p(r) = exp[—(r/r,)*] with r, = 0.5, so that A, = 2r/r;. We also
set yV(r) = 1.

When comparing the no-z model with the local thin-disc
model studied in the earlier parts of this paper, note that in the
local thin-disc model, R, = rh*n;'dQ/dr < 0. By the nature of

TlA
l,

0.57

- <,

02 04 06 08 2

Fig.4. As Fig. 2, with C = 0.1.

the model, rdQ/dr is the value at a chosen radius in the disc,
and r does not further occur explicitly in the analysis. However
the no-z model is global with respect to radius, and the value
of rdQ/dr varies through the disc, from zero at » = 0 to some
maximum absolute value; for the Brandt rotation law this value
is 0.31Qq at r = /2/3r,,. For the no-z model the global defi-
nition is R, = R,(no — z) = Qoh*/nt > 0. Less importantly,
there are also small differences, of order 25%, in the effective
values of R, occurring in the two approximations, even though
the formal definitions are the same — see Phillips (2001).

We investigated solutions to these no-z equations for a
range of parameter values. However we were unable to obtain
satisfactory convergence to finite solutions without including a
contribution to the diffusivity that was not quenched. Our feel-
ing is that the simplest form of the no-z formalism may not be
sufficiently robust to allow inclusion of the full n-quenching
formalism described above. This is in sharp contrast to the sit-
uation without the inclusion of n-quenching (Kleeorin et al.
2002), when satisfactory solutions with approximately equipar-
tition strength fields were readily obtained.

However, given the evidently satisfactory behavior of the
local model presented in Sect. 4, it is apparent that extension
to the radial range 0 < r < R in the manner described by
Ruzmaikin et al. (1988, Ch. 7) would present no difficulties
in principle, nor new features.

We note that Elstner et al. (1996) also were unable
to find steady solutions in a global model (with algebraic
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Fig.5. The z-dependence of solutions for the local model; 4/l = 5;
C = 0.1, D = —40 and |y*(z)| = sin*(nz/2). The various curves in-
dicate results with x = 0.05 (dashed-dotted), k = 0.1 (dashed) and
k = 0.3 (solid). a) The toroidal magnetic field By(z), b) the poloidal
magnetic field B,(z), ¢) the function y°(z).

alpha-quenching) when n-quenching was included (Elstner,
private communication).

6. Discussion and conclusions

In this paper we present a more detailed description of a nonlin-
ear galactic dynamo, that includes quenching of the turbulent
diffusivity of the magnetic field in addition to the effects con-
sidered in our previous paper (Kleeorin et al. 2002). We find
that as far as the model leads to results that are comparable with
observations, these results are similar to those obtained from
conventional galactic dynamo models, with large-scale mag-
netic fields typically of equipartition strength, and with plau-
sible values of the pitch angles. We confirm the conclusion of
Kleeorin et al. (2002) that from a pragmatic point of view con-
ventional models of nonlinear galactic dynamos are quite ad-
equate to reproduce the directly observable manifestations of
galactic dynamo action.

Our approach is based on first principles as far as is pos-
sible in the framework of mean-field dynamo theory, and re-
sults in the conclusion that the self-consistent form of dynamo
saturation is much more complicated than is suggested in con-
ventional models for a galactic dynamo. We have demonstrated
the important role of two types of nonlinearity (algebraic and
dynamic) in the mean-field galactic dynamo. The algebraic

-0.02¢

—-0.04¢

0.2 0.4 0.6 0.8 z

Fig.6. The z-dependence of solutions for the local model; A/l = 5;
C = -0.1, D = —40 and |x'(2)| = sin’(7z/2). The various curves
indicate results without x-quenching for k = 0.1 (dashed) and « =
0.3 (solid) and with «x-quenching for x = 0.3 (dashed-dotted). a) The
toroidal magnetic field By(z), b) the poloidal magnetic field B,(z), ¢)
the function y°(z).

nonlinearity is determined by a nonlinear dependence of the
mean electromotive force on the mean magnetic field. The dy-
namic nonlinearity is determined by a differential equation for
the magnetic part of the a-effect. This equation is a conse-
quence of the conservation of the total magnetic helicity. We
have taken into account the algebraic quenching of both the a
effect and the turbulent magnetic diffusion, and also dynamical
nonlinearities (see e.g. Rogachevskii & Kleeorin 1999, 2000,
2001). Since the quenching of the « effect and the turbulent
magnetic diffusion have the same origin (i.e. the direct and
indirect modification of the electromotive force by the mean
magnetic field), they cannot in general be taken into account
separately. This implies there is no reason to include o quench-
ing and to ignore the quenching of the turbulent magnetic dif-
fusion, or vice versa.

We have also verified that the algebraic nonlinearity alone
(i.e. quenching of both the « effect and turbulent magnetic dif-
fusion) cannot saturate the growth of the mean magnetic field.
The situation changes when the dynamic nonlinearity is taken
into account. The crucial point is that the dynamical equation
for the magnetic part of the a-effect (i.e. the dynamic nonlinear-
ity) includes the flux of magnetic helicity. Without this flux, the
total magnetic helicity is conserved locally and the strength of
the saturated mean magnetic field is very small compared to the
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Fig.7. The dependencies of Dy(B)/D = a(B)/[a(B = 0)na(B)ns(B)]
(solid) and Dy(B)/D = ¢,(B)/[na(B)ns(B)] (dashed) on the mean
magnetic field for the local model; i/l = 5; C = —-0.1; k = 0.3; with
different D: a) D = —20; b) D = -40; ¢) D = —100.

equipartition strength. The inclusion of a magnetic helicity flux
means that the total magnetic helicity is not conserved locally
because the magnetic helicity of small-scale magnetic fluctua-
tions is redistributed by the helicity flux. In this case an integral
of the total magnetic helicity over the disc is conserved. The
equilibrium state is given by a balance between magnetic he-
licity production and magnetic helicity transport (see Kleeorin
et al. 2002). Thus, the combined effect of algebraic and dy-
namic nonlinearities limit the growth of the mean magnetic
field and results in an equilibrium strength of the mean mag-
netic field which is of order that of the equipartition field, in
agreement with observations of galactic magnetic fields.

We find, perhaps quite naturally, that when including new
physically significant effects we obtain less robust models. In
particular we have been unable to find even one-dimensional
models with radial extent. We feel that this is plausibly a short-
coming of the rather heuristically derived and pragmatically
validated no-z approximation, which just may not be adequate
to describe the dynamical evolution of @. On the other hand, as
noted above Elstner et al. (1996) also encountered difficulties
when including 7-quenching in a rather different two dimen-
sional model. The limitations of simulations with such models
are connected not only with purely numerical problems, which
are however more severe than for conventional galactic dy-
namo simulations. In order to reproduce the detailed evolution

of helicity and turbulent diffusivity there is the necessity for a
deeper description of the real multiphase structure of the inter-
stellar medium, and the physical processes that result in the de-
velopment of helical interstellar turbulence, than the standard
description used in present-day models. Of course, the corre-
sponding development of mean-field dynamo theory required
to achieve this goal is far beyond the ambitions of this paper.
Certainly our model does not pretend to model all possible sce-
narios of dynamo action —e.g. driving by larger-scale magnetic
instabilities or by the possible collective effects of supernovae
are outside of the scope of our theory. These are certainly im-
portant questions, but the situation is here currently unclear.
We emphasize that direct numerical simulations of interstellar
turbulence (see e.g. Korpi et al. 1999), followed by estimations
of the appropriate mean-field dynamo control parameters, are
very desirable and even essential in this context.
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