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Abstract. Using a nonlinear dynamo model (in a single-mode
approximation), an analytical expression is derived which gives
the magnitude of the mean magnetic field as a function of rota-
tion and other parameters for a solar-type convective zone. By
means of this expression we find a power-law relation between
the X-ray luminosity and stellar rotation. The exponent in this
relation is in agreement with observations.
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1. Introduction

The magnetic field of the Sun and solar type stars is believed
to be generated by a dynamo process in their convective zones
(Parker 1979). Most dynamo models are kinematic and predict a
field that grows without limit. Hence they give no estimate of the
magnitude for the generated magnetic field. In order to find the
magnitude of the field, the nonlinear effects which limit the field
growth must be taken into account. However, most nonlinear
dynamo models are numerical; in these models it is not possible
to obtain information about the value of the resultant magnetic
field as a function of stellar parameters. The first theoretical
attempts to relate the magnitude of the magnetic field to the
angular velocity and spectral type of the star were made by
Durney & Latour (1978) and Robinson & Durney (1982). In
these papers a simplified nonlinear dynamo model was used
and crude scaling arguments were made.

In the present paper we obtain a new analytical expression
for the magnitude of the mean magnetic field near the stellar
surface as a function of the angular velocity of the star and
the parameters of the convective zone. We use a more sophisti-
cated type of nonlinearity in the dynamo (Kleeorin & Ruzmaikin
1982) which includes, in particular, the effect of delayed back
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action of the magnetic field on the magnetic part of the a— effect
(Section 2).

As an application of this result (Sect. 3), we relate the am-
plitude of X-ray variability to stellar rotation. In doing this we
used the fact that the observed correlation between the X-ray
variability of solar type stars and their cyclic activity (Baliunas
& Vaughan 1985) evidences a relation between the mean mag-
netic field and the X-ray variability. The theoretical relationship
between the X-ray luminosity and the rotation agree with the
observed relationship as given by Fleming et al. (1989).

2. A nonlinear mean-field dynamo model

We will use a mean field approach in which the magnetic, H,
and velocity, v, fields are divided into the mean and fluctuating
partss H=B +h, v =YV +u, where the fluctuating parts have
zero mean values. The mean velocity describes a differential
rotation. The fluctuating velocity is parametrized by the turbu-
lent diffusivity and mean helicity (o.— effect). This parametriza-
tion is known as the af2— dynamo (Moffatt 1978; Parker 1979;
Krause & Ridler 1980; Zeldovich et al. 1983). The dynamo
is called kinematic if the back reaction of magnetic field on
the differential rotation, a— effect , and turbulent diffusivity is
neglected. The corresponding equation for the mean magnetic
field is linear in the field so that it does not restrict its magni-
tude. Stationary solutions exist only for some special values of
the dimensionless parameters entering the equation. The most
important parameter is the dynamo number.

To obtain stationary solutions a nonlinear extension of the
kinematic approach is needed. Here we consider a nonlinearity
in which a back reaction of the magnetic field on the magnetic
part of the a— effect is taken into account. The evolution of the
mean magnetic field is described by the standard equation:

%:Vx[VxB+aB—(nT+nm)VXB] (D

(Moffatt 1978; Parker 1979; Krause & Rédler 1980; Zeldovich
et al. 1983), where o determines the effect of the mean helic-
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ity of turbulent motions, V is a mean velocity (the differential
rotation), i and 7, are the turbulent and molecular magnetic
diffusion.

We now split the a.— effect into two parts:

o =0y +om,

where g = —(7/3)(u(V x u)) is the hydrodynamic part of the
a— effect, and o, = (7/127p)(h(V X h)) is the magnetic part
of the a— effect, where u and h are the turbulent velocity and
magnetic field, p is the density, 7 ~ l% /nr is the lifetime of the
turbulent eddy, I, is the characteristic scale of turbulent motions
at the depth of the convective zone where the turbulent magnetic
diffusion nr is a maximum. This splitting of the total a— effect
into the hydrodynamic and magnetic parts was first suggested
by Frisch et al. (1975) (see also Pouquet & Patterson 1978;
Zeldovich et al. 1983 for the other references). These velocity
and magnetic field contributions to the a— effect are present in
the kinematic approximation. However, in the kinematic case
there is no reason to treat them separately since the contribu-
tions appear in a sum and this sum is considered as given. The
situation is changed in the nonlinear dynamo because the grow-
ing magnetic field reacts differently on the hydrodynamic and
the magnetic parts of the a— effect. The back reaction of the
magnetic field on the hydrodynamic part of the a— effect is
almost instantaneous (of the order of a characteristic turn-over
time of the turbulence, 7). As a result, this part of the a— ef-
fect can be nonlinearized in the form of a quenching, i.e. by
replacing ag with ag f(B), where f(B) is a decreasing function
of the mean magnetic field (see, e.g., Stix 1972; Jepps 1975;
Ivanova & Ruzmaikin 1977; Yoshimura 1978; Brandenburg et
al. 1989; Schmitt & Schiissler 1989). However, the characteris-
tic time of the back action of the magnetic field on the magnetic
part of the a— effect can be large or small depending on the
magnetic Reynolds number, R,,, and the spectral properties of
turbulence (Kleeorin & Ruzmaikin 1982). Thus the back reac-
tion of the magnetic field on the magnetic part of the oc— effect
can not, in general, be reduced to a simple quenching but must
be described by an evolutionary equation (see Appendix A):

