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Abstract. We demonstrate that the inclusion of the helicity flux
in the magnetic helicity balance in the nonlinear stage of galac-
tic dynamo action results in a radical change in the magnetic
field dynamics. The equilibrium value of the large-scale mag-
netic field is then approximately the equipartition level. This
is in contrast to the situation without the flux of helicity, when
the magnetic helicity is conserved locally, which leads to sub-
stantially subequipartition values for the equilibrium large-scale
magnetic field.
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1. Introduction

The large-scale magnetic fields of galaxies are thought to be
generated by a galactic dynamo due to the simultaneous action
of the helicity of interstellar turbulence and differential rotation
(see, e.g., Ruzmaikin et al. 1988). The kinematic stage of the
galactic dynamo, i.e. the evolution of a weak magnetic field with
negligible influence on the turbulent flows, seems to be clear,
while the nonlinear stage of dynamo evolution is a topic of in-
tensive discussions (for reviews, see Beck et al. 1996, Kulsrud
1999). The most contentious issue is the question of the equilib-
rium magnetic field strength at which dynamo action saturates.

A naive viewpoint is that the saturation level for thelarge-
scalemagnetic field is given by the equipartition between kinetic
energy and the energy of the large-scale magnetic fieldB (see,
e.g., Zeldovich et al. 1983). The motivation is that the equations
describing large-scale dynamo action contain the mean, but not
the total, magnetic field. This naive outlook leads to models of
dynamo generated magnetic fields which are in basic agreement
with the available observational information.

Vainshtein and Cattaneo (1992) formulated a more sophisti-
cated argument, suggesting that the equilibrium magnetic field
should be determined by a balance between the kinetic energy
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and the energy of thetotal magnetic field. The simplest models
of dynamo generation then result in the estimateb/B ∼ Rm1/2,
where b is the small-scale magnetic field, and the magnetic
Reynolds numberRm ≈ 108 for the interstellar turbulence
(or even much larger if a microscopic diffusivity instead of am-
bipolar diffusion is used; cf. Brandenburg & Zweibel, 1995).
Thus the ideas of Vainshtein and Cattaneo lead to the conclu-
sion that a dynamo generated large-scale galactic magnetic field
must be negligible in comparison with that observed, and so the
generation of the observed field must be connected with another
mechanism. However, no other general and realistic mechanism
for galactic magnetic field generation is currently available.

The arguments of Vainshtein and Cattaneo do not seem in-
evitable. For example, a dynamo generated magnetic field can
itself produce helicity, so the nonlinear effects can even am-
plify rather than suppress field generation at the initial stages
of nonlinear evolution (Parker 1992, Moss et al. 1999); other
suggestions are discussed by, e.g., Beck et al. (1996), Kulsrud
(1999), Field et al. (1999) and Blackman & Field (1999). In par-
ticular, Blackman & Field (2000) argue that theRm-dependent
quenching seen in the simulations of Cattaneo & Hughes (1996)
is a consequence of helicity conservation when using closed or
periodic boundaries, while simulations with open boundaries
by Brandenburg & Donner (1997) (see also Brandenburg 2000)
do not show this effect.

The aim of this letter is to demonstrate that with open bound-
aries the scenario of Vainshtein and Cattaneo results in basically
the same estimate for the equilibrium magnetic field strength as
is given by the naive viewpoint.

The essence of our arguments can be presented as follows.
According to Vainshtein and Cattaneo, the suppression of dy-
namo action by the small-scale magnetic field that is generated
together with the large-scale is connected with the magnetic
helicity of the small-scale magnetic field. Because the total
magnetic helicity is an inviscid invariant of motion, the mag-
netic helicity of the small-scale magnetic field can be connected
with the magnetic helicity of the large-scale magnetic field. The
governing equation for magnetic helicity has been proposed
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by Kleeorin and Ruzmaikin (1982; see the discussion by Zel-
dovich et al., 1983), investigated by Kleeorin et al. (1995) for
stellar dynamos, and self-consistently derived by Kleeorin and
Rogachevskii (1999). During nonlinear stages of the dynamo,
theα-effect is thought to be determined by the hydrodynamic
and magnetic helicities, so a closed system of equations can
be obtained for the evolution of the magnetic field and theα-
coefficient (see below, Sect. 2). This governing system (with
helicity locally conserved) leads to magnetic field behaviour
which is consistent with the prediction of Vainshtein and Catta-
neo (we are grateful to M. Reshetnyak, who provided us with the
relevant numerical results, which will be published elsewhere).

