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Chapter

Mapping of Social Functions in a
Smart City When Considering
Sparse Knowledge
Oded Zinman and Boaz Lerner

Abstract

In recent years, technological advances, specifically new sensing and
communication technologies, have brought new opportunities for a less expensive,
dynamic, and more accurate mapping of social land use in cities. However, most
research has featured complex methodologies that integrate several data resources or
require much prior knowledge about the examined city. We offer a methodology that
requires little prior knowledge and mainly relies on call detail records, which is an
inexpensive available data resource of mobile phone signals. We introduce the
Semi-supervised Self-labeled K-nearest neighbor (SSK) algorithm that combines
distance-weighted k-nearest neighbors (DKNN) with a self-labeled iterative tech-
nique designed for training classifiers with only a small number of labeled samples. In
each iteration, the samples (small land units) that we are most confident of their
classification by DKNN are added to the training set of the next iteration. We perform
neighbor smoothing to the land-use classification by considering feature-space neigh-
bors as in the regular KNN but also geographical space neighbors, and thereby lever-
age the tendency of approximate land areas to share similar social land use. Based only
on a few labeled examples, the SSK algorithm achieves a high accuracy rate, between
74% without neighbor smoothing, and 80% with it.

Keywords: call detail records, classification, computational social science, k-nearest
neighbors, land use, machine learning, mobile phone data, smart cities, urban
computing

1. Introduction

A city is a complex ecosystem and, as such, it is not the sum of its components;
each component contributes but does not form the behavior of the whole [1]. The
modern city is characterized by a sophisticated structure and zones of diverse urban
social function, that is, residential neighborhoods, commercial areas, and industrial
areas [2]. Functional city parts enable better orientation and support people’s different
needs [3, 4]. Rapid urban development has led to larger cities with more complex
social dynamics, and this creates a great challenge for the accurate mapping of urban
land use [5], for example, to promote social equity [6].
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A smart city is a platform to facilitate technological and social innovation that
enhances productivity, sustainability, and livability [7]. It opens the door for research
designated for dynamic and automated identification of social function land use—
understanding and classifying city lands of different social functions. Mapping of
urban land use can be utilized for urban planning and designing of better urbanization
strategies [8–10], urban air quality management [11], promotion of sustainable eco-
cities [12, 13], and green utilization efficiency of urban land [14]. Knowledge of the
function of city parts and their management can help govern a city [15] and contribute
to a better understanding of mobility patterns and interconnections between city
parts, which is crucial for efficient planning decisions within cities, for example,
planning of highways. Moreover, it can serve businesses looking for the right spot for
their business, advertisers choosing a location for enhanced advertisement, and social
recommendations [3].

The digital revolution has brought a great opportunity for social sciences
research in cities; the emergence of enhanced computing power and mobile phones
with built-in sensors and location technologies has created an enormous amount of
data for understanding and monitoring urban life [16]. Data sources, such as remote
sensing imagery, social media data, taxi trajectories, and mobile phone patterns of
usage, have been utilized for cheaper and enhanced social land-use identification
research.

Most research in recent years has offered complex methodologies that require the
integration of several data resources of different types or substantial prior knowledge
about the examined city. The motivation for conducting this research is to offer a
method that requires only sparse knowledge of the examined land and relies on an
inexpensive data resource. Previous works have yet to achieve high accuracy in such
conditions; therefore, research and creative solutions are needed to solve this prob-
lem. Although incorporating several data resources can definitely improve the identi-
fication rate, in this work, we aim to achieve solid land-use mapping with a simple and
efficient methodology that requires one data resource. Our main assumption is that
sparse prior knowledge about the examined city’s functional zones can be obtained by
a local or domain expert at a low cost. We mainly rely on call detail records (CDR), an
inexpensive and available data source routinely collected by telecom operators, and
assume that areas of different social functions cause different typical cellular commu-
nication behavior [17]. For example, one can expect the communication pattern in a
residential neighborhood to have different characteristics than that used for industry;
perhaps at night and in the early morning, there will be more communication in a
residential neighborhood. We utilize this behavior to identify different area categories
with different functions.

This paper presents a semi-supervised algorithm, denoted as SSK (Semi-supervised
Self-labeled K-nearest neighbor), which requires only sparse prior knowledge of the
examined urban area, meaning it assumes we possess only a small number of land-use
labeled areas. SSK combines both the distance-weighted k-nearest neighbor (DKNN)
with a self-labeled iterative technique aimed to enlarge the training set in an iterative
manner. We also perform a neighbor smoothing approach that offers a unique inter-
pretation of neighbors in the context of the KNN process. In addition to considering
feature-space neighbors as in the regular KNN, we also consider the geographical
space neighbors, and thus we utilize the geographical homogeneity of social functions
in urban areas.
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The contributions of this work are as follows:

1.We offer a simple methodology that relies solely on one data resource (CDR).
Previous works dedicated to this problem used more than one data resource and
complex methodologies that integrate them.

