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Abstract. As was previously shown (Kleeorin et al. 1990;
Kleeorin & Rogachevskii 1994a), small-scale magnetohydro-
dynamic (MHD) turbulence results in modification of the Am-
pere law, by significantly reducing the elasticity of the magnetic
field lines. As a result, the ‘effective’ magnetic pressure is re-
duced and may even reverse its sign. We show here that this
modification can be related to a variety of phenomena observed
in the Sun and in particular the following four are investigated:
the 11-year variations of the solar radius, the torsional oscilla-
tions and the meridional flows, the solar short time oscillations
and the large-scale magnetic flux ropes formation in convective
zones of the Sun (as well as in stars and spiral galaxies).

Key words: turbulence — magnetohydrodynamics (MHD) — in-
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1. Introduction

Under consideration are the 11-year variations of the solar ra-
dius, the torsional oscillations and the meridional flows, the so-
lar short-time (1-100 minutes) oscillations and the large-scale
magnetic flux ropes formation in convective zones of the Sun.

These different phenomena are assumed to be related to the
reduction of the elasticity of the large-scale regular (mean) mag-
netic field by the developed magnetohydrodynamic (MHD) tur-
bulence of the solar convective zone. It was found (see Kleeorin
et al. 1990, Kleeorin & Rogachevskii 1994a) that the effective
mean Ampere force in the presence of small-scale developed
MHD turbulence is strongly modified. In particular, the effec-
tive mean Ampere force is given by

Felf = _V<Q£BZ> + LB VB, (D
87 47
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where the functions @), and @, in the case ep < 1, (R;‘n)‘%
are given by

4 N PNV
Qp ~ 1- Eln(Rm)+ 7[(Rm)3 — lleg,
8 16 . .
Qs = 1= = In(Ry)+ 2[Ry — lep
(see Kleeorin et al. 1990). Here eg = 4C%/u3, Ca =
B/\/4mp is the Alfven velocity, R} = A.Rp,, Rp, =

uolo/Mm is the magnetic Reynolds number, A, = 0.1-0.5, Iy
is the maximal scale of turbulent motions, ug is the characteristic
turbulent velocity, 7, is the molecular magnetic diffusion.

Before turning to the investigation of the solar oscillations
and the flux ropes formation a qualitative discussion of the sign
reversal of the ‘effective’ magnetic pressure is presented (Klee-
orin et al. 1990). Let us consider fully developed MHD turbu-
lence with Re > 1 and R,, >> 1, where Re = ugly/vyp is the
Reynolds number, vy is the kinematic viscosity. For isotropic
turbulence the equation of state is given by

pr =W+ 5 W @
(see, e.g., Landau & Lifshitz 1975; 1984a). Here pr is the to-
tal (hydrodynamic plus magnetic) turbulent pressure, W,, =
(h?)/87 is the energy density of the magnetic fluctuations,
Wi = {pu?)/2 is the energy density of the turbulent hydro-
dynamic motion, u and h are the random fluctuations of the
hydrodynamic and magnetic fields, and p is the density of the
conducting fluid. The angular brackets denote averaging over
the ensemble of turbulent fluctuations.

The equation that describes the evolution of the total energy
density Wp = Wy, + W,,, of the homogeneous turbulence with
a mean magnetic field B is given by (see Appendix A):

oW % B?
Wr _, _Wr +77TA(——> , 3)
T Y8

where 7 is the correlation time of the turbulence in the scale
lo. The second term in (3) W /7 determines the dissipation of
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the turbulent energy. For a given time-independent source of
turbulence I the solution of Eq. (3) is given by

= [ (Z)](1- oot )

~ t
+ Wr exp{—;}

where W1 = Wr(t = 0). Note that a time-independent source
of the turbulence exists, for example, in the Sun.
In the absence of the mean magnetic field and for ¢ >> 7 the
solution of Eq. (3) yields
W = (PWOP) | (O
2 8

where u®) and A are the turbulent velocity and the turbulent
magnetic field in a medium with zero mean magnetic field. The
mean nonuniform magnetic field yields an additional source of
the density energy of the turbulence: nrA(B?/87). Now we
estimate the ratio of the two sources of turbulence

nrAB/EOl 1L\ (B /() _
Ir ~ 3\ Lo 8T 2 ’

=IT7-a

where Ly is the characteristic scale of the mean magnetic field.
Since lp < Lo and B%/81 < (pu3)/2 we can neglect the
small magnetic source of the turbulence. Therefore, for ¢ > 7
the total energy density of the turbulence reaches a stationary
value Wr = const = Ip7. It depends very weak by on the
mean magnetic field B. Therefore, the total energy density Wr
of the homogeneous turbulence with mean magnetic field can
be regarded as conserved (the dissipation is compensated by a
supply of energy), i.e

Wy + W, = const. 4

For a statistically homogeneous medium it is equivalent to the
conservation of the total turbulent energy. Note that the uniform
large-scale magnetic field performs no work on the turbulence.
It can only redistribute the energy between hydrodynamic fluc-
tuations and magnetic fluctuations.

Combining Eqgs. (2) and (4) one can express the change of
turbulent pressure dpr in terms of the change of the magnetic
energy density 6Wp, : §pr = —6W,, /3. It follows hence that
the turbulent pressure is reduced when magnetic fluctuations
are generated (i.e. 6W,,, > 0).

The total turbulent pressure is decreased also by the ‘tan-
gling’ of the large-scale mean magnetic field B by hydrody-
namic fluctuations (see, e.g., Moffatt 1978; Parker 1979; Krause
& Ridler 1980; Zeldovich et al. 1983). The mean magnetic
field, ‘entangled’ with the hydrodynamic fluctuations, gener-
ates supplementary small-scale magnetic fluctuations. In this
case the density of the magnetic energy W,,, depends on W,
and Wg, where Wy = B?/8r is the energy density of the
large-scale mean magnetic field B. For weak mean magnetic
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fields (Wp < W), expanding the function W, in series in
W, one obtains

BZ
W= WO 4 ap(Wk)g o, 5)

where W is the energy density of the magnetic fluctuations
in the absence of a large-scale magnetic field. This expression
yields the variation of the magnetic energy 6W,,,. The sign of
ayp is positive when magnetic fluctuations are generated and
negative when they are damped. In view of Eq. (5) the turbulent
pressure takes the form

pr = p(qg) — asz/247r

(see Kleeorin et al. 1989; 1990), where p(qg) is turbulent pressure
in the absence of the mean magnetic field.

The turbulent magnetic pressure py, as well as the turbulent
hydrodynamic pressure p,, are given by

_ 1 (hz} _ B?

Ph =3 (——87T > =Pn +ahgo, (6)
_ 2 (Pu2> _ . (0) B?

Du = 3 ( ) =Py —Qu 8 @)

Here p is pressure in a medium with zero mean field. Gen-
eration of magnetic fluctuations at the expanse of the energy
of the hydrodynamic fluctuations corresponds to q;, > 0 and
@y, > 0. The total turbulent pressure is given by pr = py, +py =
p(qg) —(qu—gqn)B? /87, where ap = 3(qy,—gp)- The total pressure
is Ptot = Pk + PT + PB, Where py is the usual gasdynamic pres-
sure of the plasma and pp = B2 /8 is the magnetic pressure of
the mean field.

Let us examine the part in p, that depends on the mean
(regular) magnetic field B:

2 2

B B
Pm(B) = pp+(qh — qu)o= =1+ qn — @) —
87 8T
BZ
= ng )
such that
BZ
Drot =p+pm(B)=p+Qp§, ®

where p = pg + pg,q). The pressure p,,,(B) is called the effective
magnetic pressure. It follows that in the presence of developed
MHD turbulence it is possible to reverse the sign of the ‘ef-
fective’ magnetic pressure p,,(B) = Q,,B2 /87 if Qp < O (ie.
1+ gn < g@). Note that both the hydrodynamic fluctuations
and the magnetic fluctuations contribute to the mean effective
magnetic pressure. However, the gain in the turbulent magnetic
pressure py, is not as large as the reduction of the turbulent hy-
drodynamic pressure p,, by the mean magnetic field B. It is
due to different coefficients in the equation of state (2) before
W, and Wj,. Therefore, it results in negative contribution of
the MHD turbulence to the mean magnetic force.
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We consider the case when p >> B2/8m, so that the to-
tal pressure p;,: is always positive. Only the effective magnetic
pressure p,,(B) may be negative (when (), < 0) while the pres-
sure pp as well as the values p, p,, pn, pr are positive.

