
Risk Minimization by Cross Validation (RMCV) 

Risk Minimization by Cross Validation (RMCV) is a score and an algorithm for learning 

Bayesian network (BN) classifiers [1].  

Getting started with the RMCV code: 

1. The RMCV code requires Kevin Murphy's Bayes Net Toolbox (BNT) [2]. The latter is freely 

available from https://github.com/bayesnet/bnt.  You will have to make sure that it is correctly 

installed prior to using the provided code.  In Windows, the following script will usually do the 

job: 
current_dir=pwd;                %saves current working directory 
cd 'C:\MATLAB\work\bnt-master'; %this should point to the BNT directory 
addpath(genpathKPM(pwd));       %add BNT paths 
cd(current_dir);                %return to working directory 

 2. The RMCV score is described in Eq. (10) of [1]: 

. 

Feel free to check [1] for a detailed explanation of the score and terminology. A simple hill 

climbing search algorithm based on this score is also suggested in [1]: 

 

3. We will demonstrate our code using a synthetic dataset based on the BN shown in Fig. 1 

of [1]: 

 

  

https://github.com/bayesnet/bnt


First, we shall define a BN based on the graph and the given probabilities: 
num_of_nodes=5;                 %total number of nodes 
X1=1;                           %node names. Note: DAG must possess topological order. 
X2=2; 
C=3; 
X3=4; 
X4=5; 
dag=zeros(num_of_nodes,num_of_nodes);   %five nodes 'X1','X2','C','X3','X4' 
dag(X1,X2)=1;                           %an edge from X1 to X2 
dag(X2,C)=1;                            %an edge from X2 to C 
dag(X3,X4)=1;                           %an edge from X3 to X4 
dag(C,X4)=1;                            %an edge from C to X4 
discrete_nodes = 1:num_of_nodes;        %all nodes are discrete 
node_sizes = 2*ones(1,num_of_nodes);    %all nodes have two possible values 
%create BNT 
bnet = mk_bnet(dag, node_sizes, 'names',{'X1','X2','C','X3','X4'},'discrete', discrete_nodes); 
bnet.CPD{X1} = tabular_CPD(bnet, X1, [0.3 0.7]); 
bnet.CPD{X3} = tabular_CPD(bnet, X3, [0.7 0.3]); 
bnet.CPD{X2} = tabular_CPD(bnet, X2, [0.7 0.3 0.3 0.7]); 
bnet.CPD{C} = tabular_CPD(bnet, C, [0.85 0.25 0.15 0.75]); 
bnet.CPD{X4} = tabular_CPD(bnet, X4, [0.1 0.8 0.3 0.2 0.9 0.2 0.7 0.8]); 
num_of_instances=1000;                   %set number of instances 
my_train_samples=cell(num_of_nodes,num_of_instances); 
my_test_samples=cell(num_of_nodes,num_of_instances); 
%generate train and test datasets 
for c1=1:num_of_instances 
    my_train_samples(:,c1)=sample_bnet(bnet); 
end 
for c1=1:num_of_instances 
    my_test_samples(:,c1)=sample_bnet(bnet); 
end 
train_data=cell2mat(my_train_samples.'); 
test_data=cell2mat(my_test_samples.'); 

At this point, at hand is a synthetic dataset ('my_train_samples') generated from the BN, from 

which we will learn an RMCV classifier. The provided code is a straight-forward 

implementation of the presented algorithm. The following procedures/functions are provided: 

'rmcv_gs.m' is the main search procedure; 'rmho_score.m' is the Risk Minimization holdout 

score [1]. The search procedure calculates the RMCV score by calling RMHO several times 

with different training and validation folds. Note that a less straight-forward implementation of 

RMCV can be superior in terms of run-time compared to the provided code. Check Sections 5.4 

and 7 in [1] for some ideas which can be easily implemented. The following simple script runs 

the RMCV algorithm: 
%initial DAG 
init_dag=dag; 
init_dag(C,X4)=0; 
%learn BN using RMCV 
[final_dag,history_dags,history_scores]=rmcv_gs(init_dag,my_train_samples,my_test_samples,node_s
izes,C,4); 
 
In this example, the initial DAG is close to the DAG of Fig. 1, but misses the edge between the 

class node C and X4. A learning process, based on enough instances, can usually recover this 

edge and yield a classifier with accuracy of roughly 83 percent. Note that the provided code not 

only returns the final DAG, but also the results from each iteration, including intermediate 

scores and classification accuracies. 

4. We encourage you to try 'demo.m' and examine the various source code comments. Most are 

self-explanatory.  

[1] R. Kelner and B. Lerner, "Learning Bayesian network classifiers by risk minimization," Int. J. Approx. 

Reas. 53, 248-272 (2012). 

[2] K. Murphy, "The Bayes net toolbox for Matlab," Comput. Sci. Stat. 33, 331-350 (2001). 