2.We offer a method designated to perform in a condition of sparse prior
knowledge about the social functions of the lands in the examined city. Most
works assumed substantial prior knowledge about the examined lands, while
others, such as Pei et al. [18], offered a semi-supervised method that requires
relatively little knowledge about the examined city; however, the accuracy rate
achieved in their work is yet not satisfactory.

3.SSK offers methodological innovations as it combines self-labeling techniques
aimed at the condition of sparse knowledge and a fresh perspective on KNN–a
KNN that considers not only the feature-space neighbors as in regular KNN but
also the geographical space neighbors.

4.The presented methodology although relying only on few labeled samples and
only one data resource, achieves a high accuracy rate, between 74% without
neighbor smoothing, and 80% with it.

The rest of this paper is organized as follows: Section 2 presents recent develop-
ments and research on land-use mapping, Section 3 describes the methodology and
SSK land-use classification algorithm, Section 4 evaluates the efficiency of SSK and
compares its performance with other algorithms that require more prior knowledge
about the examined area, Section 5 presents the neighbor smoothing integrated into
SSK, Section 6 evaluates the usage of neighbor smoothing in SSK and discusses its
merits and drawbacks, and Section 7 summarizes the work, presents conclusions, and
offers directions for further research.

2. Related works

Several techniques have been developed for identifying social land-use functions.
Traditionally, land-use identification was inferred by human trajectory patterns as
reflected by individual travel surveys recorded by respondents [19–21]. However,
self-reported diaries suffer from major disadvantages, including a relatively small
number of respondents, difficulty in obtaining a representative sample of the city
population, and an experimental period that is usually limited to a few days because of
high costs. Moreover, the diaries are self-reported; therefore, they are not considered
to be fully reliable.

Sensing technologies, ubiquitous connectivity, and computing power have brought
a variety of opportunities for smart cities, and specifically to land-use mapping [22].
Data sources, such as remote-sensing imagery, social media data, taxi trajectories, and
mobile phone signals, have been utilized for cheaper and enhanced social land-use
mapping research.
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Some works have used spectral and textural characteristics. For example, Lu and
Weng [23] integrated population density data and remote-sensing systems measuring
land surface temperature and spectral reflectance to classify urban lands. Image
processing and classification techniques of remote-sensing images were used in
numerous research studies to capture physical aspects, such as land surface reflectiv-
ity and texture of urban space [24–26] or to accomplish urban land-use mapping [9].
However, inferring land use by analyzing remote-sensing images tells only part of the
story because they cannot recognize functional interactions between city segments
and social behavior [27–29].

Social media can be seen as complementary to remote-sensing image methodology,
as it is valuable for identifying movement patterns and social dynamics [27, 29, 30]. A
varied collection of social media data, such as social media check-ins, GPS trajectories,
and points of interest (POI), has been used for monitoring urban residents’ land-use
dynamics [31]. Liu et al. [32] offered an unsupervised method that extracts patterns of
temporal activity variations and spatial interactions between places based on taxi
trajectories and discovers the common characteristics of lands of similar social func-
tion. Long and Thill [33] combined one-week period bus smart card data and house-
hold travel survey to analyze jobs–housing relationships in Beijing. Commuting trips
from three typical residential communities to six main business zones were mapped
and compared to analyze commuting patterns in Beijing, and then validated with
those extracted from the survey. Also, Zhou et al. [34] used smart card data. They
investigated how a rider allocates time in the vicinity of metro stations spatially and
temporally to classify space–time activity patterns that may explain inter-personal and
intra-personal behavioral variability. Shen and Karimi [35] used check-in-based data
and analyzed the interaction between places in the city to infer their urban structure
and related socioeconomic patterns. POIs associated with coordinates and a label such
as “restaurant,” “shopping center,” and “theater” have been extensively leveraged for
land-use identification [36]. Their biggest virtue is that they carry semantic informa-
tion. Some methodologies offer to leverage POI datasets to discover regions of similar
social function by classifying together lands of similar POI types’ distribution and
patterns [27, 37]. However, social media data’s main demerit is its sparsity in space
and time [29]. Social information hidden in GPS records allowed Khoroshevsky and
Lerner [38] to discover mobility patterns and predict users’ geographic and semantic
locations alike, with no privacy violation by using only the user’s own data and no
semantic data voluntarily shared by him or by others. By properly selecting an evalu-
ation metric of trajectory clustering and accounting for cluster density, they traded
between prediction accuracy and information, providing more clusters that are
smaller and denser, showing more meaningful locations, but less predictable, and vice
versa. Using semantic mobility patterns determined from POIs in people’s daily tra-
jectories, Ben Zion and Lerner [39] could identify and predict person’s lifestyle both
for a novel trajectory and a novel user.