day, aB? Om
5 -47TP<B-(V><B) 77T) T 2)
This differential equation was derived by Kleeorin & Ruzmaikin
(1982). Here T = 12/87n,m, s is the characteristic scale of
the turbulent motions near the top of the convective zone where
Qi is @ maximum, p = 0.1 (see Appendix A). Note that the
scale I, is close to the maximum scale of turbulent motions. The
closed system of Egs. (1) and (2) for B and a,, represents the
nonlinear dynamo model under consideration.
In the case T' <« T, Eq. (2) yields

_ +£’I’]TB . (V x B)

- 1+£&B2 ’
where & = uT'/(4mpnr), T¢ is a period of the cyclic activity. If
B - (V x B)| < ag/(&nr) we get the well-known result for the
total a— effect

(2a)
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T 1vem
(see, e.g., Iroshnikov 1970; Riidiger 1974; Roberts & Soward
1975; Noyes & Weiss 1984).

The large-scale flow (the differential rotation) is still as-
sumed to be uninfluenced by the magnetic field. The back re-
action of the magnetic field on the differential rotation can be
neglected when |a,, /ao| > 69/ AQ, where 62 is a variation of
rotation due to the magnetic field, AQ is a characteristic value
of the differential rotation (see below). This condition is valid,
for example, for the solar convective zone under the assumption
that the back reaction of the magnetic field on the differential ro-
tation is provided by small amplitude torsional waves (Schiissler
1981; Yoshimura 1981; Kleeorin & Ruzmaikin 1991).

For the sake of simplicity we consider only the axisymmetric
case. [Note that the axisymmetry refers only to the mean mag-
netic field, the fluctuating fields are basically non-axisymmetric
so that there is no contradiction to the Cowling theorem.] Then
the mean magnetic field can be represented by the poloidal,
B, = V x A(t,r,0)e, and toroidal B, = B(t,r, )e, compo-
nents\/evolving according to Eq. (1),

0 (A A oo A

where r, 8, o are the spherical coordinates, and

s _(As ao(r,b) & (0 am(,d
e (DQ A, ) W= <0 o )
~ o 10(Q,Arsin0) B
QA - r 8(,,,, 9) ) CY()(T‘, 9) - —"Olo(’r‘, mw — 9),

10/0 10 1 0 . . 1
As = ;E (ET‘> +;i-5é (ma—é Sll'l@) =A- m
Note that Eq. (2) is written for the axisymmetric case. Combi-
nation of Egs. (2) and (3) yields

0ty O

dam om _ BOA M(B,A)
ot T

ST @)

where

0

M(B,A)=2BAA+ iz-—
r2 or

(rA)- —a—(rB)+
or

. 1 0

r2sin g 06

Equations (3, 4) are written in dimensionless variables: the co-
ordinate r and time ¢ are measured in the units R, and R /nr;
the helicity is measured in the units «,; the angular velocity
Q(r, 0) is measured in the units €,; the vector-potential of the
poloidal field A(t, r, 6) and the toroidal magnetic field B(t, r, 6)
are measured in units of R, R, B, and B,, the density p(r,0)

. 0 .
(Asinb) - %(B sin ).
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Rq =
R, is the

is measured in the units p.. Here Ry = auR./nr,
Q.R%Y/nr, D = R4Rq is the dynamo number,
stellar radius, and

B, = [ 47P= I/ZW_T
* 1 R*

The terms ~ O(R,/Rq) are dropped in Egs. (3, 4). This as-
sumption corresponds to the usual assumptions of af2— dy-
namos. Equations (3, 4) describe a closed nonlinear system.

The operator L describes the kinematic part of the dynamo.
General properties of this operator are briefly presented in Ap-
pendix B. Eigenvalues of L are complex: p, = vn + iwn; Y
is the growth (damping) rate of the magnetic field, and w,
is the frequency of field oscillations. For the given functions
a(r, 8) and Q(r, 6) the solutions of Egs. (3, 4) depend on a sin-
gle parameter: the dynamo number D. The threshold for a self-
excitation of mean magnetic field is determined by the equation:
Y1(D = D¢) = 0. Here the mode n = 1 is the mode with the
maximum growth rate.

