
Suboptimal Variants of the Conflict-Based Search
Algorithm for the Multi-Agent Pathfinding Problem

Max Barer 1 and Guni Sharon and Roni Stern and Ariel felner

1 Introduction

A multi-agent path finding (MAPF) problem is defined by a graph,
G = (V,E), and a set of k agents labeled a1 . . . ak, where each
agent ai has a start position si ∈ V and goal position gi ∈ V .
At each time step an agent can either move to an adjacent location
or wait in its current location. The task is to plan a sequence of
move/wait actions for each agent ai, moving it from si to gi while
avoiding conflicts with other agents (i.e., without occupying the same
location at the same time) and minimizing a cumulative cost function.

Conflict-Based Search (CBS) [2] is a two-level algorithm for solv-
ing MAPF problems optimally. The high level imposes constraints
on the individual agents in order to find a conflict free set of paths.
The low level searches for a single agent path that is consistent with
the constraints imposed by the high level. In this paper we present
several CBS-based unbounded- and bounded-suboptimal (where a
bound on the quality is given) MAPF solvers which relax the high-
and/or the low-level searches, allowing them to return suboptimal so-
lution. We then present experimental results that show the benefits of
our new approaches.

2 The Conflict Based Search (CBS) Algorithm

A sequence of single agent wait/move actions leading an agent from
si to gi is referred to as a path, and we use the term solution to refer to
a set of k paths, one for each agent. A conflict between two paths is a
tuple 〈ai, aj , v, t〉where agent ai and agent aj are planned to occupy
vertex v at time point t. We define the cost of a path as the number of
actions in it (including wait), and the cost of a solution as the sum of
the costs of its constituent paths. A solution is valid if it is conflict-
free. A constraint for agent ai is a tuple 〈ai, v, t〉 where agent ai

is prohibited from occupying vertex v at time step t. A consistent
path for agent ai is a path that satisfies all of ai’s constraints, and a
consistent solution is a solution composed of only consistent paths.
Note that a consistent solution can be invalid if despite the fact that
the paths are consistent with the individual agent constraints, they
still have inter-agent conflicts.

CBS works in two levels. At the high-level, CBS searches a binary
tree called the constraint tree (CT). Each node N in the CT contains:
(1) A set of constraints (N.constraints), imposed on each agent.
(2) A solution (N.solution). A single consistent solution, i.e., one
path for each agent that is consistent with N.constraints.
(3) The total cost (N.cost). The cost of the current solution.

The root of the CT contains an empty set of constraints. A succes-
sor of a node in the CT inherits the constraints of the parent and adds

1 ISE Department, Ben-Gurion University, E-
mail:{max.barer,gunisharon,roni.stern,ariel.felner1}@gmail.com

a single new constraint for a single agent. N.solution is found by
the low-level search described below. A CT node N is a goal node
when N.solution is valid, i.e., the set of paths for all agents have no
conflicts. The high-level of CBS performs a best-first search on the
CT where nodes are ordered by their costs.

Processing a node in the CT: Given a CT node N , the low-
level search is invoked for individual agents to return an optimal path
that is consistent with their individual constraints in N . Any optimal
single-agent path-finding algorithm can by used by the low level of
CBS. We used A* with the true shortest distance heuristic (ignoring
constraints). Once a consistent path has been found (by the low level)
for each agent, these paths are validated with respect to the other
agents by simulating the movement of the agents along their planned
paths (N.solution). If all agents reach their goal without any con-
flict, this CT node N is declared as the goal node, and N.solution
is returned. If, however, while performing the validation a conflict,
〈ai, aj , v, t〉, is found for two (or more) agents ai and aj , the valida-
tion halts and the node is declared as non-goal.