As all data sources are limited and capture specific aspects of urban dynamics, a
recent movement in the research of land-use identification is to rely on several data
sources of different types. Both the works of Liu et al. [31] and Hu et al. [8] combined
remote-sensing images and social media data. The work of Yuan et al. [3] integrated
POI datasets and datasets of 3 months of GPS trajectories generated by 12,000 taxi-
cabs in Beijing to identify lands of different social functions using an unsupervised
clustering algorithm. The work of Tu et al. [29] integrates a mobile phone signals
dataset with social media data to infer the social function of land use. They
estimated individuals’ “home” and “work,” and then aggregated the individuals
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together with social knowledge learned from social media check-in data into a
collective social land-use map.

Numerous works leverage call detail records (CDR) for capturing spatiotemporal
movement patterns and city dynamics [17, 30, 40]. CDR holds data of mobile phone
signals collected and stored by telecom operators mainly for billing reasons [41]. They
contain communication properties, such as start time and call duration, type of com-
munication (call, SMS, internet), as well as the cell tower from which the communi-
cation originated. CDR also includes the location at which the communication
occurred, calculated by triangulating the signal strengths from surrounding cell
towers [4, 41, 42]. Its greatest virtue, as a location tool for human behavior evaluation,
is that it is routinely produced by the telecom equipment when users make a phone
call, send or receive a message, or browse web pages; hence, it is a low-cost and
efficient location estimation source [43]. The respondents in an experiment are
unaware of it, and are, thus, not interrupted by it, but still, their personal information
is not violated, as the actual user identification is ciphered. CDR contains an enormous
amount of data and covers the major part of civilized areas in the world, depicting a
variety of users. However, CDRs have two prominent limitations as a source for
tracking human activity: First, they are sparse in time because they are generated only
when a user engages in cellular communication. Second, they are coarse in space
because they record location only at the granularity of a cell tower [30, 44]; CDR-
rendered coordinates have a varied inaccuracy of 50–350 m, depending on the density
and arrangement of the towers. Another shortcoming is their lack of semantic infor-
mation [30, 45].

Although incorporating several data resources is beneficial for achieving a high
accuracy rate [9], in this work, we focused on achieving solid land-use identification
with a simple and efficient methodology that requires only one data resource and
little prior knowledge that can be obtained by domain experts. We wish to extract the
most out of the information embodied in CDRs, and it can also be integrated with
additional resources in future works. Several other works have already used CDRs as
their main data resource for land-use identification. Toole et al. [40] utilized them for
a supervised land-use classification method with a dataset consisting of CDRs for a
period of three weeks in the greater Boston area. They classified urban space into five
categories—residential, commercial, industrial, parks, and other, and relayed posses-
sion of ground truth land use as obtained by a zoning map. For the classification, they
used Breiman’s [46] random forest classification algorithm and post-processed the
classification results with a neighbor smoothing algorithm. However, even with
smoothing performed, in classifying the five land-use classes, the accuracy was
relatively low, 54%. Pei et al. [18] also relied on CDRs and offered a semi-supervised
algorithm for classifying the land of Singapore into the same five classes as Toole et al.
[42]. They relied on the classification of a small number of labeled places, choosing
200 places to be labeled based on a few criteria aimed to ensure reliable labeling,
and labeled them based on Singapore locals and Google Earth. They used the fuzzy
c-means algorithm [47] and assumed possession of the “real” land-use labels of a small
number of area segments. Their results also showed a relatively low detection rate of
58%. Zinman and Lerner [17] divided the space and time into spatiotemporal units,
derived a varied collection of features to illuminate the social behavior of the units,
and classified, with accuracies ranging from 84% to 91%, units in 62 days of cellular
data recorded in nine cities in the Tel Aviv district according to their land use using
a leveled hierarchy of semantic categories that include different levels of detail
resolution.
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3. SSK methodology

Our dataset consists of CDRs recorded by an Israeli telecommunications company
during a 62-day period, each day between 4 a.m. and 10 p.m., in a region covering a
major part of Israel’s center district, including the city of Tel Aviv and its neighboring
cities. The data include a diverse collection of human activity—a variety of settle-
ments (cities and villages), open areas, highways, and industrial areas.

Our workflow (Figure 1) can be divided into five steps: (3.1) Area selection, (3.2)
Division of smaller units of land with grid-like partitioning, (3.3) Land-use labeling,
(3.4) Feature extraction, and (3.5) Usage of the SSK algorithm for land-use classifica-
tion.

3.1 Area selection

We selected 61 areas with varied and known social functions, such as neighbor-
hoods, industrial areas, office areas, highways, commercial streets, and shopping
malls spread over nine cities, all located in the Tel Aviv metropolitan and its sur-
rounding area (Figure 2): Tel Aviv, Holon, Ramat Gan, Petah Tikva, Rosh Haayin,
Ra’anana, Ramat Hasharon, Givatayim, and Kfar Saba.

