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Abstract

The attainability of the Hashin–Shtrikman bounds by a class of sequentially laminated composites with prescribed and
generally different volume fractions of the core laminates at each rank is well-known. It is demonstrated that in the limit
of a rank-infinity laminate these bounds are attained by choosing identical volume fractions for the core laminates. 2002
Elsevier Science B.V. All rights reserved.
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Lurie and Cherkaev [1], Milton [2] and Francfort
and Murat [3] demonstrated that certain classes of
sequentially laminated composites attain the Hashin–
Shtrikman bounds. The number of times the laminat-
ing sequence is repeated is denoted as therank of the
laminate. A rank-1 laminate is constructed by layering
two materials in an alternate order (Fig. 1). A rank-2
laminate is constructed by layering a core rank-1 lami-
nate with a third phase (Fig. 2). Higher rank laminates
are constructed through a sequence of similar layering
procedures.

As was noted by Bruggeman [4], the overall proper-
ties of these sequentially laminated composites can be
determined exactly since, when subjected to uniform
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boundary conditions, the fields within the compos-
ite are piecewise constant. This statement holds only
when the thickness of the layers in the core laminate
is sufficiently small so that the lamina can be regarded
as a homogeneous phase in the subsequent layering
stage [2]. In this Letter the lamination sequence is fol-
lowed to determine the effectiveelastic properties of
a two-dimensional, incompressible rank-infinity lami-
nated composite.

Consider a two-dimensional laminated compos-
ite constructed by layering a pair of incompressible
isotropic constituents in volume fractionsc(1) and
c(2) = 1−c(1). In the following, superscripts with Ara-
bic numerals or lowercase letters indicate properties
associated with the constituting homogeneous phases
whereas superscripts with Roman numerals or upper-
case letters indicate the rank of the lamination. The
unit vectors normal and along the layers aren̂ andm̂,
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Fig. 1. A rank-1 laminated composite.

Fig. 2. A rank-2 sequentially laminated composite.

respectively. Within each phase the stress strain rela-
tion may be expressed in the form
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)
are the deviatoric and inplane shear stress components,
respectively. Their shear strain counterpartsγd andγn

are defined analogously in terms of the strain tensor
ε. In (1), µ(r) are the shear moduli of the phases, and
the symbol⊗ denotes the direct or the outer product
between two vectors.

The continuity conditions across the interfaces are(
ε(1) − ε(2)

) · (m̂ ⊗ m̂
)= 0,

(2)
(
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) · n̂ = 0.

The mean stress and the strain tensors are, respec-
tively, σ̄ = c(1)σ (1) + c(2)σ (2) and ε̄ = c(1)ε(1) +
c(2)ε(2). The continuity of the inplane shear stress
componentτn implies that
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From the incompressibility conditionε · (n̂ ⊗ n̂ + m̂ ⊗
m̂) = 0, and the first of (2),

τ
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A weighted sum over the two equations of (4) to-
gether with the incompressibility equation, leads to
the relationτ̄d = 2(c(1)µ(1) + c(2)µ(2))γ̄d . In conjunc-
tion with (3), the relation between the mean stress and
strain may be expressed in the form
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where the effective shear moduli of the laminate are

µ
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d = c(1)µ(1) + c(2)µ(2),

µ(I)
n =

(
c(1)

µ(1)
+ c(2)

µ(2)

)−1

,

and where the superscript I identifies properties asso-
ciated with the rank-1 laminate.

Consider next a rank-2 laminate constructed by lay-
ering layers of the above described rank-1 laminate
in volume fractionc(II) with an isotropic (incompress-
ible) homogeneous phase with a shear modulusµ(3).
The superscript II refers to properties associated with
the rank-2 laminate. The lamination direction is such
that the angle between the normals to the layers of the
rank-2 and the core laminates isπ/4 (α in Fig. 2). In
terms ofn̂ andm̂, the unit vectors normal and along
the layers of the rank-2 laminate, the stress strain rela-
tion of the core rank-1 laminate is
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The stress strain relation for the third isotropic phase is
in the form of Eq. (1), and the continuity conditions are
identical to (2). As before, the mean stress and strain
are σ̄ = c(II)σ̄ (I) + (1 − c(II))σ (3) and ε̄ = c(II)ε̄(I) +
(1 − c(II))ε(3). Following precisely the same steps
followed in going from (1) to (5), the relation between
the mean stress and strain of the rank-2 lamina may be
expressed in the form
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where
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A rank-3 laminate can now be constructed by lami-
nating the rank-2 laminate as the core phase with an
isotropic phase in volume fractionsc(III ) and (1 −
c(III )), respectively. Once again, the lamination direc-
tion is rotated byπ/4 relative to the lamination direc-
tion of the rank-2 composite. The effective shear mod-
uli µ

(III )
d andµ

(III )
n will be functions ofµ(II)

n andµ
(II)
d ,

respectively.
Consider a sequentially laminated composite con-

structed by layering, at each stage, a core rank-(N − 1)

laminate with one of the constituent phases, say
phase 2. At each successive rank the lamination direc-
tion is rotated byπ/4. Following the steps followed in
going from (6) to (7), the effective shear moduli of a
rank-2N composite are
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and where, for consistency, the rank-0 laminate is
defined as the constituting phase 1. In terms of the
properties of the rank-(2N − 2) laminate,
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The first of (8) can be simplified by substituting
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where it is noted that

c(1) =
2N∏
J=1

c(J ).

If the volume fractions of the core laminates within the
preceding ranks are all equal, that isc(J ) = 2N

√
c(1),

J = 1,2, . . . ,2N , the expression for̂µ(2N)
d further
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The second term, which is the sum of a geometric
series, can be readily determined. Thus,
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In the limit asN becomes large,
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c(1) → 1 and
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From definition (9), together with the fact thatµ
(0)
d =

µ(1), it can be shown that
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.

It is noted that (11) is precisely the expression for
the Hashin–Shtrikman bound for statistically isotropic
two-dimensional composites (e.g., [5]).

In a similar manner, the second of (8) can be
modified by defining
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to obtain an expression for̂µ(2N)
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which is identical to the one obtained in (10) forµ̂
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Therefore, in the limit of largeN and equal volume
fractions of the core laminates in the subsequent ones,
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From definition (12), it follows that in the limitN →
∞ the expression forµ(∞)

n is identical to the one
obtained for µ

(∞)
d in (11). Thus, the above con-

structed rank-infinity laminated composite assumes
isotropic elastic symmetry and attains the correspond-
ing Hashin–Shtrikman bounds.

In conclusion, we note that analogous procedure
can be repeated for the corresponding transport prob-
lems of conductivity, thermal conductivity and the di-
electric and magnetic behavior of heterogeneous me-
dia. This is due to the similarity between the above de-
scribed set of equations characterizing the continuity
conditions and the constitutive relations in plane-strain
incompressible elasticity and the corresponding set of
equations for the two-dimensional transport problem.
The only difference being the relative lamination angle

at each lamination stage which isπ/2 for the trans-
port problem instead ofπ/4 for the problem consid-
ered herein.
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