Let us seek a solution of this nonlinear problem in the form

<g) =ZF"(t)en(r,0), en=<z:)a ®)

n=1

where e, are the eigenvectors of the operator I for D = De,.
Substituting (5) into (3) and taking into account the properties of
the eigenvectors (see Egs. (B6), (B9) in Appendix B), we obtain
the following system of equations for the coefficients F™(t) of
the expansion (5):

dFm dpm ad
. m — 2Em FrE(G™ m
— F™p,. DCT(dD)crm_oo NG + o)),
6)
where D om
G™m = — 1=
" (Dcr ) Cn’

C;n = /ao(am)*bn d*r + Prn — Pm) /(bm)*bn d3,,.,
oy = _1_ /am(am)*bn &r, Cm= Cr'(m =n).
Cm

The coefficients F(t) depend on the nonlinearity o). The
equation for " can be derived from Eq. (4):

do ol > & dre
no Tn o _ FPSpMm 2 gm (
dt T i =—OOF (t) Mksn dt ksn |1 \7)
where R
1 M(bg,as) 3
moo_ R P8 ™y D
Mksn Cm p(r) (a ) n d 7",
spo= 1 L(a’n)*b bras dr
ksn — Cm p(r) nUkUs .

It is assumed here that the relaxation time 1" of the helicity does
not depend on r.
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Thus the problem reduces to the study of this infinite system
of equations with coefficients determined by the eigenfunctions
and eigenvalues of the linear problem for D = D,,.. Fortunately,
the dynamo number in solar-type convective zones is not much
larger than the critical dynamo number, so that only a few modes
are expected to be excited.

Consider the simplest case, when only one mode (of a dipole
type) is excited. This is sufficient to estimate the magnitude of
the mean magnetic field in the stationary state. (The multi-mode
regime could be considered similarly.) As follows from the anal-
ysis of this single-mode approximation presented in Appendix
C, the dimensionless magnitude of the mean toroidal magnetic
field near the stellar surface is

1 1

1 (D Lo\ (bm\ [ Tpeimnr \ ?

B, ~ D - 2z ) (e
D (Dcr 1) ( ls ) ( bs ) ( LOAPN ®

Here Ly is the depth of the convective zone, A, is the den-
sity height scale, bs and b, are components of eigenvectors
e,, of the linear dynamo problem corresponding to the toroidal
magnetic fields near the surface and inside the convective zone,
respectively. The ratio b, /bs depends only on D, and on the
sources of generation (the differential rotation and a— effect).
This values by, and b, can be determined, for example, from lin-
ear dynamo models by Ivanova & Ruzmaikin (1977); Branden-
burg et al. (1989). The poloidal magnetic field is much smaller.
The result (8) is in agreement with that obtained by means of a
qualitative analysis (Kleeorin et al. 1994).

Note that, whereas the growth rate in the kinematic regime
is independent of the molecular magnetic diffusivity 7,,, the
field magnitude in the stationary state is proportional to 77,17{2.
Therefore, in a perfectly conducting fluid, the magnitude B,
vanishes (see Appendix A). The value (8) for the magnetic field
also correctly vanishes when the turbulent diffusivity 77 or the
convective zone depth Ly goes to zero.

In the present paper we consider a nonlinear model
of the mean-field dynamo. The input parameters of this
model are the parameters of the linear mean-field dynamo:
D.., dvy/dD, dw/dD. The results of the nonlinear theory
weakly depend on the details of the linear dynamo models. In
particular, this nonlinear theory is independent of the details of
the function a(r).

Now we specify the dependence of the dynamo number on
the angular velocity and other parameters of the convective zone.
We use a spatial distribution of the hydrodynamic part of the a—
effect (op) of the form

o~ (2)Q(2) forlQ/u <1,
=) wz) for Q% /u > 1

(Zeldovich et al. 1983). This function has a maximum at
the depth z = z,, determined by the condition [,,(2,,) =
uo(2m )/ (2zm). The turbulent magnetic diffusivity is nr =~
L (Zm)uo(2m). It follows then that I, (2) = (77 /%)!/2. The
maximal value of the the hydrodynamic part of the a.— effect,
Qu, 1 given by
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ot = Ug(2m) 2 N7l (2m) = (17 Q)"2.

Now the dynamo number is

OLR? Q,\*/?
D=RoRg= 220" ~ (—) R}, ©)
nr nr

and the magnitude of the mean magnetic field near the surface

1S
R.\?/Lo\ /b 3
- 2 -4 Lt Lo Om T PxTIm 7T
Be = (@7} Der (lo> (1)(b)( Loh )
(10

Here 7 = [3/nr and it is assumed that D/De,. — 1 ~ D/ Dy
The magnitude depends both on 2,7 and the parameters of the
stellar convective zone.