Note that Q, = 1 — a,/3. When a mean magnetic field B
is superimposed on an isotropic turbulence, the isotropy breaks
down. Nevertheless Eq. (8) remains valid; only the relationship
between @, and a,, changes. Note that we use the conservation
law for the total turbulent energy only for the demonstration of
the principle of the effect, but we have not employed this law to
develop the theory of this effect (see Kleeorin et al. 1990; Klee-
orin & Rogachevskii 1994a). The high order closure procedure
(Kleeorin et al. 1990) and the renormalization group method
(Kleeorin & Rogachevskii 1994a) were employed for the in-
vestigation of the MHD turbulence at large magnetic Reynolds
number R,,, > 1.1t was found that the effective mean magnetic
force is given by (1).

In order to calculate ), in different way we use in this
paper a spectrum M (k) of magnetic fluctuations generated in
the presence of a mean magnetic field B. The spectrum is given
by

M) x k~'B? 9

where

Mk) = / (R (K)hm(—K))k? sin 0 df dy |

and [y "<k < ly IR:,{Z. Here M (k) is the spectral density
of magnetic fluctuations, (k, 8, ) denotes the spherical coordi-
nates in k-space.

The k! spectrum of the magnetic fluctuations was first
obtained by means of dimensional analysis by Ruzmaikin &
Shukurov (1982) (see also Ruzmaikin et al. 1988). Indeed, com-
parison of the terms

|(B - V)u| ~ n|Ah|

in the induction equation [see Eq. (A2)] yields the spectrum of
the magnetic fluctuations:

BZ
M) ~ Fk-zwac) , (10)

where W (k) ~ k~'u2(k) is the spectrum of the kinetic energy
of MHD turbulence. Now we take into account that the turbulent
magnetic diffusion 7 ~ u(k)/k. Therefore Eq. (10) is reduced to
(9) (see Ruzmaikin & Shukurov 1982; Ruzmaikin et al. 1988).

The spectrum (9) of the magnetic fluctuations was found also
by Kleeorin and Rogachevskii (1994) by means of the renormal-
ization group method. It was shown that the k! spectrum of
magnetic fluctuations is universal; it is independent of the ex-
ponent of the spectrum of the turbulent velocity field. The k™!
spectrum of the magnetic fluctuations can also be obtained by
means of the high-order closure procedure (see Appendix B).
Direct three-dimensional numerical simulations by Branden-
burg et al. 1993; 1994 of the magnetic dynamo in hydrodynamic
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convection also reveal the k~! spectrum of the magnetic fluc-
tuations in the presence of the generated mean magnetic field.

The energy of the magnetic fluctuations can be calculated
from (9):

) R z
h) =/° Mkydk ~ %m(Rm)f—7T , (1

87 10—1
The total energy of magnetic fluctuations is (h?) = ((h®)?) +
(h%). It follows from Eq. (4) that

%) pl?) _ ((hOP?) | p(®y)
g © 2 8&r 2 (12)
Equation (12) yields

) = (o) - 5]

drp (13)

Using Eqgs. (11)-(13) we calculate the turbulent magnetic pres-
sure pp, and the turbulent hydrodynamic pressure p,,

_ LAY (GO 1 B?
P = 5(—87?) = 3(7) tgnBmg 09
_2((ed)) 2 ({1, B
pu = 3( 5 )-3( > ) — 3B (19
Comparing Eq. (14) with (6) and Eq. (15) with (7) yield
1 1
qn = 8 In(Rr,), qu= § In(Ry,) ,
1
Qp51+Qh—qu=1—gln(Rm)~ (16)

It is seen from (16) that if R,, > 403 the effective negative
magnetic pressure is negative.

Therefore, this simple calculations allow us to show that
the effective magnetic pressure can change sign in a devel-
oped MHD turbulence. The difference in coefficient multiplying
In(R,,) in the expression for @, obtained here and in the paper
by Kleeorin et al. (1990) is due to the fact that we do not take
into account here the anisotropy of the magnetic fluctuations
(h%) caused by the presence of the mean magnetic field.

2. The governing equations and models

Consider the processes developing in the solar convective zone
on the time scale ~ 1lyears (see Sects. 3 and 5). The basic
equations of the problem are the mean field equations:

dv _ Qrga), Lip.
pdt - V(p+ 87rB>+47r(B V)QsB + 08
+ 20v X Q+FW)+F,(v) — p2 x (2 x 1), an

%_‘: = Vx(vxB+aB)+nAB, (18)
Oa a—ap

- - — 19
ot 1®) T >
V - (pv)=0, (20)
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where ap = —(7/3){u-(V xu)) is the hydrodynamic part of the
a-effect, g is the free-fall acceleration, €2 is the angular velocity,
F,(v) is the dissipation force, 7 is the magnetic diffusion, p is
the gas pressure determined by the equation of state, F(v) is the
additional force which depends on the velocity. This force, e. g.,
describes a source of the differential rotation and is related to
the anisotropy of the turbulent convection (Riidiger 1989). The
force F(v) may also include a component that is determined
by the A-effect (see, e. g., Kichatinov & Riidiger 1993). The
nonlinear equation (19) determines the evolution of the a-effect,
T, 1s the relaxation time of the a-effect. Equations (17)-(19) are
written in a frame rotating with angular velocity (2. The velocity
is given by v = v + U(B), where vq, describes the differential
rotation, while U(B) corresponds to motions under the influence
of the mean magnetic field (the torsional oscillations and the
meridional flows in the solar convective zone). As follows from
estimations and observations, |vo| > |U(B)| (see, e. g., Riidiger
1989; Kiiker et al. 1993). Therefore in first approximation we
can replace in the induction equation (18) the velocity v by vq,.
The equation for the velocity vq coincides with Eq. (17) for B =
0 (see below). Therefore Egs. (18)-(19) are decoupled from Eq.
(17) and are regarded as the equations for the mean-field dynamo
problem (see, e. g., Moffatt 1978; Parker 1979; Krause & Rédler
1980; Zeldovich et al. 1983). The function f(B) depends on the
model of the nonlinear dynamo. For example,

W aB2>
B)= -2 (B.-(vxB) -2,
)= (B !
where 1 =~ 0.1, 7. = [2/87%n,, (see, e. g., Kleeorin et al.
1994; 1995). When 7, < T, and |B - (V x B)| < ap/(&nT)
we get the well-known result for the total a.—effect

T 1+&.B?

(see, e.g., Riidiger 1974; Roberts & Soward 1975), where &, =

ute /(4monr), T is a period of the cyclic activity.
Comparison of the magnetic, kinetic and gravitation energy

in the solar convective zone yields:

(67

B2 pv}

5r < <rofo
(see, e.g., Priest 1982), where R, is the solar radius. It follows
that in first approximation the equilibrium for the momentum
equation is given by

Vo = pog , (21

where pg and pg are the unperturbed pressure and density, re-
spectively. We consider axisymmetric case. The equation for v
is given by

dv
po— = ~Vpi+pig+2pova X 2 — poS2 x (2 X 1)

dt
+ F(vo) +Fu(va) , (22)

where p; and p; are the perturbed pressure and density, re-
spectively, the force F(vq) describes a source of the differential
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rotation and is related to the anisotropy of the turbulent convec-
tion. This equation determines the evolution of the differential
rotation (see, e.g., Riidiger 1989; Besnovatyi-Kogan 1990). In
this paper we assume that the differential rotation and the mean
magnetic field are given. Subtracting Eq. (22) and Eq. (21) from
Eq. (17) yields an equation for the velocity U(B):

du Qp oo 1
Pogr = V(pz+ 8WB + I%(B -V)Q;B
+ 2p0U x Q+F,U) + p,g , 23)
where p=po+p1 +p2, p=po+p1+p2 P2 << p < po,
p2 K py K po and
U2 B2
prgRe < P2 « 2
2 87

The force F(U) is negligible. Equation (23) determines the evo-
lution of the solar torsional oscillations and the meridional mo-
tions. This process will be considered in Sect. 5. In this paper we
also study the short-time phenomena (Sect. 4) developed on time
scales from several minutes to several hours (Alfven time). The
governing equations for these processes follow from Egs. (17)-
(18) except for the absence of the a-effect term. This system
should be supplemented by the thermal equation (see Sect. 4).
This analysis is important for investigations of the short-period
solar oscillations and the flux tubes formation in the solar con-
vective zone.