We stress that Eq. (4) takes into account the local helicity
balance at a given point inside the galactic disc|z| < h, r < R,
wherer, ϕ, z are cylindrical coordinates. However, the kine-
matic galactic dynamo is impossible without a turbulent flux
of magnetic field through the surface|z| = h (see, e.g., Zel-
dovich et al. 1983, Ch. 11). It is more than natural to believe
that this flux can transport magnetic helicity to the outside of
the disc. The methods of Kleeorin and Rogachevskii (1999) al-
low us to introduce the corresponding term into the governing
equations for the galactic dynamo. We demonstrate by numer-
ical simulations, and to some extent analytically, that this term
leads to a drastic change in the magnetic field evolution. Now
the steady-state large-scale magnetic field strength is approxi-
mately in equipartition with the kinetic energy of the interstellar
turbulence.

2. Equations for magnetic helicity

Following Kleeorin and Ruzmaikin (1982), we parameterize the
back-reaction of dynamo generated magnetic field in terms of
a differential equation for theα-coefficient, using arguments
from the magnetic helicity conservation law. It is necessary to
introduce the large-scale vector potentialA, small-scale vector
potentiala, and the corresponding representations for the mag-
netic fields,B andb. We then write the total magnetic field
asH = B + b, and the total vector potential asA = A + a,
thus decomposing the fields into mean and fluctuating parts. The
equation for the vector potentialA follows from the induction
equation for the total magnetic fieldH

∂A/∂t = v × H − η curlH + ∇ϕ , (1)

wherev = V+u, andV = 〈v〉 is the mean fluid velocity field,
η is the magnetic diffusion due to the electrical conductivity of
the fluid,ϕ is an arbitrary scalar function. Now we multiply the
induction equation for the total magnetic fieldHbyaand Eq. (1)
byb, add them and average over the ensemble of turbulent fields.
This yields an equation for the magnetic helicityχh = 〈a · b〉
in the form

∂χh/∂t + ∇ · F = −2〈u × b〉 · B − 2η〈b · curl b〉 , (2)

where F = (2/3)Vχh + 〈a×(u × B)〉 − η〈a×curl b〉 +
〈a×(u × b)〉 − 〈bϕ〉 is the flux of magnetic helicity. The elec-
tromotive force for isotropic and homogeneous turbulence is

〈u × b〉 = αB − ηT curlB, (3)

whereηT is the turbulent magnetic diffusivity, and it is assumed
thatα is the total alpha-effect which at the nonlinear stage in-
cludes both the original hydrodynamical, and the magnetic, con-
tributions. Note that the magnetic part of theα effect is propor-
tional to the magnetic helicity, i.e.αh = χh/(18πηT ρ) (see,
e.g., Kleeorin and Rogachevskii, 1999), whereρ is the density.
The simplest form of the magnetic helicity flux for an isotropic
turbulence is given byF = Vχh, whereV is the mean fluid
velocity, e.g. that of the differential rotation (see Kleeorin and
Ruzmaikin, 1982; Kleeorin and Rogachevskii, 1999). Thus, the
equation for the magnetic part of theα effect in dimensionless
form is given by

∂αh

∂t
+

αh

T
+∇·(Vχh) = 4(h/l)2(R−1

α B · curlB−αB2), (4)

(see Kleeorin and Ruzmaikin, 1982), wherel ≈ 100 pc is the
scale of turbulent motions. We adopt here the standard dimen-
sionless form of the galactic dynamo equation from Ruzmaikin
et al. 1988; in particular, the length is measured in units of the
disc thicknessh, the time is measured in units ofh2/ηT andB
is measured in units of the equipartition energyBeq =

√
4πρ u.

Here u is the characteristic turbulent velocity in the scalel,
ηT = lu/3, T = (1/3)(l/h)2Rm andRα = lα∗/ηT , where
αh andα are measured in units ofα∗ (the maximum value of
the hydrodynamic part of theα effect). For an axisymmetric
dynamo∇ · (Vχh) = 0.

When∂αh/∂t = 0 andR−1
α B · curlB � αB2, Eq. (4)

yields α = αv/[1 + (4/3)RmB2] (see, e.g., Vainshtein and
Cattaneo, 1992). However, the latter equation is not valid for
galaxies because∂αh/∂t � αh/T . In addition, the condition
R−1

α B · curlB � αB2 seems not to be valid for galaxies.
Eq. (4) has been later reproduced, e.g. by Gruzinov and Di-

amond (1995). However, although this equation has never been
included into detailed galactic dynamo calculations, neverthe-
less its qualitative properties are more or less clear. Provided
that dissipative losses are taken into account, Eq. (4) leads to
the same type of behaviour as that obtained by thead hocpre-
scription of the result of Vainshtein and Cattaneo (1992), i.e.
the steady state strength of magnetic field is aboutBeqRm−1/2

(see, e.g. Field, 1999). The real advantage of Eq. (4) is the fact
that it is derived from first principles rather than prescribedad
hoc. If the dissipative losses in Eq. (4) are neglected, the mag-
netic field decays fort → ∞. We stress that Eq. (4) contains a
large factor4(h/l)2 ∼ 100 typically.