Let us estimate, as an example, the mean toroidal mag-
netic field near the surface of the Sun. The parameters of
the solar convective zone at the depth ~ 2 - 107cm are:
Nm ~ 4-10%m?s™!, I, ~ 2.6-107cm, p ~ 4.5
1077gem™3, A, ~ 3.6 - 107cm (Spruit 1974). We use here
alsonr ~ 10%em?s™!, pu~0.1, by/bs~1+2, Lo=
0.3Ry, D ~ 10*, D/D,. ~ 2 -+ 5. This gives, accord-
ing to (8), Bs ~ (1 + 3) - 10*G. This value is the same as
the mean toroidal magnetic field usually estimated from solar
observations (Parker 1979).

Note that the turbulent viscosity 77 and the differential rota-
tion | V€| generally depend on the Coriolis number 2} = 27,.
This dependence for the function n7(2}) can be found using
the results by Kichatinov (1986); Riidiger (1989); Kiiker et al.
(1993) :

1
o) = o arctan 7,

c

n(82g) o< o(r)@(827),

where 79(r) is a distribution of the turbulent viscosity in the
nonrotation medium. The function ®(Q2%) changes from 107!
(at the bottom of the solar convective zone) to 1 (at the top of
the convective zone). In the most part of the convective zone
() = 1 (see, e. g., Spruit 1974). The function ry(r) is maxi-
mal in the middle of the convective zone (see, e. g., Brandenburg
& Tuominen 1988) where ®(£2}) ~ 1. Therefore the maximum
value 7)mqz of the function n7(£2}) does not change under the
influence of rotation. For the nonlinear theory only 7,4z 1S
essential, because it determines the dynamo number. The local-
ization of the maximum 7,4, is slightly shifted to the top of
the convective zone but this is important only for linear dynamo
models.

As far as the dependence of the differential rotation |VQ)|
on the Coriolis number €27 is concern the current theories of the
differential rotation cannot definitely answer to this question.
The models (see, e. g., Riidiger 1989; Bisnovatyi-Kogan 1990;
Kiiker et al. 1993) yield that for slowly rotating stars |VQ| ~
6Q. /Lo, where 69, ~ Q,¢o, Where ¢y is the function which
depends on the spectral class of the star. The value §€2, which
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allow us to estimate the dynamo number is the most important
parameter for the nonlinear dynamo model . The exact form the
function [VQ(£2})| is essential only for linear dynamo models.

Let us discuss now the dependence of period of the activity
cycle T, on the stellar rotation. Nonlinear dynamo models which
use the a— quenching in form « = ag/(1 + £ B?) result in the
period of cycle T, = T, (see Noyes & Weiss 1984), where
Ter =27 /wer,  wer is the frequency wy of the linear dynamo
wave at D = D,, (see Appendix C). Thus these models predict
the period of cycle T, explicitly independent of the rotation of
the star in contradiction with observations (see Noyes & Weiss
1984). Meanwhile, the quenching described by Eq. (2) yields
the period of the activity cycle in form of

-1
T, ~ Ty(Q)(1 + 00 B?) [1 _4 (1 _ ﬂj(f)))]

cr

(see Eq. (C9) in Appendix C). Here T;(Q2,) = 27 /w;, d; ~
1/4, 00B? < 1. The dependence of the period of the linear
dynamo wave T;(€2,) on the rotation of the star is determined
from the linear dynamo models. For instance, for slowly rotat-
ing stars T3(Q.) oc Q5! whereas for the rapidly rotating stars
T1(Q%) o 1/ 1In(Q2,.7) (see Kleeorin et al. 1983). It follows from
here that the period T, in nonlinear regime is determined both by
the period of the linear dynamo wave and 7,.. The dependence
obtained from our nonlinear dynamo model is in agreement with
observations discussed in Noyes & Weiss (1984).

In the next section we will use the theoretical dependence
(10) for the magnitude of the mean magnetic field in estimations
of the dependence of the stellar X-ray luminosity on rotation. We
take the known theoretical dependence of the X-ray luminosity
on the magnetic field and express the field using our formula (10)
to obtain the luminosity dependence on the rotational velocity.
The exponent of the resultant dependence is compared with the
observed exponent.

3. X-ray luminosity

Observations of soft X-rays in stellar coronae show a correlation
between the X-ray luminosity L, and rotational velocity Vg, :

L.~ V5. (11

Fleming et al. (1989) analyze an X-ray-selected sample of 128
late-type (F-M) single stars and find the exponent 8 =~ 1.05 +
0.08.

