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Abstract

This work is concerned with the determination of the effective behavior of sequentially lami-
nated composites with nonlinear behavior of the constituting phases. An exact expression for the
effective stress energy potential of two-dimensional and incompressible composites is introduced.
This allows to determine the stress energy potential of a rank-N sequentially laminated compos-
ite with arbitrary volume fractions and lamination directions of the core laminates in terms of
an N-dimensional optimization problem.

Stress energy potentials for sequentially laminated composites with pure power-law behavior
of the phases are determined. It is demonstrated that as the rank of the lamination becomes
large the behaviors of certain families of sequentially laminated composite tend to be isotropic.
Particulate composites with both, stiffer and softer inclusions are considered. The behaviors of
these almost isotropic composites are, respectively, softer and stiffer than the corresponding
second-order estimates recently introduced by Ponte Castafieda (1996).
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The evaluation of the constitutive properties of composite materials is a classical
problem in physics of solid state. The main idea is to define these properties in
terms of the effective, or overall, energy of the heterogeneous system resulting from
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special classes of uniform boundary conditions. The effective energy function involves
dependence on the properties of the constituents phases as well as on microstructural
parameters such as the volume fractions of the constituents. Required conditions for
a coherent definition of the effective energy function were stated by Hill (1963) and
Hashin (1964). Principally, it is required that the size of a typical heterogeneity is
small compared to the size of the specimen under consideration. For a summary of
recent methods available for characterizing the overall properties of composites with
nonlinear constitutive behavior of the phases we refer the reader to Ponte Castafieda
and Suquet (1998).

Different methods have been proposed to predict the effective properties of hetero-
gencous systems. These can be classified into three main categories. The first deals
with the development of approximate models that capture the essential features of the
microstructure. Effective medium theories such as the self-consistent scheme (Kroner,
1958) and the generalized self-consistent scheme (Christensen and Lo, 1979) are exam-
ples of such approximate models. Budiansky and Wu (1962) and Hill (1965) extended
these concepts to the class of nonlinear composites, and Hutchinson (1976) made use
of these extensions for estimating the effective properties of polycrystals. In the con-
text of the transport problem, Stroud and Hui (1988) and Zeng et al. (1988) obtained
expressions for the effective behavior of weakly nonlinear composites accurate to the
first order in the nonlinear term. Ponte Castaneda (1991) introduced a method for
extending such estimates obtained for classes of linear composites to corresponding
classes of nonlinear composites with identical microstructure. More advanced estimates
for the behavior of nonlinear composites, which are accurate to the second order in
the contrast, were recently introduced by Ponte Castafieda (1996).

The second category deals with the determination of the range of possible behav-
iors for a given composite class. This approach characterizes the effective behavior of
classes of heterogeneous systems by specifying bounds on the effective properties. A
well-known example of this approach are the Hashin and Shtrikman (1962) bounds
on the effective properties of statistically isotropic composite materials. Willis (1977)
derived these bounds differently, extending them to classes of anisotropic composites
with anisotropic constituents. Milton and Kohn (1988) extended the Hashin—Shtrikman
inequalities to arbitrary dimension via the relations between the eigenvalues of the effec-
tive tensors and the anisotropic comparison media. Talbot and Willis (1985) proposed
an extension of the Hashin—Shtrikman variational principles to nonlinear composites.
Talbot and Willis (1992) applied this method to calculate bounds on the effective
properties of nonlinear composites. Ponte Castafieda (1992a) developed a variational
method aimed at studying the effective properties of nonlinear composites from which a
strict lower bound and an estimate for the upper bound can be generated. Applications
of this method to the class of transversely isotropic fiber-reinforced composites have
been carried out by deBotton and Ponte Castafieda (1993). Interestingly, by application
of a different method, Suquet (1993) arrived at bounds and estimates for the class of
power-law hardening materials which coincide with those obtained by Ponte Castanieda
(1992a). Whereas the above-mentioned methods for nonlinear composites result in a
single side bound for the effective energy and an estimate for the other bound, Tal-
bot and Willis (1997) developed a method for determining the “other” bound, and
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Fig. 1. A rank-1 laminated composite.
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Fig. 2. A rank-2 sequentially laminated composite.

used it to obtain a corresponding bound for the class of isotropic power-law hardening
composites.