Figure 1.
Workflow of land-use classification using the SSK algorithm.

Figure 2.
(Left) A map of Israel with the area covered in the study marked by a red rectangular. (Right) A zoom-in map of
this area including the Tel-Aviv metropolitan and its surrounding area with nine cities participating in the study
(underlined in red): Tel Aviv, Holon, Ramat Gan, Petah Tikva, Rosh Haayin, Ra’anana, Ramat Hasharon,
Givatayim, and Kfar Saba. Approximately 1 million people are living in this area.
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For example, see the five selected areas in the city of Ra’anana shown in Figure 3.
Each area is represented as a polygon on the map. Four of the areas are wide; these
cover residential neighborhoods. There is one narrow rectangle representing Ahuza
Street, the main commercial street. It is narrow to include only the street without the
surrounding area.

There is a need to discuss the choice to analyze segments of several cities that were
deliberately chosen. Previous works, such as the works of Yuan et al. [3],

Toole et al. [42], and Sun et al. [9], performed land-use mapping of whole cities,
Beijing, Boston, and Shenzhen, respectively. However, in intentionally chosen areas,
the social functions are less mixed. Classifying land of “pure” social function is easier;
hence, we expect implementing this method on a whole city to yield a lower accuracy
than achieved on this dataset. However, the deliberate choice of areas also has some
notable advantages. Analyzing social land uses in their “pure” condition enables us to
recognize the core behavior and patterns of the social functions. The areas chosen
from different cities enable the examination of the inter-cities’ resemblance of social
function, as reflected by the use of cellular communication. Deliberately choosing
areas causes the labeling process to be less expensive and time-consuming. More
importantly, the granted labels are more accurate, and it enables more reliable tests
and conclusions. Thus, this dataset enables a careful analysis, which is valuable for the
assessment of the feasibility of the method.

3.2 Division of time and space into basic spatiotemporal units

We divided space and time into spatiotemporal units. The chosen areas were
divided into smaller geographical units in a grid-like manner; we refer to each unit as a
cell. Dividing the land into smaller parts reduces the variety of the social functions
that take place in each; therefore, there is more homogenous land use, which is more
suitable for land-use categorizing. However, using small fixed-size land parts may lose
accuracy when the use of space is dynamic due to a mix of buildings of different uses
in close proximity, or even different uses in the same building on different floors. We

Figure 3.
Areas selected in the city of Ra’anana.

7

Mapping of Social Functions in a Smart City When Considering Sparse Knowledge
DOI: http://dx.doi.org/10.5772/intechopen.104901



further note that others [48] found hexagonal cells advantageous over square cells,
although the former are less intuitive for the urban environment, or used census
blocks, where each partitioning system has its advantages and disadvantages [49]. We
preliminary found the square grid suitable for our needs and selected the default size
of the cell as 40,000 m2, shaped as a 200� 200 m2. This is the same cell size and shape
specified by Toole et al. [42] and Pei et al. [18]. However, because 30 of the 61 areas
contained an edge smaller than 100 m, in these areas, we used narrower rectangles.

Land use is dynamic and varies during the day. For example, activity habits in a
residential neighborhood at 7 p.m. (say, eating dinner and watching TV) are greatly
different than the activity habits in the same neighborhood at 3 a.m. (say, sleeping).
Therefore, in addition to dividing space, we also divided the day hourly, that is,
00:00 a.m. to 01:00 a.m. is one time unit, 01:00 a.m. to 02:00 a.m. is another time
unit, and so on.

3.3 Land-use labeling

We labeled each cell per hour with a semantic social function of land use. As
mentioned above, we chose to focus on areas that were relatively easy to label and,
hence, we could label them with the help of a few locals. The labeled areas were then
used as ground truth for training the land use classifier and evaluating its accuracy.

The semantic land-use labels include Residential, Commercial, Industrial, High-
way (arterial roads), Office, Street, and No activity (no human activity is expected in
this cell at this specific time, e.g., in industrial areas before work hours begin).

3.4 Feature extraction

In this work, we used 158 features that include varied aspects of the circadian
nature of the activity in the cell [17]. We divided the features into five types: (1)
Communication volume features measure the degree of communication activity.
These features are designated to capture the difference between the activity volume
typical to a specific social function (e.g., in commercial zones, there is more cellular
communication compared to residential areas). (2) Daily pattern features are calcu-
lated by the calling volume in a specific hour relative to the communication volume at
different hours of the day in the same zone. These features are designated to identify
the circadian pattern of the communication activity typical to that area (e.g., in a
residential area, the communication peak hours are in the mornings and evenings,
while in industrial areas, the peak is during working hours). (3) Weekly pattern
features capture the difference in cellular usage on weekdays compared to the week-
end. Thus, it differentiates between land uses, such as residential, where their inhab-
itants return daily, and those like office zones, where workers do not go on weekends.
(4) Contact features measure the number of different days on which people engage in
at least one cellular communication in cell s in hour h, thus, differentiating between
land uses with frequent visitors and those with occasional ones. (5) Communication
habits features are a collection of features that aim to illustrate the land from the
perspective of typical cellular communication usage habits, for example, call duration
and usage distribution of different types of cellular communications (phone calls and
internet usage). These 158 features were found very successful in land-use classifica-
tion [17]. They predicted residential, industrial, and no activity land uses with F1 (see
Eq. (5) below) values higher than 0.9 and provided average accuracy over seven land
uses between 81% and 90% at any time of the day.