Let us find the dependence of the X-ray luminosity on the
rotational velocity. Theoretically, the X-ray luminosity is esti-
mated by assuming that the necessary energy comes from re-
connections of the magnetic fields in the coronae. Roughly, if
the magnetic energy accumulated in a unit volume, B2 /8, is
released in a reconnection time 7, the rate of release is propor-
tional to B?/(877.). The accumulation of magnetic energy is
due to electric currents generated by convective motions on the
stellar surface (see, e.g., Priest 1982). More accurately, the rate

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995A%26A...297..159K&amp;db_key=AST

FTIOLARA © Z297- ZI59K

N. Kleeorin et al.: Magnitude of the dynamo-generated magnetic field in solar-type convective zones

of magnetic energy release in ergs per second, ), is determined
by a time averaged Poynting flux:

2
 Bemr

Qe 2 / W(w)dS

(Vekshtein 1987), where [ is a characteristic size of the magnetic
region, W(w) is the spectrum of the hydrodynamic energy of
the turbulent pulsations near the surface of the star, 7,. is a char-
acteristic time describing the relaxation of the magnetic field to
aminimal energy state. The time 7,- can be estimated as the time
scale for the onset of the tearing-mode instability: 7,, ~ Té—'S’Tlf s
where 6 varies from O to 1 depending on the regime of the tear-
ing instability (see, e.g., White 1983), 7, ~ I./C4 is the Alfven
time, 74 ~ 12 /7, is the diffusive time, [, is the thickness of the
current layer in the reconnection region, C4 = B./(4mp.)'/? is
the Alfven speed. Parameters with the subscript “c” correspond
to the corona and upper chromosphere. The spectrum W (w) can

be chosen in the form

B ul k\ ™7 vk? 1
W(w) = /(q - 1)(']%) : (k_o) ( - )wz Py dk,
(13)
where v(k) is the turbulent viscosity in the scale k™!, k is the
wave number, ky and ug are the wave number and characteristic
velocity in the maximum scale [y of the turbulent motions. For
example, for the Kolmogorov spectrum of the hydrodynamic
pulsations ¢ = 5/3. We use here the Lorenz profile of the fre-
quency component of the spectrum. Integration in w— and k—
space in (12) yields

B2,
Q. ~ 8‘;_; /u(z) ds.
Here we assume that v(k)k? ~ 1/7.(k) and 7, < 79, where
To(k) = 270(k /ko)' =9, To ~ lo/uo. It follows from (14) the rate
of the released magnetic energy (), depends on magnetic field
as

dw
1+ (wr)?

(12)

(14)

Qy x B8,

where we take into account that 7. < B %. The X-ray luminos-
ity L,, is defined as L, ~ Q. N,,, where N, is the number of
magnetic regions in the corona. Therefore, the X-ray luminosity
L, is qiven by

Ly « N,,B*%.

We estimate the exponent 3 in the X-ray luminosity vs stel-
lar rotation assuming that the basic contribution to the X-ray
luminosity comes from the magnetic fields outside sunspots
and active regions. In this case the number of magnetic re-
gions N, is independent of the mean magnetic field Bs and
it is determined only by a number of convective cells at the
photosphere. On the other hand, the rate of magnetic energy
release in ergs per second, Q. o< B2~%. This is due to the mag-
nitude B, ~ k.Bs, k. ~ 10~!. Therefore, the dependence
of the X-ray luminosity on the mean magnetic field is given by
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L, x B§‘6. By use of the expression (10) for the field B near
the surface we can express the X-ray luminosity in terms of the
rotational velocity Vi. The result is given by L, ~ Vg , where
B=3(2-6)/4.Since0 < § < 1 weobtainthat3/4 < 8 < 3/2
in satisfactory agreement with observations (see Fleming et al.
1989).

Note that within the present-day accuracy of observation of
stellar activity the approximate “scaling” approach used here is
sufficient to describe exponential factors controlling stellar ac-
tivity. In our paper we show that the main theoretical uncertainty
in the exponent of the X-ray luminosity is due to the parame-
ter ¢ that is determined by the type of magnetic reconnection.
On the other hand, the uncertainty caused by the approximate
nonlinear dynamo model is shown to be much smaller.

4, Conclusions

By use of a nonlinear model of an axisymmetric af2-dynamo
(in single-mode approximation) we have found an expression
for the magnitude of the mean magnetic field as a function of
the stellar rotation rate and other parameters of the solar-type
convective zone. This expression predicts that the field varies
as the 3/4 power of the rotation rate. The resulting theoretical
relationship of the X-ray luminosity as functions of the angular
velocity is in agreement with the observations.
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Appendix A: evolutionary equation for the magnetic part of
the a— effect

Let us derive equation for the magnetic part o, of the a—
effect (for details see Kleeorin & Ruzmaikin 1982). The mean
magnetic helicity of the turbulent field is given by

x = (a-h) =/x*(k)dk

where k is the wave number, x. (k) is the spectral density of the
magnetic helicity, a is the fluctuative part of the vector potential.
For V-A=V-(A)=V-a=0 we obtain

(Ot = [ Rk, (A1)

T
T 12mp

where A = (A) + a is the total vector potential. The induction
equation for the total magnetic field H = B + h is given by

Qm

1
(b (Vxh) = 3 / K (k). (k) dk, (A2)

%—I:=V><[uxH—anxH],

where we consider the case with zero mean velocity. It follows
from (A3) that the equation for the vector potential A is given
by

(A3)
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%?:uxH—anx(VxA)+V<~b.