The third category is based on identifying specific microstructures for which the
effective properties can be obtained exactly. An example of this approach is the com-
posite-sphere assemblage of Hashin and Shtrikman (1962). Suquet (1987) developed
a systematic method for determining the exact effective properties of composites with
periodic structure. An important class of composites for which the effective properties
can be determined exactly is the class of sequentially laminated composites. A sim-
ple laminated composite, denoted as a rank-1 laminate, is constructed by layering two
materials in an alternate order (Fig. 1). A rank-2 laminate is constructed by layering
a rank-1 composite as a core phase with yet another constituent phase as illustrated
in Fig. 2. A rank-N composite is constructed by following this procedure N times.
It was realized by Bruggeman (1935) that when the thickness of the core laminate
used to create the next rank lamina is sufficiently small, the effective properties of the
resulting composite can be determined exactly since the local fields are piecewise con-
stant. Schulgasser (1976) made use of this technique to demonstrate the optimality of
the Voigt bound for classes of statistically isotropic polycrystals. Lurie and Cherkaev
(1984), Milton (1986) and Francfort and Murat (1986) demonstrated that certain com-
posites belonging to this class can be constructed so that their effective properties attain
the Hashin—Shtrikman bounds. The construction of these extremal structures demon-
strated in fact the optimality of the Hashin—Shtrikman bounds on the effective shear
modulus. A somewhat different family of composites, also attaining these bounds, was
constructed by Norris (1985). Kohn and Lipton (1988) introduced an optimal bound
for anisotropic three-dimensional composites which is sharper than the classical lower
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bound. Extensions of these ideas to the class of anisotropic composites were carried out
by Milton (1986), who explored the general relations between the functional form of
the bounds and the corresponding laminated microstructures attaining them. deBotton
and Ponte Castafieda (1992) provided an expression for the exact energy function of a
rank-1 nonlinear laminate, and demonstrated that it attains the nonlinear classical Reuss
and Voigt bounds. It was further shown that these expressions can be derived from
the variational principle of Ponte Castafieda (1991) or, alternatively, directly from the
classical principles of minimum energy. Ponte Castafieda (1992b) demonstrated that,
unlike the case with linear composites, isotropic rank-2 nonlinear sequentially laminated
composites cannot be constructed.

The present work deals with the class of nonlinear sequentially laminated composites
in the limit of a large lamination sequence. It is demonstrated that as the rank of the
lamination increases the behaviors of certain sequentially laminated composites tend
to be isotropic. The paper is structured as follows. In Section 2 the definition of the
effective properties is reviewed and their characterization in terms of the classical vari-
ational principles is given. In Section 3 a method for determining the effective energy
function of sequentially laminated composites with arbitrary microstructure is intro-
duced. Numerical results for certain families of composites with pure power-hardening
behavior of the phases are provided in Section 4, and a comparison with different avail-
able bounds and estimates is carried out. Some concluding remarks are finally given
in Section 5.

2. Effective properties and the classical variational principle

Consider an n-phase composite occupying a unit volume 2, with boundary 0Q2. Each
homogeneous phase in the composite occupies a volume Q). »=1,2,...,n. The stress
strain relations are characterized via strain energy density functions () such that in
each phase

ow®
O','j =

(&) (1)

68,»]-
The strain energy density of the composite, in terms of the strain energy densities of
the phases, is

W(ex)=> /W), (2)
r=1

where the characteristic function of the rth phase is such that y) =1 if x is in phase
r and y") =0 otherwise. The volume fraction of the rth phase is

) = / 77 (x) dx.
Q

Following Hill (1963), the constitutive law defining the relation between the mean
stress

6= /Q 1(x)e(x) dx (3)
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and the mean strain &, which is defined in a similar way in terms of &(x), may be
expressed in the form
oW

Gij = (8). (4)
The effective strain energy function W is determined via the principle of minimum
energy, namely

W(&)= inf_ {/ W(s,x)dx}, (5)
ek @) LJo
where
K(g)= {s|sij = %(u,-,j +u;;)in Q, wu; =&;x; on 89} ,

is the set of admissible strains and u(x) is a displacement field which is continuous
across the interfaces between the phases.