Resolving a conflict: Given a non-goal CT node, N , whose solu-
tion, N.solution, includes a conflict, 〈ai, aj , v, t〉, we know that in
any valid solution at most one of the conflicting agents, ai or aj , may
occupy vertex v at time t. Therefore, at least one of the constraints,
(ai, v, t) or (aj , v, t), must hold. consequently, CBS generates two
new CT nodes as children of N , each adding one of these constraints
to the previously set of constraints, N.constraints.

3 Greedy-CBS (GCBS): Suboptimal CBS

To guarantee optimality, both the high- and the low-level of CBS
run an optimal best-first search: the low level searches for an optimal
single-agent path that is consistent with the given agent’s constraints,
and the high level searches for the lowest cost CT goal node. Greedy
CBS (GCBS) uses the same framework of CBS but allows a more
flexible search in both the high- and/or the low-level, preferring to
expand nodes that are more likely to produce a valid (yet possibly
suboptimal) solution fast.

Relaxing the High-Level: The main idea in GCBS is to prefer to
expand CT nodes that seems closer to a goal node (in terms of depth
in the CT). We developed a number of conflict heuristics that enables
to prefer ”less conflicting” CT nodes which are more likely to lead to
a goal node. We designate the best one by hc . hc counts the number
of pairs of agents (out of

(
k
2

)
) that have at least one conflict within

the pair. hc chooses the CT node with the minimal count.
Relaxing the Low Level: GCBS relaxes the low-level by giving

preferences to a single-agent path that is involved in less conflicts
with paths of other agents. The number of conflicts may be counted
in several ways (again hc was the best evaluation method). Note that

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 30 40 50 60 70 80 90 100 110

%
 S

O
LV

ED
 IN

ST
A

N
CE

S

AGENTS

CBS

BCBS(w,1)

BCBS(√w,√w)

BCBS(1,w)

ECBS

Figure 1: 32× 32 - 20% obstacles. w = 1.1

the path retruned by the low level must be consistent but, unlike CBS,
it may be suboptimal.

GCBS has the flexibility of using hc for either the high-level or
the low-level or for both. This last variant, designated by GCBS-HL
turned out to be the best.

3.1 Bounded suboptimal CBS
To obtain a bounded suboptimal variant of CBS we can implement
both levels of CBS by focal search. Focal search maintains two lists
of nodes: OPEN and FOCAL. OPEN is the regular OPEN-list of A*.
FOCAL contains a subset of nodes from OPEN. Focal search uses
two arbitrary functions f1 and f2. f1 defines which nodes are in FO-
CAL, as follows. Let f1min be the minimal f1 value in OPEN. Given
a suboptimality factor w, FOCAL contains all nodes n in OPEN for
which f1(n) ≤ w · f1min . f2 is used to choose which node from
FOCAL to expand. We denote this as focal-search(f1,f2).

High level focal search: apply focal-search(g,hc) to search the
CT, where g(n) is the cost of the CT node n, and hc(n) is the conflict
heuristic described above.

Low level focal search: apply focal-search(f ,hc) to find a consis-
tent path for agent ai, where f(n) is the regular f(n) = g(n)+h(n)
of A*, and hc(n) is the conflict heuristic described above, consider-
ing the partial path up to node n for ai.

We use the term BCBS(wH , wL) to denote CBS using a
high level focal search with wH and a low level focal search
with wL. BCBS(w, 1) and BCBS(1, w) are special cases of
BCBS(wH , wL) where focal search is only used for the high or low
level. In addition, GCBS is BCBS(∞,∞). For any wH , wL ≥ 1,
the cost of the solution returned by BCBS(wH , wL) is at most
wH · wL · C∗, where C∗ is the cost of the optimal solution.

3.2 Enhanced CBS
ECBS runs the same low level search as BCBS(1, w). Let OPENi

denote the OPEN used in CBS’s low level when searching for a path
for agent ai. The minimal f value in OPENi, denoted by fmin(i) is
a lower bound on the cost of the optimal consistent path for ai (for
the current CT node). For a CT node n, let LB(n) =

∑k
i=1 fmin(i).