3. 11-year oscillations of the solar radius

Measurements of the solar radius demonstrate 11-year period-
icity: during the period of maximum solar activity the solar
radius is minimal, while during the minimum of the activity it
is maximal (Delache et al. 1993; Gavryusev et al. 1994). This
anomalous phase shift between the oscillations and the mag-
netic activity is yet unexplained. In this section a mechanism of
the 11-year oscillations of the solar radius is considered.

We start by estimating the radius of a star. The distribution
of the mass of the star is described by
My,

dr
where U(M) = fa p(r)do is the mass of spherical shell of
unit thickness, do = 2 sin #dfdy is the element of the surface
in spherical coordinates 7, 6, ¢, dM is the mass of the
spherical shell of thickness dr,  pis the density. Integration of
Eq. (24) yields the radius of the star

M
dM
R, = / o
o ¥WM)
Variation of the total pressure p = pj + pg,q) + Qp(B)B? /8T
vanishes over the time interval which considerably exceeds both

acoustic and alfvenic times. Therefore the variation of the gas
pressure 0py is given by

24

(25)

BZ
bpi ~ —6 (Q;;(&g) . (26)
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The variation of the pressure on the time scale ~ 11-year is de-
termined only by the variation of the density 6p due to the large
turbulent thermal conductivity of the solar convective zone.
Therefore, Eq. (26) is reduced to

BZ

Hence, the variation of the radius 6 R of a star with a spherical
symmetric steady state is now given by

1 Re dr 5
~ 0 /R*—Lo(%) /C,(S(Q”(B)B ) dor

Here L is the thickness of the convective zone. In Eq. (25) we
assume that the mass M of the star is time-independent. The sign
of 6R depends on the sign of Q. In the absence of developed
MHD turbulence (@, = 1) the amplification of the magnetic
field results in increase of the radius of the star. On the other
hand, in developed MHD turbulence the magnetic coefficient
Qp < 0. Therefore, the growth of the magnetic field during the
period of the solar activity leads to decrease of the radius of the
Sun (6R < 0) in agreement with the observations (Delache et
al. 1993; Gavryusev et al. 1994). Note that the oscillations of the
solar radius are regarded as oscillations of the equilibrium con-
figuration. By contrast to these oscillations the solar torsional
oscillations and meridional motions are non-potential ones and
they are not accompanied by oscillations of the density.

Now we estimate the value § R/ R. The distribution of pres-
sure py, is given by

D exp( T_R>
Pk = Do - )
Ap

where pg = pp(r ~ R) ~ 3.2 x 10°d/ cm? (the pressure
po is chosen at depth H ~ 200 km from the sun’s surface),
A, ~ 2 x 107cm is the scale height of the pressure. The surface
integral is estimated as

bp 1

—_— A —

27
P Pk

0R

(28)

/ 6(QP(B)BZ> do 47r'r2QpBg ,

where Bj is the characteristic value of the mean magnetic field
in the vicinity of the surface of the sun. Therefore the value
6R/R is given by

SR A, . B p
O o 2210120 ~ (14 —-3.4)x 10
R (XpoRlQpl87r ( 34) ’

29
where By ~ 200 — 300G, @, ~ 1.1 at depth H ~ 200km
from the sun’s surface. Note that the solar radius oscillations are
determined by equations for mean fields. The equation for the
mean fields can be used in regions with developed turbulence.
According to models for solar convective zone (see, e. g., Spruit
1974) the developed turbulence exists at depth H > 2 - 107cm
(from the sun’s surface). The value used for toroidal magnetic
field By is in agreement with models of solar magnetic field
(see, e. g., Moffatt 1978; Parker 1979; Krause & Radler 1980;
Zeldovich et al. 1983; Kleeorin et al. 1994; 1995).
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Now we compare (29) with observed value. To do this we
use the solar radius measurements spectral density that are pre-
sented in Fig. 1 by Gavryusev et al. (1994). The first peak in the
spectrum corresponds to oscillations with period = 11.4 years.
The area under this peak is square of the amplitude of the solar
radius oscillations (§R)> ~ 4 x 1073 arcsec?. Here we take into
account that a level of noise in the spectrum of the oscillations
of the square of the radius is ~ 5 x 1073 arcsec?. Therefore,
the observed value is SR/ R ~ 6.6 x 1075, The estimation (29)
is thus in satisfactory agreement with the observed value.

4. Short-time solar oscillations and large-scale magnetic
ropes formations

The magnetic fields of solar active regions have a highly nonuni-
form structure: a configuration of flux ropes is developed by
some mechanism. It has been suggested (see, e.g., Parker 1979;
Priest 1982) that the magnetic flux ropes might originate from
the prevailing large-scale field in the solar convective zone when
magnetic buoyancy triggers instabilities there. However, in or-
der for such an instability to set in, the initial magnetic field
would have to be strongly nonuniform in the direction of grav-
ity: the scale of field variation is smaller than the density height
variations. Magnetic fields as nonuniform as we observe could
be excited only by powerful, localized generators - sources. This
situation, however, is not typical for the solar convective zone
(see, e.g., Moffatt 1978; Zeldovich et al. 1983).

In addition, the source of the solar short-time oscillations
and some of its features remain poorly understood. In particular,
itis difficult to explain the observed correlation of the frequency
and amplitude of the oscillations with the phase of the 11-year
cycle of activity.

We suggest here that these phenomena are due to the modi-
fication of the mean magnetic force in the turbulent convective
zone (see Sect. 1). This effect is a consequence of a generation
of magnetic fluctuations at the expense of hydrodynamic fluc-
tuations. It leads to a decrease of the elasticity of the large-scale
(mean) magnetic field, so that under certain conditions, the ‘ef-
fective’ mean magnetic pressure can change sign (Kleeorin et
al. 1990; Kleeorin & Rogachevskii 1994a).

This modification of the mean magnetic force results in
the excitation of large-scale MHD instabilities. The instabili-
ties cause the formation of inhomogeneities of the regular mean
magnetic field. The energy for these processes is supplied by the
small-scale turbulent fluctuations of the convective zone. This
effect develops even in an initially uniform magnetic field.

Now we explain the essence of the effect qualitatively. We
first consider the properties of magnetic buoyancy in the pres-
ence of small-scale turbulence. Let the x axis of a Cartesian
coordinate system be directed along the gravitational field, and
let the z axis lie along the mean magnetic field By. We consider
for simplicity an isothermal plasma in the absence of dissipative
processes. A nonisothermal plasma will be considered in this
section within the general treatment [see Eqgs. (36)-(39)]. The
isothermal model serves just as an heuristic argument in order
to gain some insight into the physical processes.
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We examine a magnetic flux tube located along the z axis
at level a , say, where the density is p, and the magnetic field
B,. Now we gradually move the flux tube as a whole upward
(opposite the gravitational field) from level a to level b, at which
the ambient medium has corresponding parameters pp, By. If,
after equalization of the total pressure inside and outside the
magnetic tube, the density pj; within the tube (in position b) turns
out to be lower than the density py, of the surrounding plasma, the
flux tube will continue to float upward due to Archimedes forces.
The criterion for balance between the total pressure inside and
outside the flux tube (at level b) is given by

(Bp)
81
where Cj is the sound speed, By is the magnitude of the mag-
netic field within the tube at the point . The sound speed is
assumed to be the same since the thermal conductivity of the
convective zone is very high and hence the temperature is al-
most constant. Assuming the displacement ¢ = = — x, to be

small, we shall write the density p; and the magnetic field By
as

Py = pa(l +C/Ap),

where AS! = p}/po ~ C?/g and Ag' = B}/B are the scale
heights of the density and the magnetic field. Here f’ denotes a
derivative with respect to . By use the laws of conservation of
the mass and magnetic flux inside the tube one obtains: By / p =
B,/ pa. Combination (30)-(31) yields the density excess Ap =

Py — P

_ QpBZ,(AB - Ap)
47TC§ABAP

B? .
Cpp + ng—; =C2ps + Qs (30)

By = Bo(1+¢/AB) (31)

Ap= C. (32)

The flux tube becomes buoyant, that is, instability can set in, if
Ap—A,

a1l - ) <o
In the case of weak turbulence with a relatively small magnetic
Reynolds number (the quantity @, ~ 1), the small-scale tur-
bulence will not affect large-scale processes. Then in view of
the condition (33), the criterion for instability due to buoyancy
will take the form Ap < A, . In other words, instability will
develop only if the scale for change in the initial magnetic field
is less than the density scale-height (Parker 1979; Priest 1982).