A dual formulation can be given by means of the principle of the minimum com-
plementary energy in terms of the stress density potential

Ue,x)=Y_7"(x)U"(0), (6)
r=1

where U are the stress energy potentials of the phases and in each phase

U™
&ij = aGij (G’)

The effective stress energy function is

U(6)= inf_ {/ U(a,x)dx}, (7)
ocs@6) Jo
where
S(O'_):{0'|U,'j’j:0 in Q, o,»jnj:@jnj on aQ},

is the set of admissible stresses that satisfy the traction continuity conditions across the
interfaces between the phases. The effective stress—strain constitutive relation is then

&= @(5). (8)

For the sake of conciseness, the rest of the paper is written using the constitutive
formulation based on the complementary energy function.

3. Sequentially laminated composites

As mentioned in Section 1 the construction of a laminated material consists of
layering alternate slices of the two constituent phases. The direction normal to the
layers plane is defined as the laminate direction (lﬁm in Fig. 1). The next rank laminate
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is obtained by layering this laminate as the core phase with a third phase, possibly in
a different layering direction (e.g. m™ in Fig. 2). Clearly, the material from which
the third phase is made out of may be identical to one of the constituent materials
composing the core laminate itself.

If we begin the procedure with a rank-1 material made out of two isotropic phases
and repeat the layering process N times while layering the homogeneous phase 2 with
the nonhomogeneous core laminate from the previous rank, we end up with a rank-N
sequentially laminated composite. An important observation concerning this procedure
is that the length scale of the core laminates is assumed to be small compared with
the length scale of the embedding ones. This requirement allows for the effective
properties to be determined precisely since at each stage the core laminate can be
treated as a homogeneous material. Further, it is recalled that when this sequentially
laminated composites are subjected to uniform boundary conditions, the stress and the
strain fields are piecewise-constant with a different constant in each phase.

The complementary energy density function of a rank-1 sequentially laminated com-
posite is determined via Eq. (6). In the case of isotropic and incompressible constituent
phases the stress energy potentials U)(¢) depend only on the two invariants of the
stress deviators S = ¢ — %(0‘ - I) within each phase. Without loss of generality, un-
der plane strain conditions the stress energy potentials can be expressed in terms of a
two-dimensional “reduced” stress tensor (see Appendix)

L=(P; 6)P;+ (P, 6)P,, 9)
in the form

U(e)=y"(X), r=1,2, (10)
where

Pd:%(lﬁ®rﬁ—ﬁ®ﬁ),
Pm:%(rﬁeaﬁ—&-ﬁ@lﬁ) (11)

and where n and m are two orthogonal unit vectors in the deforming plane under
consideration. It is further noted that X -X=S-S.

Consider a rank-1 lamina subjected to a uniform traction field which is compatible
with a constant stress matrix X. The composite is made out of a core and a matrix
phases which are characterized, respectively, by the energy density functions (! and
). The volume fraction of the core phase is ¢ and that of the matrix is (1 — ().
The superscript / refers to quantities associated with the rank-1 laminate. The normal
to the layers is denoted m", and the corresponding projections defined in (11) are PS)
and P{)). The traction continuity condition across the interfaces (2(1) — E(z)) =0,
implies that

PS’{) -Z(I)ZPE,{) 'E(Z)ZPEVIL) LY. (12)
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From Eq. (3) we have (recall that the stresses are constant within each phase)
P (cDZ® (1 - D)) =P . £,
Following deBotton and Ponte Castafieda (1992), we define
PS) (D —x®y = w(l)pg) X
and hence, in terms of o,
PS) D (141 - c(T))w(l))pg) X,
PP . 2@ =1 — Dp®)ph . £, (13)

Finally, from the principle of minimum complementary energy (7) together with Eqgs.
(9), (12) and (13), the effective stress potential of the rank-1 laminate may be expressed
in the form:

S = inf (YOI + (1 = D)) (PP PP + (P £)PY]

+(1 = D1 = DoM(PY - E)PY + (P - £)PY]} (14)