It is easy to see that LB(n) ≤ cost(n) ≤ LB(n) · w.
In ECBS, for every generated CT node n, the low level returns

two values to the high level: (1) cost(n) and (2) LB(n). Let LB =
min(LB(n)|n ∈ OPEN) where OPEN refers to OPEN of the
high level. Clearly, LB is a lower bound on the optimal solution of
the entire problem (C∗). FOCAL in ECBS is defined with respect to
LB and cost(n) as follows:

FOCAL = {n|n ∈ OPEN, cost(n) ≤ LB · w}
Since LB is a lower bound on C∗, all nodes in FOCAL have costs
that are within w from the optimal solution. Thus, once a solution is
found it is guaranteed to have cost that is at most w · C∗.

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 10 12 14 16 18

%
 S

O
LV

ED
 I

N
ST

A
N

C
ES

AGENTS

GCBS-LH

MGS1

Figure 2: 5× 5 grid, 20% obstacles, success rate

The advantage of ECBS over BCBS is that while allowing the
low level the same flexibility as BCBS(1, w), it provides additional
flexibility in the high level when the low level finds low cost solutions
(i.e, when LB(n) is close to cost(n)). This theoretical advantage is
also observed in practice in the experimental results below.

4 Experimental results
We experimentally compared our CBS-based bounded suboptimal
solvers on a range of suboptimality bounds (w) and domains. Specif-
ically, for every value of w we run experiments on (1) BCBS(w, 1),
(2) BCBS(1, w), (3) BCBS(

√
w,
√
w), and (4) ECBS(w). We

also added CBS (=BCBS(1, 1)) as a baseline.
The success rate on a 32×32 grid are shown in Figure 1. The most

evident observation is that ECBS outperforms all the other variants.
This is reasonable as having w shared among the low and high level
allows ECBS to be more flexible than the static distribution of w
to wL and wH used by the different BCBS variants. We also com-
pared ECBS to other bounded suboptimal search algorithms that are
based on A*; results are omitted. ECBS tends to outperform these
algorithms in most of our settings but not in all of them.

We also compared GCBS-HL with parallel push and swap
(PPS) [1] and MGS1 [5], which are state-of-the-art unbounded sub-
optimal solvers. PPS was significantly faster than GCBS-HL and
MGS1 but returned solutions that were far from optimal, and up to 5
times larger than the solution returned by GCBS-HL. Thus, if a solu-
tion is needed as fast as possible and its cost is of no importance then
PPS, as a fast rule-based algorithm, should be chosen. The cost of the
solutions returned by GCBS-HL and MGS1 were almost identical.

On a 5 × 5 grid GCBS-HL outperforms MSG1 as shown in fig-
ure 2. In a 32 × 32 grid MSG1 outperforms GBCS-HL. They were
both equal on game maps (not shown). There is no universal winner
here as was also observed for MAPF optimal solvers [4, 2, 3]. Fully
identifying which algorithm works best under what circumstances is
a challenge for future work. In addition, other optimal MAPF algo-
rithms can be modified to their suboptimal counterparts.

Acknowledgments: this research was supported by the Israeli Sci-
ence Foundation under grant #417/13 to Ariel Felner.

REFERENCES
[1] Q. Sajid, R. Luna, and K. Bekris, ‘Multi-agent pathfinding with simulta-

neous execution of single-agent primitives.’, in SOCS, (2012).
[2] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘Conflict-based

search for optimal multi-agent path finding’, in AAAI, (2012).
[3] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘Meta-agent

conflict-based search for optimal multi-agent path finding’, in SoCS,
(2012).

[4] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, ‘The increasing cost
tree search for optimal multi-agent pathfinding’, Artif. Intell., 195, 470–
495, (2013).

[5] T. S. Standley and R. E. Korf, ‘Complete algorithms for cooperative
pathfinding problems’, in IJCAI, pp. 668–673, (2011).