The situation will be radically different, however, in a
medium with developed MHD turbulence. Negative contribu-
tion of the MHD turbulence to the mean magnetic force results
in decrease of the elasticity of the field, so that ¢}, can be neg-
ative. This means that conventional magnetic buoyancy in a
highly nonuniform magnetic field will no longer exist [see the
inequality (33)]. On the other hand, when Ag > A,and @, < 0
instability will be excited in the large-scale magnetic field. It is
seen from condition (33) that instability will develop even in a
large-scale field that is initially uniform.

Let us estimate the growth rate of this instability. Neglect-
ing dissipative processes for simplicity’s sake, we shall retain

(33)

N. Kleeorin et al.: Magnetohydrodynamic turbulence in the convective zone

only the Archimedes force in the momentum equation of the
magnetic flux tube

ﬂ=_ gf_“_ ngP(AB _AP)C (34)
dt? Cs AgA,

where C 4 = B, /\/47p, is the Alfven velocity. We seek a so-
lution to Eq. (34) of the form ¢ ~ exp(I't). The growth rate of
this instability is given by

Ca A,
b= Ap QP<AB _‘1)‘

Here A, ~ C?/qg.

As will be shown now, estimation (35) of the growth rate of
the instability is in agreement with a more rigorous theory of
this effect. Here we consider nonisothermal plasma.

Note that magnetic buoyancy applies to two different sit-
uations (see Priest 1982). The first corresponds to a problem
described by Parker (1966; 1979) and Gilman (1970). They con-
sidered instability of stratified continuous magnetic field. They
do not use a magnetic flux tube. The other situation was consid-
ered by Parker (1955); Spruit (1981); Spruit and van Ballegooi-
jen (1982); Ferriz-Mas and Schiissler (1993); Schiissler et al.
(1994). They study buoyancy of horizontal magnetic flux tubes.
In our paper we investigate the first situation. Therefore we do
not consider buoyancy of magnetic flux tubes, and we study
instability of continuous magnetic field in small-scale turbulent
flow. In such situation we take into account the dissipation due
to turbulent magnetic diffusion separately from the analysis of
the magnetic instability. This is possible because the dissipative
term is determined by the second spatial derivative, whereas
the term that determines the instability is independent of spatial
derivatives. More rigorous study can be carry out by means of
numerical simulation. This is the subject of a separate paper.

The equations for the large-scale fields in the absence of
dissipation processes have the following form

(35

v _ Yrp2), 9sp.

= V<p+ 87rB)+47r(B V)B +pg, (36)
OB

E_VX(VXB)’ (37

where v and B are the velocity and magnetic field respectively,
p is the pressure. In this section we consider the case when the
angular velocity §2 = 0. This is justified since we study effects
with time scale of the order that ranges from several minutes to
hours while the rotation of the Sun is essentially on a time scale
longer than a month.

Equations (36)-(37) should be supplemented by the conti-
nuity equation and the equation for entropy .S = In(pp~"7)/~:

0
3—f+v-(pv)=0, (38)
pT(% +(v- V)S) =0, (39)
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where + is the ratio of the specific heats.

We now linearize Eqgs. (36)-(39) about the equilibrium state,
and denote the perturbed quantities by subscript 1 while equi-
librium quantities are denoted by subscript 0. It is convenient
to express all perturbed quantities in terms of the Lagrangian
displacement vector £(r, t), where vq = O€/Ot.

We search for a solution of Egs. (36)-(39) within the frame-
work of the WKB approximation:

€=eX/e(t® + €M +2¢P + ),

where x = x(ry) and r  is a position vector perpendicular to
Byo. The parameter £ < 1 is a measure of the fast variation of the
phase across magnetic field lines. The functions x and €9 are
considered to be of order 1. We use a method developed for in-
vestigations of interchange and ballooning mode (see, Hameiri
1983; Hameiri et al. 1991). It should be noted that the variations
of the perturbation occur on length scales that are on one hand
much smaller than that of the equilibrium state while on the
other hand much larger than those turbulent fluctuations that
contribute to Qs and @Qp. To lowest order in € Egs. (36)-(39)
yield

£9 - vx=0,

which results in the following representation of £(®:

¢0 = ¢nén +Epes,

where

éz=Bg/Bo|, &v=xXxé&p, X=Vx/|Vx|

As the magnetic field lines are considered here to be infinite, the
following traveling solution is used: € = &, exp{—i(wt — kp -
r)}, where k g is parallel to By. The equations for the component

of vector €9 = ¢nén + Epép are given by

@2+ X0? — QuES)En = ikpAa K?Q’”p)sg , (40)
. Qs _ 2 stZB
sz)\aK(Qp)ﬁN = (w K(Qp)) B 41)

(Kleeorin et al. 1993) where w and kp are the nondimensional
frequency and wave number, w is measured in units of Ca /A,
and kp is in units of A;!, Cs = By/+/#mpq is the Alfven
speed, AS! = py/po, a = gA,/C?. Here and below f is a
derivative with respect to z, the z axis is directed along the
gravitational field. The parameter A = (£ - g)/g&w is connected
to the polarization parameter of the wave. The parameter o is

o’ = —K-l(Qp)<Q§ + Qpa(l - éﬂ))
A

where Ag' = Bj/Bypand  Qf = —g - NyA%/C? is the nondi-
mensional Brunt-Vaisala frequency, where
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Vpo Vo
YPo Po

Cs = v/7ypo/ po is the sound speed.
Consider first the case kg = 0. This corresponds to the

interchange mode. In this case one can see from Egs. (40)-(41)
that £ = 0 and w? = —\202. The stability is determined by
the sign of o2. In the case of weak magnetic field K (Qp) is
close to unity and 2 is much bigger than the other term in
the definition of 0. Hence, if 22 < 0 the classical convective
instability develops with growth rate given by Schwarzschild
(1958):

1/2
re = Ag‘/2<~3‘3— - p—f’) / .
YPo  Po

 K@Qp=1+2%, gt

Nb = ) )
V8 B}

(42)

For the general case, the criterion for the interchange instability
to occur is:

AN\ [ Ca\?
2 _ A 4
% <a(1-32) (%)

(Kleeorin etal. 1993). We first notice that for a uniform magnetic
field, i.e. Ag — o0, and in the nonturbulent case condition
(43) coincides with the criterion given by Tserkovnikov (1960).
Examination of (43) reveals that in nonturbulent media (i.e.
Qp = 1) the magnetic field stabilizes the system if Agp > A,
If the latter is not satisfied, instability may occur for which
Parker’s instability (see, e. g., Parker 1979; Priest 1982), i.e. the
case {2, = 0, is a particular case.