A rank-2 sequentially laminated composite is constructed by layering layers of the
rank-1 laminate as the core phase in volume fraction ¢ with layers of the matrix
phase in volume fraction (1 —c¢(D). The normal to the layers direction is " and the
corresponding projections are PEIH) and PV, The resulting structure corresponds to a
particulate composite with distinct inclusions of the first homogeneous material and a
continuous matrix phase of the second homogeneous material. The volume fraction of
the inclusions’ phase is ¢! = ¢, When a uniform traction field compatible with
a constant stress matrix X is applied on the boundaries of the rank-2 composite, the
stress fields £ in the core and £ in the matrix phases are uniform. It is emphasized
that the stress field in the layers of the matrix phase in the core rank-1 laminate is
also uniform but, in general, with a value different from £®. As in Eq. (12), from
the traction continuity condition across the interfaces

In a manner similar to the one followed for the rank-1 composite, we express the differ-
ence between the deviatoric projections of ! and £ in terms of w™. Consequently,
we have that

Py 2O = (14 (1 - cM)oMPiV . £,
PV E? = (1 — Me)pih . L., (16)

The stresses in the core and the matrix phases can be expressed in terms of the
corresponding two pairs of projections determined in Egs. (15) and (16). From the
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principle of minimum complementary energy, the stress energy potential of the rank-2
sequentially laminated composite is then

PN &y . ~(1) - _
v (E) = inf {cDPTIA + (1= M) E)P + (LD - Z)PLD]
+ (1= M1 = ayPEY - £PGY + (P - DIPT (1)

where lﬂ(l) is determined from Eq. (14).

By following the same steps followed for the ranks-1 and 2 composites higher order
sequentially laminated composites can be constructed. At each rank, the corresponding
stress energy potential is determined with an additional optimization variable that cor-
responds to the difference between the deviatoric projections of the stresses in the core

. . . AN
and the matrix phases. Thus, in terms of the stress energy potential w( ) of a core
rank-(N — 1) sequentially laminated composite, the potential of a rank-N composite
subjected to a uniform traction field compatible with a uniform stress X is
V)

PV E) = inf (P + (1= ™)@ £)PY 4 (PO £)POY)
(/UN

+(1 = A1 = MMy P . £)pY) 4 (PY) . £)PMIT,
(18)

In the above expression the projections PfiN) and P$") are derived via Eq. (11) with
") a unit vector normal to the layers of the rank-N composite. The volume fraction

of the inclusions phase is
N
c‘”zch. (19)
J=1

The expression obtained in Eq. (18) enables one to determine the exact stress energy
potential for any incompressible sequentially laminated composite under plane strain
conditions. The number of optimization variables is equal to the rank of the composite.
It is noted that, due to the convexity of the optimization functionals, the optimization
can be performed as a single N-dimensional optimization problem instead of N iterated
one dimensional optimizations.

4. Applications to pure power-law composites

It is known that two-phase linear sequentially laminated composites of rank greater
than, or equal to, the dimension of the underlying space can be constructed to admit
overall isotropic behavior. This is accomplished by appropriate choice of the relative
volume fractions and the layering directions of the core laminates at each step (Tartar,
1985). Ponte Castafieda (1992b) determined the effective potentials of ranks-2 and 3
nonlinear sequentially laminated composites and demonstrated that, unlike their linear
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counterparts, these materials cannot be constructed to behave isotropically. In this sec-
tion we make use of the general iterative procedure developed in the previous section
to determine the effective behavior of high-rank sequentially laminated composites with
power-law behavior of the constituent phases. It is demonstrated, albeit numerically,
that as the rank of the sequentially laminated composites becomes large the overall
behavior of these materials tends to be isotropic.

Consider a sequentially laminated composite made out of two isotropic phases with
stress energy functions

0 n+1
x//(")():):yoto (\/(1/2)Z-E> =12 20)

n-+ 1 ‘Eg)

where n is the hardening exponent, ), is a reference shear strain, and ‘cg) are the
reference shear stresses of the two phases. In the limit » = 1 the phases are linear
with shear moduli 7:(0’)/))0, and in the limit of rigid-perfectly plastic behavior (i.e.,

(r)
0

n — o0), 1, are the yield shear stresses.