8

Ubiquitous and Pervasive Computing - New Trends and Opportunities



3.5 Semi-supervised self-labeled k-nearest neighbor

We developed a variation of the k-nearest neighbor algorithm combined with a
self-labeled iterative technique that enlarges a labeled dataset when only a few labeled
samples exist. We call this method the Semi-supervised Self-labeled K-nearest neigh-
bor (SSK).

Gathering land-use labels of a few segments of an urban area is relatively attain-
able. This information can be gathered by inquiring locals. However, getting addi-
tional land-use labels is often out of reach or too expensive. In a condition of only a
small number of labeled samples, the effectiveness of conservative supervised classi-
fication algorithms deteriorates. Therefore, we used the self-labeled technique desig-
nated to generate more labeled samples as an input for the classifier to tackle the lack
of labeled data [50]. The self-labeled technique follows an iterative procedure—in
each iteration, unlabeled data is labeled and added to the training set for the next
iterations. In the first iteration, a classifier is trained based only on the labeled
samples and classifies the unlabeled samples. In every iteration, the samples that
the algorithm is most confident of classifying correctly are added to the labeled
sample pool.

In our implementation, we used the Distance weighted variation of K-Nearest
Neighbor (DKNN) as the classifier. We assumed possessing the “real” land use label of
5% of the samples. In every iteration, 5% of the samples, which the DKNN classifier is
most confident of, are added to the training set. The samples used in the classification
are the basic spatiotemporal unit described in Section 3.2, which we refer to as cell.
We use xi to refer to the cell i’s sample.

We used DKNN, as introduced by Dudani [51]. In the classic version of KNN,
assigning a class to each query sample (unlabeled sample) is determined by its k
nearest neighbors in the training set, and each of the k neighbors has the same impact.
In the distance-weighted version, again the k-nearest neighbors contribute to the
classification of the query sample, but here, the closer the sample is to the query
sample, the more impact on the classification it has. Each of the k neighbors of the

query sample xq’s gets a weight w
ið Þ
q that depends on how close it is to the query

sample:

w ið Þ
q ¼

1

d xq, xi
� �2 ∀i∈ 1, … , k, (1)

where d xq, xi
� �

is the feature-space Euclidean distance between the query sample

xq and its labeled neighbor xi, and other distance-weighted versions may be consid-
ered as well, for example, the harmonic mean distance [52]. k determines the number
of neighbors considered in the calculation. Since training the DKNN does not exist
(all computation is done during prediction), the classifier training time and space
complexities are O 1ð Þ, and the prediction time complexity is O kndð Þ for n d-dimen-
sional samples (and the prediction space complexity is also O 1ð Þ). Setting the number
of neighbors k and a discussion about the considerations leading to its choice will
follow below.

For example, let us assume that k ¼ 2 and that xq’s two closest neighbors (labeled
samples closest in the feature space to xq) are xa and xb, and that their feature-space
distance from xq are 2 and 3, respectively. Then, according to Eq. (1), the weight of Xa

is 1
4 and that of Xb is

1
9, as xais closer to xq.
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The SSK algorithm demonstrated in this section comprises the self-labeled
technique and the DKNN classification algorithm. However, we have made some
adjustments to make a version of DKNN that is more suitable for our problem. In
regular classification, the labels used for training are assumed to be correct. However,
this assumption cannot be taken when using the self-labeled technique because only
the labels in the first iteration are ground truth labels, and the labels in the next
iterations are samples that were not labeled but have been classified through the
process. To address this issue, we would like neighbors whose label we are more
confident is correct to have more impact on the classification.

Let O be the set of all cells (samples) and L be the original set of predefined ground
truth labeled cells. The set of cells that are currently labeled in a certain iteration is G,
and its complement set of cells that are not yet labeled Q (Q ¼ OnG). In the first
iteration of the algorithm, G ¼ L. When describing the process, we will refer to the
cell that its class is being considered as the query cell.

We would like to introduce the term land-use array, which is an object that we use
to discuss the method. The number of entries in a land-use array is equal to the
number of land uses. We denote the land-use array of xi as Ai. Each array entry in Ai

represents a land use, for example, entry 1 would be Residential, entry 2 Commercial,
etc. The value of entry j represents the certainty that cell xi is attributed to class j.
Consider Ai ¼ v1, v2, … , vcð Þ. vi is a value that represents the confidence we have that
the land use of cell xi is i. The sum of all entries in Ai is always 1. c is the number of
land-use categories.