In turbulent media the criterion for instability is significantly
changed. Now, since (), may become negative, an instability
may occur even if Ap > A,. The source of free energy of the
new type of instability is provided by the small-scale turbulent
fluctuations. In contrast, the free energy in Parker’s instability is
drawn from the gravitational field. In this sense, it is analogous
to the Rayleigh-Taylor instability. The growth rate of the MHD
instability due to the developed small-scale MHD turbulence is
given by

_Ca ﬁ-)( &)
F—Ap\/Qpa<AB 1 1+7ﬁ

(Kleeorin et al. 1993). The criterion of this instability for the
case of the isothermal plasma and for 5 > 1 coincides with the
one given by Kleeorin & Rogachevskii (1990). The geometric
optics approximation was not used there. Also (44) for the case
of the isothermal plasma and for 3 > 1 is in agreement with
the estimation (35).

The instability mechanism consists of the following. An iso-
lated tube of magnetic field lines, moving upwards, turns out to
be lighter than the surrounding plasma, since the decrease of
the magnetic field in it, due to expansion of the tube, is accom-
panied by an increase of the magnetic pressure inside the tube.
This increase, due to the fact that the ’effective’ magnetic pres-
sure is negative, leads to a decrease of the density inside the tube

(43)

(44
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and to appearance of a buoyant force. It results in the upwards
floating of the magnetic flux tube, i.e. it causes the development
of the instability.

We turn now to the case where kg # 0. The dispersion
equation for this case is given by

1 K+1 1
2 _ 12,2 _ 2 L 12
w 5 ()\ o % stB) + 2D , (45)
where
K- 2 s
D= ()\202 - —Kleké> ¥ 42(?” (kpa)).

Generally, Eq. (45) describes alfvenic and magneto-
gravitational modes. In order to separate the effects due to the
classical convective instability (i.e. 22 < 0) from the pure MHD
instability we consider the case of very small Q2 : [Q2| < 87!,
where 8 > 1. For example, this condition is valid in the case
of developed turbulent convection (Priest 1982; Spruit 1974).

For 8 > 1 (K ~ 1) Eq. (45) is given by

P =1-r*++1-2ar2/2, (46)
where
2Q 2Q
2 S 12 s 2
= kg ~ k

w \2g2B aX?|Qpl B

~ alepl &2 w?

a=————02 ~ a, Q=_)\202'

In the interval 0 < k < ko = 2&)~/2 (i.e. D > 0) the value
)2 is real, hence the modes are either purely growing or purely
oscillatory.

For k > kg, $!* become complex and hence oscillatory
modes with growing amplitudes exist. As was discussed before,
the growth of the unstable modes is at the expense of the energy
of the MHD turbulence. We now examine the dependence of the
spectrum given by (46) on the single parameter &. For & < 1
the value k. = v/2(1 — &) lies in the interval 0 < & < kg. The
interval 0 < k < kg provides a gap for the growth rate spectrum
(the imaginary part of () or for the frequency spectrum. This
can be seen in Figs. 1-2 for which the plus and minus signs in
(46) was used respectively. For @ > 1 no such gap exists.

In the limit & >> 1 the frequency tends to wy ~ /+/2 while
the growth rate is close to I'y ~ \/5/ 2. For the case o = 0 the
frequency is given by wg ~ kpCa+/|Qp| while the growth rate
is given by v ~ (Ca/2A,)aX\/|Qp| < wr Where now wg and
-y are dimensioned variables.

The obtained results are important for the problem of a
source of the solar short-time oscillations and the sunspots for-
mation. The oscillations can be excited by the MHD instabil-
ity in the upper layers of the turbulent convective zone located
under the visible surface of the Sun. In this region convective
cells (granules) are created and annihilated, a large-scale reg-

* ular magnetic field is generated, and fine-structure oscillations

are excited. The growing oscillations in the interval Kk > g

N. Kleeorin et al.: Magnetohydrodynamic turbulence in the convective zone

can be interpreted as a source of the observed short-time solar
oscillations. In contrast to the previous models which relate the
source to the convective noise (see, e.g., Priest 1982), a source
of the short-time solar oscillations proposed here is coherent.
The plasma in the solar convective zone has the following pa-
rameters (Spruit 1974):

a) at depth H ~ 2 - 107 cm (from the sun’s surface): R,, ~
105, ug ~ 9.4-10%m /s, lg ~ 2.6-107cm, py ~ 4.5:10~7g/cm?,
By ~ 10*G, A, ~ 3.6 - 107cm. Here u is the characteristic
turbulent velocity. By Eq. (1), the coefficient Qp, ~ —1.1.

b) at depth H ~ 10°cm : R, ~ 3 - 107, ug ~ 10*cm/s,
lp ~ 2.8-10%m, py ~ 5-107*g/cm’, By ~ 102G, A, ~
4.3 - 108cm. We then have @, ~ —1.8.

For the parameters given above, the period of oscillations
ranges between several minutes (H =~ 200 km) and several
hours ( H ~ 10* km ). This is within the range of the observed
oscillations in the Sun. The frequency and amplitude of the os-
cillations depend on the large-scale magnetic field. The field is
changed with the 11-year cycle. It explains the observed corre-
lation of the frequency and amplitude of the solar oscillations
with a phase of the 11-year cycle of activity (see, e.g., Priest
1982).

It should be noted that the considered oscillatory modes
with growing amplitudes cannot be interpreted directly as the
observed short-periodic solar oscillations. Conversion of the de-
scribed modes into magneto-acoustic-gravitation modes inside
of the solar resonance cavity (Priest 1982) results in a forma-
tion of the observed short-periodic solar oscillations. One of the
main result of the present paper is that we have revealed a mech-
anism of the energy transfer from the small-scale turbulence to
the deterministic large-scale wave motions.

The MHD instability due to ‘effective’ negative magnetic
pressure in the interval K < K may also provide a mechanism
of the large-scale magnetic ropes formation in the solar con-
vective zone (see also Kleeorin et al. 1989, 1990; Kleeorin &
Rogachevskii 1990). At a depth ~ 10°cm (from the sun’s sur-
face) the magnetic coefficient ), ~ —1.8 and the ‘effective’
magnetic pressure is negative. The magnetic instability devel-
ops on a time scale 7y ~ 2.5 - 10°s. It apparently determines
the formation of the magnetic flux tubes in the solar convec-
tive zone. These magnetic ropes float up from under the sun’s
surface leading to the onset of the observed sunspots.

As for the role of the dissipation processes, they serve ei-
ther to weaken the instability or to stabilize it completely. The
damping rate of the instability is of the order of 7 /A%. As
a consequence, the instability has a threshold character in the
large-scale regular (mean) magnetic field B, because the growth
rate of the instability depends on the magnetic field. It follows
that the instability occurs only if B > By (nr, R,,), where B,
is the instability threshold for the large-scale magnetic field. The
threshold is determined from equation

5B(Bcr)Qp(EBy -Rm) + (ZO/SAp)2 =0.

The dissipation determines the characteristic cross section of
the magnetic flux tubes Ly ~ 3A,, the scale L corresponds to
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the maximum growth rate of the instability. The cross section
of the magnetic flux tubes Ly ~ 10%°cm is comparable to the
spot size.

The MHD instability may provide also a mechanism of
the magnetic flux tubes in stars and spiral galaxies. For in-
stance, large-scale magnetic ropes have been observed in the
spiral galaxy IC 342 (Krause et al. 1989). In spiral galaxies the
plasma typically has the following parameters (Ruzmaikin et
al. 1988): R, ~ 10°, [y ~ 100pc, wup ~ 10%cm/s, po ~
(1-13)-10"%g/cm’, A, ~ 400pc and By ~ 107°G. The
magnetic coefficient is @}, ~ —1.2 and hence magnetic insta-
bility is excited on a time scale 7y ~ 6-10'3s. The characteristic
cross section of the magnetic ropes Ly ~ 1.2kpc. Radio obser-
vations of the spiral galaxy IC 342 reveal magnetic ropes of
comparable thickness (Krause et al. 1989).

5. The torsional oscillations and meridional flows

Another type of 11-year solar oscillations, the torsional oscil-
lations and meridional motions, have been studied by a num-
ber of authors experimentally (see, e.g., La Bonte and Howard
1982; Tuominen et al. 1983; Snodgrass 1985; 1987; Makarova
& Solonsky 1989), numerically (see, e.g., Schiissler 1981;
Yoshimura 1981; Riidiger et al. 1986) and theoretically (see,
e.g., Kleeorin & Ruzmaikin 1991). The following observed
properties should be explained:

1. The torsional oscillations exist in form of traveling waves
with constant amplitude rather than as standing waves.

2. The phase velocity of the wave of activity (for example,
the dynamo wave) coincides with that of the torsional wave.

3. A phase shift exists between the activity and oscillations
of the velocity of the torsional wave and meridional motions.