In the following we take r(()l) > Tg)z) and construct two complementary families of
sequentially laminated composites. The first, with stiff inclusions and a softer matrix,
is constructed by layering at each rank layers of the core laminate with layers of the
material with reference stress rf)z). The second family, with a stiffer matrix phase, is
constructed by using the material with the reference stress ‘cgl) as the matrix phase.
There is clearly an infinite number of ways to realize these materials by choosing
different volume fractions and lamination directions of the core laminates at each stage.
Here, we proceed in the simplest way of choosing an identical volume fraction for the
core laminates at each rank, and a fixed lamination angle of each successive rank with
respect to the lamination direction of the core laminate. From Eq. (19), in a rank-N
composite the fixed volume fractions of the core laminates are

M =V, J=12,...,N,

where the ¢ is the volume fraction of the stiffer and the softer phases in the two fam-
ilies of composites. The lamination direction of each rank, relative to the corresponding
direction in the core lamina, is

a:n(%), 1)

where the number of rounds 7 is the number of times the absolute lamination direction,
measured relative to the initial rank-1 laminate, has been repeated during the lamination
sequence.

Uniform boundary conditions, which are compatible with a constant stress of the
form

¥ = v/2(cos 20P, + sin 20P,,)

are applied, and the effective stress energy potentials of the sequentially laminated
composites are determined for different values of 0 by application of Eq. (18). As
mentioned before, the optimization problem is solved as an N-dimensional optimization
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Table 1
Mean values of 7% )/152) and their maximal variations with 6 for n =3

Rank 4 8 16 16 32 64 64

o /4 /8 /4 /8 /8 /8 /16

n 1 1 4 2 4 8 4

Family 2 TN D) 1.192 1.194 1.192 1.194 1.194 1.194 1.194
A% 2.80 0.57 2.65 047 0.41 0.40 0.08

Family 1 T D) 1.147 1.145 1.145 1.143 1.143 1.143 1.143
A% 5.00 2.13 3.85 1.08 0.50 0.28 0.50

problem. Since the equations are homogencous of degree n + 1, the effective potential
of the pure power-law hardening sequentially laminated composite can be expressed in
the form

o g 20E0) <\/(1/2)>i ' z‘)"“

where 7 is an effective reference shear stress which is a function of 0.
The variations of T®) as functions of 0 for sequentially laminated composites of

ranks 16 and 64, normalized by ‘cf)z), are shown in Fig. 3. The hardening exponent is

n=13, the contrast between the properties of the constituting phases is ‘cf)l) /182) =2, and
the volume fraction of the stiffer phase is ¢! =0.25. Fig. 3a corresponds to the case
of a fixed number of rounds # =4 where the relative lamination angle « is determined
according to Eq. (21). Results for a rank-1 composite are shown for comparison.
Fig. 3b depicts the variation of ©"') when the relative lamination angle is kept fixed
o=m/8 while this time, the number of rounds (77) is obtained from relation (21). Both
families of composites, with the harder and the softer inclusions, are shown in the
figures. The curves for the rank 16 and 64 composites are the continuous ones which
are marked by squares and circles, respectively. The curves for the first family, with
the harder inclusions, are marked with dark markers and those for the second family
are marked with clear markers. It is noted that the composites with the stiffer inclusions
are essentially the softer ones and hence the curves corresponding to this family are
in the lower sections of the plots. The continuous, unmarked curves correspond to the
rank-1 laminate and these are of course identical for the two families.

It is evident that as the rank of the sequentially laminated composites increases, the
variations of T) with 0 become smaller, suggesting that the overall behavior tends
towards an isotropic one. In fact, regardless of the precise lamination procedure (i.e.,
figure a or b), and for both families, the variations between the maximal and the
minimal values of 7®* are smaller than 0.5%. The mean values of 7" as functions
of 0 and the corresponding maximal variations are summarized in Table 1 for different
sequentially laminated composites.

It is interesting to note that the variations in £Y) depend on the lamination process.
When the inclusions are stiffer, it seems that for the same rank, smaller variations
are obtained by increasing the number of rounds while the relative lamination angle
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Fig. 3. W) as functions of 0 for rank 16 (squares) and 64 (circles) sequentially laminated composites
with hardening exponent n = 3. Figs. 3a and b correspond to different lamination sequences. The dark and
clear marks are for the composites from the first and the second families, respectively. Also shown are (1)
(unmarked curves), the Reuss and Voigt bounds (clear triangles) and the Hashin—Shtrikman bounds and
estimates of Ponte Castafieda (1992a) (dark triangles).

o is relatively large. On the other hand, for the second family, the variations in the
effective reference stress are smaller when both, the lamination angles and the number
of rounds, are relatively small.
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Fig. 4. ) as functions of 6 for rank 32 (squares) and 64 or 96 (circles) sequentially laminated composites
with hardening exponent n=10. The dark and clear marks are for the composites from the first and the second
families, respectively. Also shown are (!) (unmarked curve), the classical Reuss and Voigt bounds (clear
triangles) and the Hashin—Shtrikman bounds and estimates of Ponte Castafieda (1992a) (dark triangles).