Here @ is an arbitrary function. Let us multiply Eq. (A3) by a
and Eq. (A4) by h, add them, and average over the ensemble of
turbulent pulsations. The result is given by

ox _
ot

(A4)

—2((u x h) - B) = 27, (h - (V x h))
—(V-[ax uxh)]). (A5)

Here we omit the term ~ (h-V®) which is small in the medium
with zero mean velocity. Taking into account the mean velocity
V yields an additional term V - (xV) in Eq. (A5). The effective
electric field Ecs ¢ = (u x h) is given by (Moffatt 1978; Parker
1979; Zeldovich et al. 1983)

Eeff = (uxh)=aB -7V xB),

where o = ag + oy, and 1 = 1, + 7 can be considered as
scalars if B? /41 < (pu?). The term (V - [a x (u X h)]) in Eq.
(AS5) vanishes as aresult of averaging of (div) over the volume.
It follows from this that Eq. (AS) is reduced to

0

—Blt‘ =2[B - (V x B) — aB? — fju(h - (V x h))] .
Now let us assume that in the inertial range kg < k& < ki

the spectrum of the helicity x. (k) is given by

Plk\* Ko\
X*(k)—Xk—()(E;) , P=(- 1)[1 (h) ] )

(A7)
where |x| = |(a-h)| ~ B?/ko, kg is the maximum scale of
the turbulence, k;"' is the scale of the cutoff of the helicity spec-
trum. The parameter g is assumed to be known. For example,
for Kolmogorov’s spectrum ¢q = 5/3 (developed hydrodynamic
turbulence) and for Kraichnan’s spectrum ¢ = 3/2 (turbulence
of interacting Alfven waves). Substitution (A6) into (A1) yields

(A6)

am=1Ix, (A8)

where I = p/(4mpnr),

1 q— 1 kl 4=2q ko -1 -1
p=———>7I= —1||1=(= .
182—(] k() kl

Here we take into account that 7,(k) = 279(k/ko)! ~?. The tur-
bulent magnetic diffusivity nr for turbulence which is far from
the equipartition of the energy of hydrodynamic pulsations and
magnetic fluctuations is given by nr = (1279k3) "
Multiplying Eq. (A6) by I and using (A1) we obtain Eq. (2),

where
_ q—1 3—gq —1
g—1 ki ko

(see Kleeorin & Ruzmaikin 1982).
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Spectral properties of the magnetic helicity x. (k) satisfy the
realizability condition : |x.(k)| < 2k~ M(k) (Moffatt 1978),
where M (k) is the spectrum of the magnetic fluctuations. It

follows that
k qmn+l—q < 2
ko - P

Here we use a magnetic spectrum of the form

BZ k —qm

For the case g,,, = 1 this spectrum was obtained using different
techniques by Ruzmaikin & Shukurov (1982), Kleeorin et al.
(1990), Kleeorin & Rogachevskii (1994), Brandenburg et al.
(1993), Brandenburg et al. (1994). It is seen from (A9) that for
gm > 1 and q < 2 the wave number k and therefore k; is close
to ko. Indeed, k; is determined from equation

(kl )q'm,‘"l"'q _ 2
ko © Pk’

It follows from here that P(k;) ~ 1 and k; ~ ko. In this case
which seems to be typical for the solar-type convective zones,
pr1/9and p, =~ 1,and T ~ 79R,.

Note that Eq. (2) can also be regarded as a consequence of
the conservation of total magnetic helicity [(A - H) dr in the
limit of R,,, — oo.

If 1, = 0O, the magnetic Reynolds number R,, = oo. It
follows from the induction Eq. (1) that in this case the mag-
netic field is frozen into plasma and the magnetic flux can-
not increase. On the other hand, for n,, = 0 Eq. (2) for the
nonlinearity is valid, and the nonlinear solution of Egs. (1)-
(2) for the magnitude of the mean magnetic field [see Eq. (8)]
yields Bs;(n,, = 0) = 0. Equation (2) describes quenching of
the growth of the magnetic field due to the back reacton of the
field on the magnetic part o, of the a— effect. Evolution of
the magnetic part of the o — effect depends on 7,,. In particular,
the characteristic time T of the relaxation of the a,, tends to
oo when 7, — 0. This means that when 7,,, — 0 a very small
mean magnetic field B generates large o, :

(A9)

—1
Om X Ty

which quenches any generation of the mean magnetic field and
this field B tends to 0.