4. The amplitude of the torsional wave and the fine structure
of the torsional oscillations and meridional motions.

The papers by Schiissler (1981); Yoshimura (1981) and
Riidiger et al. (1986) explain the first and the second properties
of the torsional oscillations except for the fact of the constant
amplitude of the traveling wave. A recent analytical model by
Kleeorin & Ruzmaikin (1991) describes properties 1-3 of the
torsional oscillations and meridional motions. In the present pa-
per the observed fine structure of the torsional oscillations and
meridional motions is explained.

The torsional oscillations and the meridional flows in the so-
lar convective zone can be excited by magnetic dynamo waves.
Here an analytical model for the zonal and meridional flows
is presented. We consider the axisymmetric case. The large-
scale mean magnetic field B(r, 8, t) generated by a{2— dynamo
mechanism (Moffatt 1978; Parker 1979; Krause & Rédler 1980;
Zeldovich et al. 1983) is assumed to be given. The magnetic field
excites large-scale flows U(r, 8, t) in the convective zone. These
flows are superimposed on the differential rotation Q(r, ) and
include the torsional oscillations and meridional motions. The
total velocity including the differential rotation, the meridional
flows and the torsional oscillations is given by

V(’l‘, 9, t) = VQ(Ta 0) + U(Ta 97 t):
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where vo(r,0) = rQ(r,0)e,. We consider a slow process
with characteristic time of about 11 years. This time is much
longer then the acoustic time. Therefore we can neglect the
temporal variations of the density, and the velocities satisfy to
V- (pv) = V- (pU) = 0. In the absence of a mean magnetic field
B(r, 8, t) only the differential rotation vg, exists. The mean mag-
netic field B generates the additional flow U(B) (see Sect. 2).
The momentum equation in linear approximation with respect
to U follows from Eq. (23):

aU Qp o 1
5 V(pz+§B +pg+ (B V)Q,B

Po5T =

+ F,(U)+2pU x 2, 47
Equation (47) is written in a frame rotating with the Sun. The
linear inertial terms in Eq. (47) related to the differential rota-
tion are included in the Coriolis force. Here p, and p, are the
perturbed pressure and density, respectively, F, = V - 7 is the
force due to the eddy viscosity v, 7 is the tensor of turbulent
viscous tensions (see Appendix C).

Now let us discuss the assumptions of the model:

1. The eddy viscosity v varies slightly with the depth in
the solar convective zone Ly, while the density is drastically
changed: A, < Lo (see, e.g., Spruit 1974). Here A, is the
density height scale. As a result, in the momentum of the fluid
P = poU is slightly depends on the depth of the convective zone
(see Kleeorin & Ruzmaikin 1991).

2. The characteristic time of the large-scale magnetic field
variations is about 11 year, while the relaxation time of the
perturbations of the velocity U due to the turbulent viscosity
varies from = 4 days at the top of the convective zone to a
year near its bottom. Therefore the momentum Eq. (47) can be
reduced to the stationary equation.

3. We also ignore very small variations of the gravitational
force p,g, and take into account the fact that for the a2-dynamo
Bq, > B,, Bg.

4. The following boundary conditions should be satisfied:

P, B.B
A AM ) rDy
~ = 4
Tro T Tro vr Ap + Qs . 0 3 ( 8)
0Py 1 1
2o~ 28 Py(— — ) = 4
Tro VT( 5t G(Ap r)) 0, 49)
where )1 = Q, B, B, /(4m) is the component of the magnetic

tension. We assume that outside the solar convective zone B, —
0 and the viscosity is very small. This means that at the boundary
of the convective zone the viscous and magnetic tensions vanish.

The boundary conditions (48)-(49) differ from that used in
the numerical models (see Schiissler, 1981; Yoshimura, 1981;
Riidiger et al., 1986). By contrast to these models we take into
account magnetic stresses in the boundary conditions and do
not assume here the vacuum condition B,(r = Rg) = 0. In
reality this component of the magnetic field vanishes only in the
non-turbulent region r — R, (at the vicinity of the boundary
between the convective zone and the photosphere). This region
is electrically conductive rather then a perfect insulator. Note
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that the use of the vacuum boundary condition in the numerical
models by Schiissler (1981), Yoshimura (1981), Riidiger et al.
(1986) results in a small magnitude of the velocity compared
with the observed ones.

Here we do not take into account an anisotropy of the eddy
viscosity. It is due to the fact that we search for a solution of Eq.
(47) near the surface of the Sun, where 27 < 1, and 7 is the
turnover time of the turbulent eddies.

The solutions of the Eq. (47) for Uy and U,, with the bound-
ary conditions (48)-(49) at the near-surface layers are given by
(see Appendix C):

A2 F@6)
~ P 50
U9 47TPVT R@ ) ( )
A, QsB;B,
Uy drp  vp Gh

where we neglect small terms of the order ~ O(Ly/Rg), and

R
F(e):/ ° (13—cot9£>(QsB§,)dr.

Ro—Lo

For Qs = 1 Egs. (50)-(51) coincide with that obtained by Klee-
orin & Ruzmaikin (1991).

To compare with observations we need to know the form
of the mean field B and the function Qs(B). According to the
linear mean-field dynamo (see, e.g., Parker 1979; Zeldovich et
al. 1983; Ruzmaikin & Starchenko 1987; Brandenburg et al.
1989) the mean magnetic field is presented in form of dynamo
waves
B, =~ bp(r,0)sin(® — 6), By, = by(r,0)cos®, (52)
where ®(t,7,60) = wc.t — g(r,0), 6 is a phase shift between
the toroidal components of the magnetic field and the vector
potential of the poloidal field, w, = 7/11 years~! is a frequency
of the solar cycle, and a phase function
g(@) ~27(1 +cosb). (53)
Expression (53) is valid for 15° < 6 < 165° (see Kleeorin
& Ruzmaikin 1991). After substitution of (52) into Egs. (50)-
(51) we obtain time dependent part U of the rotational velocity
(see Appendix C). The obtained velocity field has a form of a
rotational wave with an 11-year period.

Now let us compare results of the theory with the observed
latitude dependencies of the zonal velocity (see Fig. 3). The thin
curve in Fig. 3 shows the distribution of the zonal velocity U,
with latitude obtained from observations by LaBonte & Howard
(1982). The thick curve in Fig. 3 corresponds to the theoreti-
cal latitude distribution of the zonal velocity Ug, calculated by
means of Eq. (C5) for € = 0.1 and § = /4. The zero latitude
in Fig. 3 does not coincide with the equator and is chosen con-
ditionally (see LaBonte & Howard 1982). The theoretical and
experimental zonal velocities U,, are normalized to the maximal
velocity of the zonal flows.

N. Kleeorin et al.: Magnetohydrodynamic turbulence in the convective zone
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Fig. 3. Experimental (thin curve) and theoretical (thick curve) latitude
distributions of the zonal velocity.

The effect of decreasing the elasticity of the mean magnetic
field by the small-scale MHD turbulence of the solar convec-
tive zone results in asymmetry between the zones with rapid
and slow rotations: the regions with slow rotation are wider
and they have smaller amplitude of the velocity in comparison
with the zones of the rapid rotation. It is in agreement with the
observation (see Fig. 3).

The theory also predicts the latitude dependencies for the
variable parts of the radial velocity: at a latitude higher (lower)
than that of the maximum of magnetic field, the flow is directed
towards the equator (the pole). It is in agreement with the obser-
vations (Snodgrass 1987). The matter descends (U, < 0) near
the maximum of the activity and it rises near the minimum of
activity. The effect of decreasing the elasticity of the mean mag-
netic field leads to weak reduction (expansion) of the regions
with vertical (horizontal) motions of the matter.