For comparison, also shown in Fig. 3 are the classical Voigt and Reuss bounds which
are marked by short dashed curves. As expected, at 6 =0 and 7/4 these bounds are
attained by the rank-1 laminate. The Hashin—Shtrikman lower bound and the estimate
for the upper bound of Ponte Castaneda (1992a) are shown by the top and bottom long
dashed curves, respectively (see also Suquet, 1993; deBotton and Ponte Castaiieda,
1993). It is noted that the curves for the high-rank sequentially laminated composites
do not violate the bound. However, the curves corresponding to the softer family of
composites lie well below the estimate for the upper bound. This result is in agreement
with the higher order estimates determined recently by Ponte Castafieda (1996).

The effective reference stresses, as functions of 0, for sequentially laminated com-
posites with a higher hardening exponent » = 10, are shown in Fig. 4 for the two
complementary families. The contrast between the properties of the two phases is
41/1Y =2, and the volume fraction of the stiffer phase is ¢!’ =0.25. It is anticipated
that as the hardening exponent becomes large the variations in 7?)(0) increase. For
the first family of composites variations smaller than 0.5%, as those obtained for n=3,
were achieved only with rank-96 sequentially laminated composites. The continuous
curves correspond to the results determined for rank-32, 64 for the second family and
96 for the first family of composites. The curves for the ranks 32, 64 or 96 compos-
ites are marked, respectively, by squares and circles. The dark markers correspond to
the family of composites with the stiffer inclusions and the clear markers to the sec-
ond family with the softer inclusions. The unmarked curve is for the common rank-1
laminate.
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Table 2
Mean values of 7V )/152) and their maximal variations with 6 for n = 10

Rank 8 16 32 64 64 96 96
o /8 /8 /8 /8 /16 /8 /16
n 1 2 4 8 4 12 6
Family 2 TN D) 1.189 1.189 1.187 1.188 1.190
A% 1.30 1.26 1.20 1.20 030
Family 1 T D) 1.070 1.067 1.066 1.066 1.065 1.066
A% 333 2.00 0.60 0.60 0.86 0.40

As before, the variations of 7% )(()) for two different composites with the same rank
depend on the lamination sequence (as in Fig. 3a and b). Large n and o result in
smaller variations for the first family and vice versa. The results depicted in Fig. 4
correspond to those for which the variations in 6 are the smallest. The average values
of T™), their maximal variation with 0 and the lamination sequence are summarized
in Table 2.

Also shown in Fig. 4 are the short dashed upper and lower curves that correspond
to the classical Voigt and Reuss bounds. The upper and lower long dashed curves
correspond, respectively, to the Hashin—Shtrikman lower bound and the estimate for
the upper bound of Ponte Castaneda (1992a). The curves for the high-rank sequentially
laminated composites do not violate any of the bounds. The curves for the first family
of composites, with the stiffer inclusions, are closer to the Reuss upper bound than
they are to the estimate of Ponte Castaneda (1992a) for the upper bound.

In Fig. 5 the average values of 7 )(6), normalized by 1(02), as functions of the hard-
ening exponent n are shown for the two families of sequentially laminated composites.
The curves are plotted versus the reciprocal of the hardening exponent. The volume
fraction of the stiffer phase, the inclusions in the first family and the matrix in the sec-
ond, is () =0.25. The continuous lower (clear circles) and upper (dark circles) curves
correspond to the results obtained for the first and the second families, respectively.
The ranks of the composites for which the results are shown in the figure were chosen
such that the variations in the effective reference stresses (as functions of 0) are smaller
than 0.5%. There was no need to consider sequentially laminated composites with rank
higher than 96. Fig. 5a corresponds to the case where the ratio between the reference
stresses of the two phases is Tf)l)/‘l?gz) =2 and 5b to rgl)/rf)z) = 10. Also shown in the
figure are the classical Voigt and Reuss bounds which are represented by short dashed
curves marked by clear upside down and right triangles, respectively. (The curve for
the Voigt bound in Fig. 5b, for which f(V)/rgz) = 3.25 for all n, is not shown.) The
short dashed curves marked by dark upside down and right triangles correspond to
the lower bound and the estimate for the upper bound of Ponte Castanieda (1992a),
respectively. Additionally, the second-order estimates of Ponte Castafieda (1996) for
the class of two-dimensional isotropic composites are depict by the long dashed curves
which are marked with diamonds.