Kleeorin and Rogachevskii (1999) extended the calculations
to include a flux of magnetic helicity. Based on Eq. (13) of that
paper, the approximate relation

∂αh

∂t
= 4

(
h

l

)2

[(B · curlBR−1
α − α(B)B2)

+
∂

∂z
(αv(z)φ(B)B2hf1(z))] (5)

can be formulated. In Eq. (5),f1(z)describes the inhomogeneity
of the turbulent diffusivity, and we definef(z) = αv(z)f1(z).
The profilef(z) depends on details of the galactic structure.
Also, α(B) is the totalα effect andα = αvφ(B) + αhφ1(B),
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whereB = |B|. Hereαv is the hydrodynamic part of theα
effect, withαvφ(B) its modification due to nonlinear effects.
Correspondingly,αh is the magnetic part of theα effect, and
αhφ1(B) is the modification caused by nonlinear effects (see
Rogachevskii and Kleeorin, 2000).φ1(B) = (3/8B2)(1 −
arctan(

√
8B)/

√
8B) and the functionφ(B) is defined below.

The magnetic part of theα effect is proportional to the mag-
netic helicity, i.e.,αh = χh/(18πηT ρ) (see, e.g., Kleeorin and
Rogachevskii, 1999). For galaxies the termαh/T is very small
and can be dropped. The gauge conditions∇ · A = ∇ · a = 0
have been used; our results can be shown to be gauge invariant
(see Berger and Ruzmaikin, 2000).

The last term in Eq. (5) is related to the turbulent flux of
magnetic helicity. This turbulent flux is proportional to the hy-
drodynamic part of theα effect and the turbulent diffusivity
(see Kleeorin and Rogachevskii, 1999). The turbulent flux of
magnetic helicity serves as an additional nonlinear source in
the equation for the magnetic part of theα effect and it causes a
drastic change in the dynamics of the large-scale magnetic field.

For simplicity we replace the flux divergence in the right
hand side of Eq. (5) by a decay term, i.e. we replace∂

∂z by 1/h
(in principle, there is no problem in treating this point more
carefully).

3. The equilibrium magnetic field configuration

We now present some asymptotic expansions for galactic dy-
namo models with the nonlinearity (5). First of all, we recognize
that, because of the large parameter4(h/l)2 in the right hand
side of Eq. (5), we can take

α(B) = f(z)φ(B) + R−1
α B−2B · curlB, (6)

where

φ(B) =
3

14B2

(
1 − arctan(

√
8B)√

8B

+ 2B2[1 − 16B2 + 128B4 ln(1 + (8B2)−1)]
)

.

Thusφ(B) = 1/(4B2) for B � 1/
√

8 andφ = 1− (48/5)B2

for B � 1/
√

8. The functionφ is derived by Rogachevskii
and Kleeorin (2000). Note that in a more simplified model
of turbulence the functionφ(B) = φ1(B) = (3/8B2)(1 −
arctan(

√
8B)/

√
8B) (see Field et al. 1999). We stress that the

qualitative behaviour of the model does not depend on these
uncertainties in estimates for the scaling functionsφ andφ1.

Now we insert theα-coefficient given by Eq. (6) into local
disc dynamo problem to obtain the following equations:

∂br

∂t
= −(α(B)Bφ)′ + b′′

r , (7)

∂Bφ

∂t
= Dbr + B′′

φ (8)

(hereBr = Rαbr). We can then obtain the steady-state solution
of Eqs. (7) and (8). Recognizing that in cylindrical coordinates

B · curlB = Rα(Bφb′
r − brB

′
φ), (9)

we obtain for fields of quadrupole symmetry (cf. Kvasz et al.,
1992)

B′′′
φ + Dα(B)Bφ = 0 (10)

in a steady state. The corresponding equation in kinematic the-
ory reads

B′′′
φ + Dα0Bφ = 0. (11)

Substituting (6) into (10) we obtain,

B′′′
φ B2 + DBφ[f(z)φ(B)B2 + R−1

α B · curlB] = 0. (12)

Using Eq. (9) we rewrite Eq. (12) in the form

B′′′
φ (B2 − B2

φ) + Bφ[B′′
φB′

φ + Df(z)φ(B)B2] = 0. (13)