Appendix B: general properties of the linear operator L

Linear of2— problem by substitution

A oo
( B > = Z Cn exp(pnt)en("', 0)) (Bl)
n=1
can be reduced to the eigenvalue problem
2 [ Qn \ _ an
L(bn)"p"(bn>‘ (B2)
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Since the coefficients of the operator L are real p¥, = v, — iwy,
and e;, along with p,, and e,, are eigenvalues and eigenvectors
of its spectrum. The combination of these two complex modes
gives a real dynamo wave. In general, these vectors are not or-
thogonal to each other, because the operator L is not self-adjoint
(see Kleeorin & Ruzmaikin 1984). The system of functions
biorthogonal to e, can be constructed from the eigenvectors
e™ = (a™b") of the adjoint operator

f/+ _ ASA (10(7', 6)
“\ -DQ A, ’

whose eigenvalues are complex conjugate to p,,. Note tllat if
n # m then (e™e,) = 0. Eigenvalues problem for the L* is
reduced to

(a™b™)L* = pr(a™b™). (B3)

Now let us study some properties of the operator £, which are

useful for derivation of Egs. (6)-(7). From (B2)-(B3) it follows

Pm(™)" = ap(@™)* + Ag(b™)", (B4)

Dby = DQay, + Agby,. (B5)

Multiply Eq. (B4) by b,, and Eq. (B5) by (b™)*, substract the
first from the second equations and integrate over the space. The
result is given by

D / ®™*Qa, &dr = / ap(@™)* by, &r+

(Pn — ) / (B™)* by r. (B6)
For n = m Eq. (B6) is reduced to
D / o™*Qa, &dr = / ao(a™*by, dr. (B7)

Consider the eigenvalue problem p;e,, = I'e,,. Here

X 0 0
Q= (Q(r,e) 0)'

According to the perturbation theory in the non-degenerate case
we have for 6p,, = p), — Dn

I'=1L+Q6D,

Spn(e™ey,) = (e"Qe,)6D = 6D / ™ Qa, dr.

When dp,, /dD 0 it follows

(e"e,) = (%) B / ™ *Qa, &r. (B38)
After substitution (B7) into Eq. (B8) we obtain
dpn B *p 73
(e"e,) = <Dd_D> /ao(a") b, d°r. (B9)
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When dp,, /dD = 0 Eq. (B9) is not valid. This case considered
by Kleeorin & Ruzmaikin (1984). Solution of Eq. (B2) yields
eigenvector e,,. To obtain the adjoint eigenvector e, it is suffi-
cient to solve the linear problem for D = —D. The resulting B
and A are associated with a™ and b™ respectively (see, Kleeorin
& Ruzmaikin 1984).

Appendix C: single-mode approximation

Suppose that only one dynamo wave, the dipole type, is excited.
In this case two complex conjugate modes of corresponding
symmetry should be retained in (6). Since A and B are real, the
amplitudes F™(t) of the complex conjugate eigenvectors in (5),
are complex conjugate. Therefore we can consider a single com-
plex equation for F'!(t). [For the sake of simplicity we will omit
the superscript, F'!(t) = F]. The equation for F~! = F* may
be obtained from the equation for F' by complex conjugation.

The equations of the one-mode approximation then follow
from (6) and (7):

dF D
£-(o(3

- 1) + ol + o”zF*) Ap - exp(ifip),

dt er
(e3))
da « . . dF* 1
E‘FT—(C*‘C)FF G'F—E o*F ar’ (02)
da & .2 1
E+T—3<F -0 th, (03)
wherea=a}, a=a',,
1 1 1y %712 73
=— [ —(a) aibid’r,
o= | s
1 M(bl’a'T) 1y* 3
=— [ —————=(@ )b d’r,
¢ Cl/ p(r) @t

. dp
Ap - exp(ifp) = Der (dD) o

We take into account that

a™ =a"exp(—ig™), am=a™" exp(—iém)/\/D—cr,
@™ ~ v/Der 57,
lam| ~ 1m|/v/Ders 9™ = grm.

The functions ¢™ and b,,, describe the dynamo wave, g,, cor-
responds to a phase of the dynamo wave. The phase is changed
from 0 at the pole to 2 at the equator (Parker 1979). This means
that integrals of the rapidly oscillating functions are

by = Bm exp(—igm),

/ exp{2ing(d)} sinfdd = 0,
0

wheren =1,2,3,....