In the first iteration of the algorithm, the classification of the unlabeled cells is
determined using the predefined labeled cells L, of which we assume 100% confi-
dence. Before the first iteration, we initialize the land-use arrays of all the cells in L.
Let us denote the land-use classes of the cells in L as C, meaning that the label of xi ∈L
is Ci. The initialization of the land-use array of cell xi ∈L follows—entry number Ci

(the class of xi) in Ai is set to 1, and all the other entries are set to 0. For example, if
cell xi is labeled as Commercial, and we assume that Commercial is represented in the
second entry, then its land-use array Ai ¼ 0, 1, 0, … , 0ð Þ.

Setting the land-use arrays of the yet unlabeled cells is computed by the land-use
arrays that were already calculated. Thus, the computation of the land-use array Aq

for a query cell xq is given by

Aq ¼
Pk

i¼1w
ið Þ
q Ai

Pk
i¼1w

ið Þ
q

q∈Q, (2)

where k is the number of neighbors configured for xq, and w
ið Þ
q is set by Eq. (1).

In the first iteration, the calculation of the land-use arrays is based only on the
land-use arrays of the cells in L. At the end of the first iteration, the land-use
arrays of the cells that were selected to be added to training set G of the next
iteration will be set according to (2), and they will be used for the calculation of
land-use arrays in the next iterations, and the process repeats itself in the next
iterations.

For example, we will examine an hour with four land-use classes. For simplicity,
let us assume that k ¼ 2, meaning that for computing the land-use array Aq, we will
consider only the two neighbors closest in the feature space. The two nearest neigh-
bors of the query cell xq are xi and x j. xi is labeled as class 2 and x j is labeled as class 4;
therefore, their land-use arrays are Ai ¼ 0, 1, 0, 0ð Þ and A j ¼ 0, 0, 0, 1ð Þ. Their
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weights are wi ¼ 6 and w j ¼ 2. Notice, the weights indicate that xi is closer to xq than
xj. Calculating Aq:

Aq ¼
w

ið Þ
q Ai þ w

jð Þ
q A j

w
ið Þ
q þw

jð Þ
q

¼ 6 0, 1, 0, 0ð Þ þ 2 0, 0, 0, 1ð Þ
6þ 2

¼ 0,
3

4
, 0,

1

4

� �

: (3)

Aq is calculated by the weighted average of the land-use arrays of its feature-space

neighbors. For example, the value of the fourth entry in Aq (14), which represents the
fourth land use, is the result of a weighted average of the fourth entry in Ai (equals 0)

and A j (equals 1), and it is calculated by 6∙0þ2∙1
6þ2 ¼ 1

4. The weighted average value 1
4 is

closer to Ai (equals 0) than to A j (equals 1) because xq is closer to xi. Notice that (2)
guarantees the land-use array entries always sum up to 1. In the example, the highest
entry value is 3

4, and its corresponding land-use class is 2; therefore, it is most reason-
able to assign q to class 2. If xq will be added to G at the end of the iteration, then Aq

will be used to calculate land-use arrays in the next iterations.
However, we will classify xq to class 2 only if it has high enough classification

confidence, meaning only if we have relatively high confidence that its attribution is
correct, we classify it and add it to the training set of the next iteration. The classifi-
cation confidence of xq is estimated by the entry with the maximal value in the land-
use array:

confidenceq ¼ max Aq

� �

: (4)

In the example, the classification confidence level of xq is 3
4 of it being attributed to

class 2. In the example, xq is a candidate for being classified as class 2, and it will be

classified as class 2 if the confidence level 34 is high enough.
In each iteration, we add 5% of all the cells to the training set for the next

iteration. To consider a proper balance between the labels in the training set over the
iterations, we do not blindly add to the training set the top 5% of the samples with the
highest classification confidence. The number of cells added to the training set is
proportional to the number of candidates for each land use in this iteration. For
example, consider a simple case with only two land-use classes. Let us assume that the
number of cells ∣O∣ ¼ 1000, and therefore the number of cells added to the training
set G in each iteration is 50 (5% of 1000). If in a specific iteration, 60% of the cells
(600 cells) are candidates for class 1 (i.e., in 60% of the cells, the highest entry in the
land-use array is 1), and the other 40% (400 cells) are candidates for class 2, then
accordingly, 60% (30) of the cells added to the training set will be from class 1 and
40% (20) of the cells from class 2. The cells with the highest confidence are added
to each class separately. In this example, the 30 cells with the highest values in entry 1
(represent class 1) will be labeled accordingly and added to the training set of the
next iteration.