For theαΩ dynamoB ≈ Bφ. This assumption is justified if
|D| >> Rα, i.e. |Rω| >> 1. Eq. (13) then becomes

B′′B′ + Df(z)φ(B)B2 = 0, (14)

Note that Eq. (14) differs from Eq. (11), arising from kinematic
theory. For the specific choice of helicity profilef(z) = sinπz
and negative dynamo numberD, there is an explicit steady so-
lution, if we assumeB2 ≈ B2

φ (remember that alsoB � 1/
√

8,
i.e. super-equipartition), of the form

Bφ =
2
√|D|
π3/2 Beq cos

πz

2
, (15)

Br = −
√

πRα

2
√|Rω|Beq cos

πz

2
, (16)

where we have restored the dimensional factorBeq. (Note that
B · curlB = 0 for this approximate solution.) This solution
is remarkably close to the results from the naiveAnsatzα =
α0(1−(B/Beq)2) orα = α0/(1+(B/Beq)2), or the model of
Moss et al. (1999). For example, the pitch angle of the magnetic
field lines isp = −arctan (π2/4|Rω|) ≈ 14◦ for |D| = 10 and
Rα = 1.

4. Numerical results

We verified numerically that the initially weak magnetic field
approaches the equilibrium configuration (15) with accuracy
1% for |D| > 1000, and an accuracy of50% for |D| > 10. As
is anticipated in the previous section, the equilibrium magnetic
field near to the generation threshold value is more complicated.
The threshold value for the nonlinear solution of Eqs. (7) and
(8) isD ≈ −3.14, while the linear threshold value isD ≈ −8.
This is because the nonlinear solution arranges itself so that the
termB · curlB/B2

φ in α (see Eq. (6)) is of order 1. Thus, for
the nonlinear solution withD = −8, the maximal value ofα is
about 1.25, whereas forD = −5, the maximal value is about
1.76. For|D| <∼ 10 we obtain numerically

Bφ(0) ≈ 0.23|D − Dcr|0.52, (17)

whereDcr is the nonlinear threshold value. As|D − Dcr| in-
creases towards 10, the slope increases slightly, but Eq. (17)
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remains a reasonable estimate. (Note that accurately estimating
the exponent in Eq. (17), and subsequently, is a quite delicate
matter even in this one-dimensional problem, and that the quoted
figures may be uncertain in the last digit.)

This result is robust under variations of the helicity pro-
file. For f(z) = z we get in the nonlinear caseDcr =
−7.49, while the linear threshold value isDcr = −12.5 and
Bφ(0) ≈ 0.15|D − Dcr|0.50 near D = Dcr, i.e. again a
square root dependence to within the errors of our procedure.
Further, withf(z) = z/|z| in |z| > 0.2, and a smooth in-
terpolation to zero in|z| ≤ 0.2, we find Dcr ≈ −2.41 and
Bφ(0) ≈ 0.25|D − Dcr|0.50, again closely the same depen-
dence. (In this case the linear threshold value isDcr = −6.53.)

5. Discussion

We have demonstrated that the nonlinear evolution of the he-
licity following from Eq. (4) gives a basically different type of
galactic magnetic field evolution to that following from Eq. (5).
Eq. (4), being based on local helicity conservation, results in
magnetic field decay, after a stage of kinematic growth. If the
molecular diffusivity of the magnetic field is taken into account,
this decay is followed by a stabilization at a very low magnetic
field strength, corresponding to the estimate of Vainshtein and
Cattaneo (1992). The scenario of magnetic field and helicity dy-
namics can then be described as follows. Large-scale dynamo
action produces large-scale magnetic helicity. Due to the local
conservation of helicity, suppression of field generation results.
An equilibrium is possible if molecular diffusivity is present, so
the equilibrium magnetic field strength is very low.

Eq. (5) allows for the transport of helicity, so the local
value of the helicity changes during magnetic field evolu-
tion. The scenario of magnetic field and helicity dynamics
can be presented as follows. As usual, magnetic helicity
of the large-scale magnetic field is produced, however the
total magnetic helicity is not now conserved locally, but
the magnetic helicity of the small-scale magnetic field
is redistributed by a helicity flux. The equilibrium state
is given by a balance between helicity production and
transport. The helicity conservation law now expresses the

conservation of an integral of the helicity over the galactic disc.
However this conservation law is trivial, because the integral
vanishes identically as helicity is an odd function with respect
to z. Now the equilibrium strength of the large-scale magnetic
field is of order that of the equipartition field: this is our main
result.
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