Consider now the case 7 < T < T, where T is a period
of the cyclic activity. This case is typical for solar type stars.
For instance, for the Sun T' ~ several months, while T, ~ 22
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years. Therefore we can neglect the time derivatives of « and &
in Egs. (C2) and (C3). This yields

" dF* —_—
a~ T<2CRFF —ocF——— 7 o' F 7 ) (C4)
dF
~ 2
& ~ T<3C Fe— dt ) (C5)
The solution of Eq. (C1) has the form
F(t) = ft) exp{s¥ (1)}, (C6)

where the functions f(t) and ¥(t) are real. Note thatw, = d¥ /dt
corresponds to the frequency of the activity. Substitution of ex-
pressions (C4-C5) into Eq. (C1) yields

i fAy <D

dt ~ 1 — f2To,Ap

+f*T(5¢r +3(s tan B, + cqwca*)) , cn

where Ay = D.(dv/dD).r,

cp = c0s(Bp + B5) + 2 cos(Bp — Bo),

cq = [sin(Bp + B5) + 2 sin(B, — B,)1/ cos fp.

¢ =Cr+1i(r = —(x exp(ife),

A, b
~ 1/2 s
= a(32) ()
Jg ?
C*—G*(%> »

Ly is the radial size of the stellar convective zone, A, is the
density height scale, bs; and b, are components of eigenvec-
tors e, of the linear dynamo problem corresponding to the
toroidal magnetic fields near the surface and inside the con-
vective zone, respectively. To calculate the coefficients ¢ we
assume that |0g/00| > |Vb/b|. This means that

B(?ZA 0B 0A
96> 90 90

The stationary solution of Eq. (C7) yields the magnitude of
the mean magnetic field:

0 = 04 exp(—ifs)

M(B, A) ~

D - Dc’r
D T(5|Cr| + 31(1' tan 8, — quca*)'

We found here the steady state of the nonlinear system (C1-C3).
As follows from analysis this steady state is stable in single-
mode approximation. In the dimension variables the magnitude
of the mean magnetic fields near the surface of the star is B; =
fBB.bs and given by Eq. (8), where we use that g(f) ~ 27 (1 &

2
B~

(¥
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cos ) (see, e.g., Kleeorin & Ruzmaikin 1991) and §; ~ 3, ~
/4, cq~ 1(see, e.g., Ivanova & Ruzmaikin 1977).

The imaginary part of Eq. (C1) after taking into account of
Egs. (C4-C5) yields the nonlinear frequency w, = d¥ /dt of the
magnetic field oscillations (the frequency of the cycle activity):

dw
We = <wl - 2,CRle%d0 (E) Dc‘r)(l + &0f123),
where 6o = o.xcos(By — B5), do = 1 + 3sin(B, —
B5)/ sin(2Bp),  fp is determined by Eq. (C8), the frequency

wy corresponds to that of the linear dynamo wave. For the esti-
mation we assume that

dw W) — Wer
dD),. D-De
and take into account that {, > o, and &g szg < 1. Here we, =

wi(D — De,). It follows from here the nonlinear frequency w,
is given by

we = [wy — di(w; — wer)l(1 +09BH ™!, (C9)

where d; = 2do/(5 + 3tan B, tan B¢), g = Fo(Bibs) 2. For
the Sundy ~ 1,d; ~ 1/4.

We have described the case T' <« T, where T, = 27 /w,.
Now let us consider the case T' > T. For the simplicity we
take into account also that { >> o. The solution of the system
(C1-C3) we seek for in the form

F@t)= f@exp{i¥(®)}, o) = a),

& = a(t) exp{i(2¥(t) + 6)},

where the functions f(t), a(t), &(t), ¥(t), 6 are the real func-
tions. Substitution the expressions for F(t), a(t), & into Egs.
(C1-C3) yields

310-% = Ap(DDCT -1 +a> cos B, + Apé.cos(Bp + 6), (C10)
da a _ .,
TS 2fCr, (C11)
d& &
—cT T= =32y cos(B — 6), (C12)
( ) sin B+ Apasin(B,+6), (C13)
26{w + Ap( ) sin Bp + Apdesin(By, + 6)} =

= —3f%(,sin(B; — 6),
where ¢ = —(, exp(30¢).

(C14)
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Now we average Eqgs. (C10)-(C14) over the time > T In
saturation of the growth of the magnetic field the mean values :

d(in(f) _ dle) _ (@)

dt dt dt

and (d¥/dt) = w,, where the angular brackets denote the aver-
aging, w, is the mean frequency of cycle. If the condition (C15)
is violated the nonlinear solution is unstable. After averaging
we obtain

=0

(C15)

(@) = 2(f*)CrT, (C16)
(&) ~ =3(f*)¢T cos(Be — 6), (C17)

D .
(Dcr -1+ (a)) cos Bp ~ —(&) cos(Bp + 6). (C18)

Substitution (C16-C17) into Eq. (C18) yields the magnitude of
the mean magnetic field:

D - Dcr
fp= ()~

= DaTiaa+3a

which is in agreement with Eq. (C8). Here d = cos(f, +
8) cos(f¢ — 6)/(2cos B, cos B¢).
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