We would like to demonstrate in Figure 4 the process of land-use classification
using SSK with an example. We demonstrate classifying a query cell xq to land use in
the first iteration (Figure 4(top)), and then we demonstrate classifying another
query cell xs in the second iteration (Figure 4(bottom)). The bars in Figure 4
represent the values of each entry in the land-use arrays. In the example, for simplic-
ity, the neighborhood parameter k ¼ 2, that is, the classification is based on the two
samples that are closest to the query cell in the feature space. In this example, there are
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four land use classes. The computation of the land-use array of Aq in the first iteration
(Figure 4(top)) was already demonstrated in the previous examples. We saw that
after considering xq’s two nearest neighbors xi and x j, and based on their land-use

arrays Ai and A j, then Aq ¼ 0, 3
4 , 0,

1
4

� �

and confidenceq ¼ 3
4. Let us further assume that

this confidence level of xq was high enough, and thus xq was labeled by class 2 and
added to the training set for the second iteration.

In the second iteration (Figure 4(bottom)), there is another query cell xs. In the
example, xs’s two nearest neighbors are xq (the cell that was added to the training set

Figure 4.
Computing land-use arrays for (top) first and (bottom) second iterations of an example.
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in iteration 1) and another cell xr, and their land-use arrays are Aq ¼ 0, 3
4 , 0,

1
4

� �

(as
already computed) and Ar ¼ 0, 0, 1, 0ð Þ and weights are wq ¼ 4 and wr ¼ 1, respec-
tively. The land-use array of query cell As (Eq. (2)) is:

As ¼
w

qð Þ
s Aq þw

rð Þ
s Ar

w
qð Þ
s þ w

rð Þ
s

¼ 4 0, 3
4 , 0,

1
4

� �

þ 1 0, 0, 1, 0ð Þ
4þ 1

0,
3

5
,
1

5
,
1

5

� �

: (5)

Figure 4(bottom) demonstrates that the land-use array As of cell xs is mainly
affected by cell xq (belonging to class 2), which was labeled and introduced into the
training set only in the previous iteration.

There is a need to specify the neighborhood parameter k that specifies the number
of cells considered in the classification of each query cell. k controls the volume of the
neighborhood and, consequently, the smoothness of the density estimates; thus, it
plays an important role in the performance of the nearest neighbor classifier [53].
Increasing k decreases variance and increases bias; conversely, decreasing k increases
variance and decreases bias [54]. Since the number of labeled cells gradually increases
during the process of the self-labeled technique, we offer a dynamic k that changes
through the iterations; its value depends on the size of Gj j—the number of cells
currently in the training set G. Through the iterations, k grows with the set of cells
(samples) available for training. We used a rule-of-thumb offered by Duda et al. [55],
setting the k value by:

k≈
ffiffiffiffiffiffiffi

Gj j
p

: (6)

For example, if the number of labeled cells ∣G∣ in the first iteration is 50, then in

the first iteration, k ¼
ffiffiffiffiffiffi

50
p

¼ 7:07≈7, and therefore the closest seven neighbors of
each query cell will be considered in the classification. By the next iteration, 50 cells

are added to G, then ∣G∣ ¼ 100 and k ¼
ffiffiffiffiffiffiffiffi

100
p

¼ 10, thus 10 neighbors will be
considered next.

4. Empirical evaluation of SSK

In this section, we evaluate the performance of SSK classification. We compare it
to the results of a classifier that possesses significantly more prior knowledge, dem-
onstrate its performance with a few examples from different cities in Israel, analyze
the process of the self-labeled technique, and discuss its overall accuracy and the
accuracy in each land use separately.

We used the ground truth land-use labels for two purposes—for training the SSK
classifier and for evaluating its performance. Five percent of the cells were randomly
chosen at the beginning of the process, and the labels of these cells were treated as
ground truth and were used for training the classifier. The performance of the classi-
fier was estimated by the labels of the other 95% of the cells. We performed the
classification in each hour separately, and in each hour, repeated the process five
times, each with another randomly chosen 5% of the cells. Thus, using these permu-
tations, we diminished the variance caused by the random aspect.

The accuracy rate of SSK averaged over all permutations and hours using labels for
only 5% of the cells is 74.4%. Compared to the works of Toole et al. [42] and Pei et al.
[18] who also attempted to identify land use based on CDR, our accuracy rate is
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exceptionally high; Toole et al. [42] and Pei et al. [18] achieved 54% and 58% accuracy
rates, respectively. However, it is not possible to make conclusions based on compar-
ing the accuracy rates of these works. The main reason is that these studies performed
land-use mapping of a whole city, Boston in the work of Toole et al. [42], and
Singapore in the work of Pei et al. [18], whereas we deliberately chose areas with a
relatively “pure” and clear land-use function from different cities in Israel. Identifica-
tion of the land use in lands of “pure” social function is an easier process.

