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Abstract

In this paper we explore a novel approach for anytime heuris-
tic search, in which the node that is most probable to improve
the incumbent solution is expanded first. This is especially
suited for the anytime aspect of anytime algorithms - the pos-
sibility that the algorithm will be be halted anytime through-
out the search. The potential of a node to improve the incum-
bent solution is estimated by a custom cost function, result-
ing in Potential Search , an anytime best-first search. Exper-
imental results on the 15-puzzle and the key player problem
in communication networks (KPP-COM) show that this ap-
proach is competitive with state-of-the-art anytime heuristic
search algorithms, and is more robust.

Introduction
Anytime algorithms are: ”algorithms whose quality
of results improves gradually as computation time in-
creases” (Zilberstein 1996). A typical run of an anytime al-
gorithm can be divided into three phases. First, a suboptimal
solution is quickly found. Then, the search continues find-
ing better and better solutions. Finally, the algorithm verifies
that no better solution exists, returning the optimal solution.
After the first solution has been found, anytime algorithms
are designed to always return a solution if they are halted.
The best solution found at each stage is commonly referred
to as the incumbent solution.

Unlike contract algorithms which are given a runtime
limit a priori, anytime algorithms can be halted at any-
time. Therefore, rapidly improving the incumbent goal cost
should be the main focus of anytime algorithms. Assume
that it is possible to calculate the probability of any given
node to lead to a goal with lower cost than the incumbent
goal cost. We propose the following approach: expand the
node that is most probable to lead to a solution with lower
cost than the cost of the incumbent solution. This is different
from most algorithms that use variants of fw = g + w · h
as they prioritize nodes that are closest to any goal without
considering the cost of the incumbent solution.

For example, consider Figure 1 where node S is the initial
node and G is the goal. Nodes A and B are in the openlist
and a path from S to G with cost 100 has been previously
found (cost of incumbent solution = 100). Let f̂ be the cost
function used by the given algorithm, e.g., fw for w ≥ 1.
In addition, assume that p(n) is the probability of finding

a better cost than 100, via node n. Most anytime heuristic
search algorithms will choose to expand node B due to its
lower f̂ cost. We propose to expand node A, because it is
more probable to lead to a solution with lower cost than the
incumbent solution. This especially suits anytime behavior,
as a solution may be requested anytime during the search.
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Figure 1: Example of expansion dilemma.

Potential Search
We refer to the probability that a node n will lead to a bet-
ter solution than the incumbent solution as the potential of
a node and denote it as p(n). This probability can be for-
mally defined as follows. Let g(n) be the cost of the lowest
cost path found so far from the initial state to n, h∗(n) as
the cost of the lowest cost path from n to a goal and UB
as the cost of the incumbent solution. A node will improve
the incumbent goal if g(n) + h∗(n) < UB. If h∗(n) is
known then the potential is a binary function, returning one
if g(n)+h∗(n) < UB and zero otherwise. However, h∗(n)
is usually unknown before finding the optimal solution (oth-
erwise finding the shortest path would be trivial). This leads
to the following natural definition of the potential of a node:

Definition 1 Potential. The potential of node n, denoted
p(n), is the probability that g(n) + h∗(n) < UB.

If the error of h(n) with respect to h∗(n) grows linearly
with h(n), then the potential of a node can be estimated ac-
curately with the cost function plr(n) = h(n)

UB−g(n) . The in-
tuition behind plr(n) is as follows. UB − g(n) is an upper
bound on the search distance to a goal under node n that may



improve the incumbent solution.1 h(n) is a lowerbound on
the search distance to a goal from n. Therefore, 1- h(n)

UB−g(n)

is an estimate of the potential of node n to improve the in-
cumbent goal cost. It can be proven that if h∗(n) = X ·h(n)
for an independent random variable X , then using plr as a
cost function according to which nodes are expanded results
in an expansion order that is exactly the same as using p(n).
Potential Search is a best-first search implementation that
uses plr as a cost function.

Experimental results
We first evaluated the performance of Potential Search on
the standard 100 random instances of the 15-puzzle. As
a benchmark, we have also implemented AWA∗ (Hansen
and Zhou 2007) and Optimistic search (Thayer and Ruml
2008).AWA∗is an anytime variant of WA∗that continues to
run WA∗with the same weight even after a solution is found.
Optimistic search uses two cost functions: an admissible
heuristic h and an inadmissible heuristic ĥ that more ac-
curately estimates the cost to the goal. Optimistic search
chooses to expand the node with the lowest g + ĥ, but
switches to using g + h if all the nodes in OPEN will not
improve the incumbent solution according to ĥ In our exper-
iments we have used WA∗with various weights as the inad-
missible heuristic.

Figure 2 shows the results of Potential Search Vs. Opti-
mistic Search. The x-axis denotes the runtime, and the y-
axis displays the solution quality (the depth of goal found
divided by the optimal goal depth). The rightmost point in
the x-axis denotes the average runtime required for A∗to
find the optimal solution. As can be seen, when using
the same weight Potential Search always outperforms Op-
timistic Search. In this domain, AWA∗and Potential Search
displayed similar performance.
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Figure 2: 15-puzzle, solution quality Vs. Runtime, Optimistic

The second domain which we experimented on is the
key player problem in communication networks (KPP-
COM) (Puzis, Elovici, and Dolev 2007). This is the problem
of finding the set of k nodes with the highest group between-
ness centrality (Everett and Borgatti 1999) in a graph. This

1We assume here a domain with unit edges cost. With variable
edge cost we would use instead a search distance estimate d(n).

problem has several real-life applications in networking and
security. While this problem is NP-Complete, search tech-
niques can be used to find high quality solutions. In addition
there exists effective admissible heuristics for this problem,
see (Puzis, Elovici, and Dolev 2007) for more detailed dis-
cussion on this heuristic and the KPP-COM problem. As a
benchmark we implemented DFBnB in addition to Potential
Search , AWA∗and Optimistic search.

Since the main motivation for KPP-COM problem is in
communication network domains, scale free graphs gener-
ated according to the Barabasi-Albert model (Barabasi and
Albert 1999) were used in all the experiments. This model is
a well-used model of Internet topology and the web graph.
Figure 3 presents a small representing subset of the experi-
ments, displaying the average results on 100 different graphs
with 600 nodes, density of 2 and a desired group size of 20.
The x-axis denotes the runtime and the y-axis the solution
quality (best utility found divided by the optimal utility).
As can be seen, Potential Search outperforms all other al-
gorithm, albeit only slightly against DFBnB.
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Figure 3: KPP-COM, 600 nodes, density 2

There are many future direction for this work. Improving
potential function to incorporate search effort as well as so-
lution quality estimates is one such direction. Another direc-
tion is to combine Potential Search with a contract algorithm
when some knowledge of the halting time is given.
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