Note that in the paper by Riidiger et al. (1986) a possible
modification of the torsional oscillations by change of the mean
magnetic tension (B- V)B /47 due to small-scale turbulent fluc-
tuations has been pointed out. Study of the interaction between
the mean magnetic field and small-scale MHD turbulence at
large magnetic Reynolds numbers (see Kleeorin et al. 1990;
Kleeorin & Rogachevskii 1994a) show that both the mean mag-
netic pressure and the magnetic tension are significantly modi-
fied.

In the present paper we have found that the decrease of the
magnetic tension affects only the fine structure of the torsional
oscillations and the meridional motions. On the other hand, the
strong modification of the effective magnetic pressure by the
developed MHD turbulence of the convective zone may be the
reason of the anomalous oscillations of the solar radius (see Sect.
3), and cause the large-scale magnetic flux tubes formation in
the convective zones of the Sun, stars and spiral galaxies (see
Sect. 4).
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6. Conclusions

The following phenomena have been studied: the 11-year varia-
tions of the solar radius, the torsional oscillations and the merid-
ional flows, the solar short-period oscillations and the large-
scale magnetic flux ropes formation in convective zones of the
Sun. Itis shown that all these different phenomena are related to
the reduction of the elasticity of the large-scale regular (mean)
magnetic field by the developed magnetohydrodynamic (MHD)
turbulence of the solar convective zone. The ‘effective’ magnetic
pressure p,, = QpB2 /8 is negative (i.e., Q, < 0) in the upper
part of the convective zone. Due to this effect, the growth of
the magnetic field during the period of the solar activity leads
to decrease of the radius of the Sun in agreement with the ob-
servations (see Section 3). On the other hand, the reduction of
the magnetic tension (i.e., 0 < Qs < 1) determines the fine
structure of the torsional oscillations and the meridional mo-
tions (see Section 5). The negative effective magnetic pressure
results in the excitation of large-scale MHD instabilities. The
instability of the mode with kg = 0 causes the formation of in-
homogeneities of the regular mean magnetic field. In particular,
the MHD instability may provide a mechanism of the magnetic
flux tubes in the convective zone of the sun, stars and spiral
galaxies (see Section 4). The growing oscillations with kg 0
can be interpreted as a source of the observed short-period solar
oscillations. In contrast to the previous models which relate the
source to the convective noise (see, e.g., Priest 1982), a source
of the short-time solar oscillations proposed here is coherent.
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Appendix A: evolutionary equation for the total turbulent
energy density '

In order to derive Eq. (3), the velocity v(r, t) and the magnetic
field H(r, t) in the turbulent medium are represented in the form
v=V+uand H=B+h, where V = (v), B = (H). The fluctu-
ations of the density are assumed to be weak. The momentum
equation and the induction equation for the turbulent fields u
and h in a frame moving with a local velocity of the large-scale
flows V are given by

M vy I L (v xB)
ot 0 47p
F, +F,
+ Bx(Vxh)]+T++, (Al)
h
i Vx@@xB—-—1,Vxh+h V)V
-V -V)+G, (A2)
V-u=0, (A3)

where p, is the fluctuations of the hydrodynamic pressure, F,,
is the viscous force, F, is a random external force, T and G
are terms nonlinear in the fluctuations and describe the energy
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transport over the spectrum of MHD turbulence

T = ((u-V)u)—(u-V)u+%)[(hx(Vxh))
— hx(V xh)],
G = Vx@mxh-(uxh)).

The fluctuations are concentrated in small scales. Hence the
derivatives of the large-scale fields are small in comparison with
the derivatives of the turbulent fields. Let us now multiply Eq.
(A1) by u, Eq. (A2) by h/(47), add them and average over the
ensemble of turbulent fluctuations. The result is given by

9 (p(w’) (h)\ _
&( 2 +g) = —V'(@B‘F@u)
— D+1Ip, (A4)
Here
1
$p = 4—7;(h><(u><B)),
u? 1
®, = (up,) +(pu- —)+-—(h x (u x h)) .

2 47

The functions ® g and ®,, describe energy fluxes of magnetic
fields and flows in the turbulence with large-scale (mean) mag-
netic field B, the values I = (u - F,.) and

D =vp((V x u) +n((V x hy?)

determine the power of the external source maintaining the tur-
bulence and dissipation of the turbulent energy respectively.

To obtain Eq. (A4) a use was made of the following identi-
ties:

2 2
p u(u'V)u+u7V-(pu)=V- (u%) ,

V -(hx@xA)=—h-(V x (u x A))
+ (wxA)-(Vxh).

Here we made calculations similar to those described in Landau
& Lifshitz (1984b).

In ahomogeneous turbulence with uniform large-scale mag-
netic field B we obtain V-® g = V-®,, = 0. Therefore the terms
containing the uniform large-scale regular magnetic field B are
eliminated from Eq. (A4). This reflects the fact that the uniform
large-scale magnetic field performs no work on the turbulence.
It can only redistribute the energy between hydrodynamic and
magnetic fluctuations.

If the mean magnetic field B is nonuniform, the value V -
®p #0. The flux ®p is given by
(® ) = 7=t} B — (1) B (A3)
The second moment (u,hy,) in a homogeneous and isotropic
turbulence is given by

0B,
0T,

<umhn> =-NT (A6)
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(see, e. g., Moffatt 1978; Krause & Rédler 1980; Zeldovich et al.
1983), where 7t is the turbulent magnetic diffusion. It is seen
from here that (up, hp,) = 0, because V - B = (. Substitution
(A6) into (AS) yields

BZ
. =— — 1. A
V. -®p "7TA<87r> (AT)
Combination Eqs. (A4) and (A7) yields
OWr Wrp B?
T_IT——+17TA<8—W , (A8)
where the total energy density is W = Wy + W,,,, 7 is the

correlation time of the turbulence in the scale [y. The second term
in (A8) D = Wy /7 determines the dissipation of the turbulent
energy. This form of the dissipation results from the condition
that the energy flows be constant over the spectrum.

Appendix B: k£~* spectrum of magnetic fluctuations

Now let us derive equations describing the evolution of the sec-
ond moments. For this purpose we rewrite the MHD equations
(A1)-(A3) in a Fourier representation and repeat twice the vec-
tor multiplication of Eq. (A1) by the wave vector k. The result
is given by

dum(k,t) _ i(k-B) ~T
i anp DT IndoD
— I/()kzum(k, t)a (Bl)
&ny = i(k - BYum(k, t) — Gm(k,?)
— k(K 1), ®2)

where T = k x (k x T)/k%. Recall that here k > I3, so
that (k - B) is not equal to zero. Let us introduce the second
moments and consider homogeneous turbulence. In this case,
for example, dependence of the second moment f,,,,(r, R, t) =
(um(x, t)un(y,t)) on R = (x +y)/2 is not as strong as on r =
x — y. This means that

fmn(K, 1) = (um(k, hun(—k, 1)),

Let us multiply Egs. (B1) for u, (K, t) by u,(—k,t) and Egs.
(B1) written for u,(—k, t) by un,(k,t), add them, and average
over the ensemble of turbulent pulsations. We use the same pro-
cedure for other correlation functions. It results in the equations
describing the evolution of the second moments (see Kleeorin
et al. 1990):

dfmn _ (K- B)dmn
— 2V0k2fmn 1) (BS)
dh .
drftln = —i(k-B)pmn + Rmn — 277mk2hmn ) (B4)
den . hmn
7 = %(k'B)(fmn - m) +Cmn
— (v + nm)kZme ®3)
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Here

¢mn(k7 1) = Xmn(K, 1) — Xnm (=K, 1),
Xmn(k,t) = (hm(ky Dun(—k, t)) s
Frn(k, 1) = (Fr(k, yun(=k, 1)) + (un(k, ) Fr (<K, 1)) ,
k x (k x F,.(k, t))
k%p ’

Fk, t) =

The third moment is given by

Apin(k,t) = (T (k, yun(—k, 1)) + (um(k, )T (—k, 1)).

The expressions for the remaining moments R,y,,, and C,,,, are
similar.