First, it is emphasized that the curves for the sequentially laminated composites do
not violate any of the three bounds shown in the figures. Further, in the linear limit
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Fig. 5. t™) as functions of 1/n for high-rank sequentially laminated composites. Figs. 5a and b correspond to
contrasts rf)l) /TE)Z):2 and 10, respectively. The continuous curves with clear (dark) circles are for composites
from the first (second) family. Also shown are the classical bounds (dashed curves, clear triangles), the
Hashin—Shtrikman bounds and estimates of Ponte Castafieda (1992a) (dashed curves, dark triangles), and
the second-order estimates of Ponte Castaneda (1996) (long dashed curves, diamonds).

n=1 the effective reference stresses of the sequentially laminated composites agree with
the corresponding Hashin and Shtrikman (1962) bounds together with the appropriate
estimates and bounds of Ponte Castaneda (1992a, 1996). As the hardening exponent
increases the effective reference stress of the composites from the first family, with the
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stiffer inclusions (clear circles) tends towards the classical Reuss bound while diverging
from the estimate for the upper Hashin—Shtrikman bound. The trend of the curves is re-
markably close to that for the upper second-order estimates of Ponte Castanieda (1996).
Yet the curves corresponding to the sequentially laminated composites lie between the
curves for second-order estimate and the classical Reuss bound. We recall that an up-
per bound for statistically isotropic composites with a power-law hardening behavior
was recently determined by Talbot and Willis (1997). Direct comparison of the results
obtained for the two-dimensional sequentially laminated composites with this bound is
not available at present. Nonetheless, the comparison between the second-order esti-
mates of Ponte Castafieda (1996) and this bound (see Fig. 2 of Ponte Castafieda and
Willis, 1999) suggest that the results for the sequentially laminated composites do not
violate this rigorous upper bound. The curves for the second family of composites
(dark circles) also diverge from the lower bound of Ponte Castafieda (1992a) with the
increase of the hardening exponent. In this case, however, at high values of the harden-
ing exponent (n > 10) the curves for T ) diverge from the corresponding second-order
estimates too, and lie halfway between these estimates and the lower Hashin—Shtrikman
bounds.

5. Concluding remarks

In this work a simple expression for the effective stress energy potential of two-
dimensional nonlinear incompressible sequentially laminated composites has been
introduced. Originating from the principle of minimum complementary energy, the
effective stress energy potential of the core laminate at each stage is expressed in
terms of the continuous and the discontinuous projections of the stress tensor. This
form of presentation allows to determine the exact stress energy potential of sequen-
tially laminated composites with arbitrary volume fractions and lamination directions of
the core laminates. The expression for the effective stress energy potential is obtained
in terms of an N-dimensional optimization problem.

Stress energy potentials for sequentially laminated composites with pure power-law
behavior of the phases were determined. For the sake of simplicity, these composites
were constructed with fixed volume fractions and fixed relative lamination directions
of the core laminates at each stage. Two complementary families of composites were
considered, one corresponds to particulate composites with soft matrix and stiffer in-
clusions and the second to the opposite case. It was found that the stress energy
potentials of high-rank sequentially laminated composites constructed this way tends to
be isotropic in the sense that their variations as functions of the direction of the ap-
plied stress become negligible. The variations of the stress energy potentials of rank-96
composites with an order of magnitude contrast between the behaviors of the phases
and power-hardening exponent larger than 10 were found to be smaller than 0.5%. It
was further found that sequentially laminated composites with stiffer inclusions and soft
matrix behave in a manner which is slightly more ductile than the one predicted by
the second-order estimate of Ponte Castafieda (1996). The composites from the second
family, with the stiffer matrix phase, exhibit a behavior which is noticeably stiffer than
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the corresponding second-order estimate of Ponte Castafieda (1996). The fact that the
behaviors of these almost isotropic composites from the two complementary families
are softer and stiffer than the corresponding estimates of Ponte Castafieda (1996) is
in agreement with the conclusion of Ponte Castafieda and Willis (1999) that these
estimates are not rigorous bounds.
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Appendix

We consider an isotropic incompressible layer whose behavior is governed by a
smooth strictly convex stress energy potential U(e) = ¢(J»,J3), where J, =S - S and
J3 =S| are the second and third invariants of the stress deviator S. We assume that
¢ is an even function of J3. The layer is subjected to plane strain conditions and, for
convenience, we choose a coordinate system such that the x;-axis is normal to the
layer’s plane and the axes x; and x, are along the unit vectors m and 1, respectively.
Under plane strain conditions the fields developing in the layer must be independent
of x3 and the strain components along the x3 axis must vanish, that is

0p(So,J3) 02 0¢(J2,J3) OJ3

gy = —— 02 2 27 =0, i=1,23.
o3 0J, 003 + 0J3 003 l

Explicitly, these conditions may be expressed in the form

0 0 1
€13 :4£ o3 + 2(?2 <0'23<712 — (o — 30mm)013) =0,

0 0 1
€23 =4£0’23 + 2672 <013012 — (o — 30mm)023) =0

and

0 1 10 1
€33 :2£ (033 - 30'mm) + 5% <<011 - 36mm> (022 — 033)

1
+ (GZZ - 3Umm> (Ull - 0-33) - 20—%2 + 6%3 + G%3> =0.

The contour of the layer, that is the portion of its boundary whose normal is per-
pendicular to the x3-axis, is subjected to a wumiform inplane traction field which is
compatible with a constant symmetric tensor T,s, («, ) = (1,2). The uniform field
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oV =Ty, 6 =Ty, ¢\ =10, 0(103) 2052) 0 and 033 = 1(T\1 + T») together with
the accompanying constant strain field

&0 — )
) aa,,( )

clearly satisfy the governing equilibrium and compatibility equations. With this choice
for the stresses J3(O):0 and, due to the assumption that ¢ is an even function of J3, the
partial derivative 0¢/0J; vanishes. Additionally, since agg)— 365,?,21, the above conditions
for vanishing strains along the x3 direction are all satisfied. Thus, we conclude that the

field o(-(-)) is a possible solution for the imposed boundary value problem.

Assume that there exists a second field a (xl,xz) which also provides a solution
for the imposed problem. On the layer s contour this field must satlsfy the uniform
() M (0

boundary conditions ngl) =T, 0y =Tn, 052 = T1,. In terms of a =0, —o0;,a
(0)

Taylor series expansion about g;;° of the total energy stored in the layer is

/U(a(l))dx:/ U6 +6')dx
v v

oU
= VU(G(O))+/ S—(a(o))aﬁj dx
OO'U

vV

1
- © 4 d
+ aa,,aak, —F (6" + o )0 07X,
for some 0 < A < 1. The first-order term of the Taylor expansion may be expressed in
the form

ou ©, ) ©,
/760“(6( ))agidx:/ &;o] dxf/(ui i) dxf/ u; oy dx.
y 00j; 14 14 v

The last term vanishes since o], ; = 0. Recalling that all the fields are independent of

x3, and by making use of Green’s theorem we have

/(u(o)a dx—/ V6!))1 dx—i—/(u( )6%,),2 dx
v

:/ ul’ )aflnldx—i—/ uValn; dx.
% o
(0)

We note that this last term also vanishes since everywhere uy’ = 0, on the faces of
the layer ny = n, =0, and on the contour g}, = g5, = g, = 0. Finally, due to the
assumed convexity of the stress potential the second-order term of the Taylor series
expansion is positive unless ¢'=0 (Van Tiel, 1984), and from the principle of minimum
complementary energy (7) it follows that ¢(*) is indeed the solution for the boundary
value problem.

The components of the associated stress deviator are S(O) —Ség) = 2(0(0)

022))
and S(2 = 612) It can be easily verified that within the above described coordinate
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system S,-(jo) = X;;, where the reduced stress tensor X is defined in Eq. (9) in terms of
the projections P, and P,,. Additionally, since P,-P,=1, P,,-P,,=1 and P,;-P,, =0,
we note that X - X = (Py - 6)> + (P, - 0)%.
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