By means of Eqgs. (B3) and (B4) we obtain equation for
fmn + hinn /(47 p)

d hmn _
it (fmn + Zw—p) =

- 2VO"?men +(Rmn — 2"7mk2hmn/(47rp)

It is seen from here that the second moment f,,,, + hynr /(47 p)
is independent of the mean magnetic field.

Equations (B3)-(BS5) describe evolution of the seconds mo-
ments. Equations of this type raise, as usual, a question of clos-
ing the equations for the higher moments. Various approximate
methods have been proposed for the solution of problems of
this type (see, for example, Orszag 1970, Monin and Yaglom
1975, McComb 1990). The simplest closure procedure is the
T approximation, which is widely used in the theory of kinetic
equations. As applied to MHD turbulence problems, this ap-
proximation was developed by Pouquet et al. (1976). In the
simplest variant, it allows us to express the third moments in
terms of the second moments:

f mn 7(2,21

0,
A = AD), = — Lo Jmn,

s (B6)

and similarly for the other correlation functions. The superscript
(0) corresponds here to the background MHD turbulence (it is a
turbulence without the mean magnetic field B), and 7(k) is the
characteristic relaxation time of the statistical moments.

The 7-approximation is in general similar to Eddy Damped
Quasi Normal Markowian (EDQNM) approximation. How-
ever some principle difference exists between these two ap-
proaches (see Orszag 1970; McComb 1990). The EDQNM
closures do not relax to equilibrium, and this procedure does
not describe properly the motions in the equilibrium state in
contrast to the T-approximation. Within the EDQNM theory,
there is no dynamically determined relaxation time, and no
slightly perturbed steady state can be approached (Orszag 1970).
In the 7-approximation, the relaxation time for small depar-
tures from equilibrium is determined by the random motions
in the equilibrium state, but not by the departure from equi-
librium (Orszag 1970). We use the T-approximation, but not
the EDQNM approximation because we consider a case with
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B?/81 < (pu?)/2. The mean magnetic field slightly perturbs
the background turbulence (the equilibrium state). As follows
from the analysis by Orszag (1970) the T-approximation de-
scribes the relaxation to equilibrium state much more accurately
than the EDQNM approach.

Assume that vok? < 7,,k* < 77! for the main part of the
spectrum. It is also natural to assume that the characteristic time
of variation of the large-scale magnetic field B is substantially
longer than the correlation time 7(k) for all turbulence scales.
The stationary solution of the system (B3)-(B5) takes the form
(Kleeorin et al., 1990)

¥ "o,
fmn = fan — W+ o — Zl;? ) (B7)
n— h© o
471'[) e = _(fmn - ( ) 3 (B8)
hO
= 0 i(k - ©0) _ mn B
an Xm'n + Z(k B)T ( mn 47l_p ) ) ( 9)

where 1 = (k - Br)?/7p. It is seen from (B7)-(B9) that the
equipartition state in which

p < Umtn >@ < hyhy >O
2 87

(B10)

is special. In this case there is no shift from the background
turbulence level for any uniform field B.

Now let us choose a spectrum of the MHD background tur-
bulence and find the spectrum of the MHD turbulence in the
presence of the large-scale regular magnetic field B. Suppose
that the hydrodynamic fluctuations of the background turbu-
lence in the region k,, > k > Ky is substantially stronger than
magnetic ones

oIS KD,
2 8’

= Il is determined by the characteristic scale of

the magnetic fluctuations I,,, ~ ZOR;LI/ 2 (Zeldovich et al. 1990;
Kleeorin and Rogachevskii 1994b). We also take into account
that ¢ < 1. It follows from Eqgs. (B7)-(B9) that for k,,, > k >
ko

where k,,

hmn = 2(k - B2 f0..

Note that here hpy, > h{®. . It means that the generation of the
magnetic fluctuations in this region by the ’tangling’ of the large-
scale mean magnetic field by the hydrodynamic fluctuations is
more substantial than the small-scale dynamo without mean
field (Zeldovich et al. 1990; Kleeorin and Rogachevskii 1994a;
1994b). Suppose that the background hydrodynamic spectrum
is close to Kolmogorov’s one

2
o _ _% 5/3 kmkn
mn 6 kzk / (5mn - k2 )
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and for k£ > k,, there is equipartition (B10). Here the wave
vector k is normalized to the value ko = I !, Therefore,

km/ko
< h?>= / Mk)dk ,
1

8
M(k) = §k-132 . (B11)
Our results, obtained by means of the T-approximation, are in
agreement with that of the numerical simulations by Branden-
burg (1993).

Appendix C: equations for the torsional oscillations and
meridional motions

Let us define the force due to the eddy viscosity vy, F, = V-7,

where 7 is a tensor of turbulent viscous tensions:

. _ . 9(R
Trr—znar( )7

N _277 0 Pg Pr
w=aw(m) )

2 = Zp+P

Top Tpo( -+ Pycot ),
Fro = Toop = 7‘2 Py
ro = Tor =1 ar \rpo ’

R n. 0 P,
Top = Fpo = ;smegg-(posi‘;e) .

. 18 (P
o = Tor =T\ 50 "o\t ) )

Here P = pyU is the momentum of fluid, A, is the density height
scale, 7 = p(r)vr. The momentum equation (47) is reduced to
the stationary equation:

o Qg2 o 20 (2Pvr B2
8r<p1 . )_r26r<r Ap) Qs

1 6 Pe T .
+ TSind 90 (sm0 A, > +2P,Qsind (C1)
Qp 2 ~ 10 3P9VT Bé
96 (p‘ Yt ) S Rer\"T A, ) T Qe et
+ 2P,Qrcosé , (C2)

10 3P¢I/T BTB¢
0_r38r<r A, >+Qs 4T
. 0 2 ,Q@sByB, )
+ P,.sinf) + — g0 e ) | (C3
sin 6) rsin2039( 4 ©

The total pressure is excluded from the momentum equation
by taking the ’curl’ of this equation. Also we use the condition
V - P =0 and introduce the function ¥:

oL 1w
" r2sinf 86’ 0= " sing or
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After neglecting of the slight dependence of v7/A, on r Egs.
(C1)-(C2) are reduced to

82Y+ 1 a/ 1
0X? 9X200\sin6 00

(Y sin 9)) =f(X,0), (C4)

where X =73, Y = XPyur/A,,

1 10 3
f(X,9)=%(——

2y
X 06 tanf 8X> (QSB

Here we take into account that the contribution of the Coriolis
force into the function f(X, #) under condition of the slow ro-
tation is small (see Kleeorin & Ruzmaikin 1991). The solution
of the Eq. (C4) with the boundary condition (49) is given by Eq.
(50), where we neglect small terms of the order ~ O(Lg/Rg).
The solution of Eq. (C3) with the boundary condition (48) is
determined by Eq. (50). The components U,. can be found from
V -(pU) = 0.

To obtain the solutions for U, and Uy inside the convec-
tive zone we neglect the small terms ~ O(A,0Py/0r /(FPy)) ~
A,/Rg. On the other hand, in the boundary condition (50) we
should take into account these terms. It is due to the following:
U, Up ~ CU,, where { = A,B,,/ReBr. At the vicinity of the
surface ¢ ~ 1, while inside the convective zone { < 1 (see
Kleeorin & Ruzmaikin 1991).

After substitution (52) into Eqgs. (50)-(51) we obtain the time
dependent part of the rotational velocity

U, ~ UD{—(1+¢)sin(2® — 6) + esin  cos(2P)

_ £ > sin(4® — 8)} , (C5)

Up ~ (0){(1 +2€)sin(2P + Ay)
+ ecosin(4® + Ay}, (C6)
where
7O ~ D@y
® 87 pur brby
AQ ag®)\*
U ~ s_p2 2( 99
0 47rp1/TR@ 7 %\ "a0
.- b2 Q: ~ 1+a(2) e Bcoté
T2, T\ 1«4 0T 20g/06°
Ay = —arctan(ag), A, = —arctan(ag/2) .

The factor % depends on the altitude profile of the toroidal
magnetic field B, (r) in the convective zone. For the model by
Ivanova & Ruzmaikin (1977) % =~ 1.64. The velocity has a
form of a rotational wave with an 11-year period.
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