Tables 1 and 2 illustrate the classification results in greater detail and the quality of
the classification of each land-use category separately. Table 1 demonstrates the
confusion matrices of the results–predicted (columns) vs. true values (rows)–in dif-
ferent day parts: (a) between 4 a.m. and 7 a.m., (b) between 8 a.m. and 5 p.m., (c)
between 5 p.m. and 7 p.m., and (d) between 8 p.m. and 10 p.m. Notice the set of social

Residential Street Highway No activity

(a) 4 a.m.–7 a.m

Residential 46.27 1.43 2.27 0.50

Street 8.40 4.00 1.03 0.60

Highway 3.13 0.67 1.03 0.63

No activity 10.57 3.40 3.10 12.90

Residential Commercial Industrial Office

(b) 8 a.m.–5 p.m.

Residential 44.71 1.33 0.29 0.12

Commercial 9.99 10.30 1.13 0.12

Industrial 4.99 2.27 22.42 0.28

Office 0.66 0.14 0.62 0.62

Residential Commercial Office No activity

(c) 5 p.m.–7 p.m

Residential 38.50 8.15 0.10 0.10

Commercial 6.55 14.85 0.10 0.35

Office 0.65 0.55 0.50 0.45

No activity 4.55 6.15 1.55 17.00

Residential Street Highway Commercial No activity

(d) 8 p.m.–10 p.m

Residential 41.80 2.40 2.15 0.05 0.85

Street 2.95 0.70 0.45 0.15 0.25

Highway 2.80 0.20 1.00 0.10 1.00

Commercial 2.05 0.30 1.35 7.20 1.90

No activity 5.65 0.55 2.85 0.80 20.70

Rows—true values; columns—predicted values. All values in %.

Table 1.
Confusion matrices of the classification results in four day parts: (a) 4 a.m.–7 a.m., (b) 8 a.m.–5 p.m.,
(c) 5 p.m.–7 p.m., and (d) 8 p.m.–10 p.m.
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land uses changes throughout the day. Some of the social functions, such as Commer-
cial, occur only in specific hours (Table 1b–d), while other social functions, such as
Highway and No activity, occur all day long, but not necessarily in the areas we chose.
For example, in our dataset, there is no cell labeled as No activity between 8 a.m. and
5 p.m. While Table 1 provides detailed accuracies for the different land uses in
different time parts of the day, Table 2 averages performance over the land uses and
time parts and illustrates the precision, recall, and F1 score for the classification of
each land use over all cells in the nine cities. Precision is the percentage of cells
correctly classified to specific land use c, recall is the percentage of cells of the specific
land use that are classified correctly, and the F1 score considers both recall and
precision by calculating their harmonic average

F1 ¼ 2
Precision∙Recall

Precisionþ Recall
(7)

Thus, we use the F1 score as the best indicator for the quality of classification of
certain land use.

Residential and Industrial are well identified (both have an F1 score of 0.82).
Residential is the most common land use in urban areas; therefore, correct identifica-
tion of it is important. In our work, 47% of the cells are Residential. All the land-use
categories except Residential have higher precision than recall. It indicates that the
classifier tends to classify as Residential, and all the other land uses are under-
classified. Residential has a high Recall (0.92) and lower precision, while Industrial
has high Precision (0.91) and lower recall. Commercial is relatively well-identified (F1
is 0.59). The commerce identification rate is damaged by the inaccuracy of location
estimation more than other land uses. As mentioned in Section 2, CDR-rendered
coordinate location estimation is inaccurate and can reach 350 m. Commercial streets,
because of their long and narrow shape, are vulnerable to location estimation mis-
takes. Because they are often surrounded by a “sea” of residential neighborhoods,
transmissions originating from the neighborhoods are mixed with transmissions orig-
inating from the commerce street. The result is a mixed cellular communication
behavior that makes correct identification harder. Indeed, Commercial is often con-
fused with Residential, as is shown in Table 1b and c. Later in the paper, we demon-
strate an example of a Commercial street in the city of Ra’anana that is confused with
its neighboring residential buildings. The same problem occurs in other narrow-
shaped land uses, such as streets and highways; both have a low identification rate.

Land uses Precision Recall F1

Residential 0.73 0.92 0.82

Commercial 0.70 0.52 0.59

Industrial 0.91 0.74 0.82

Office 0.46 0.28 0.35

Highway 0.25 0.19 0.21

Street 0.30 0.20 0.24

No activity 0.82 0.52 0.64

Table 2.
Precision, recall, and F1 of each land use.
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Street is also frequently confused with Residential (see Table 1a and d), rather not
surprisingly because they are located in the heart of neighborhoods. No activity is
relatively well-identified (F1 is 0.64).

We compared SSK performance that assumes possession of the social function of
only 5% of the cells to a supervised random forest (RF) [46] classifier that assumes
significantly more labeled cells. The RF classifier was trained on the same dataset and
the same areas, except that it was trained with 8-fold cross-validation, thus in each
fold, RF classified 1/8 of the cells based on the other 7/8 cells. Meaning, that compared
to SKK, which assumed possession of 5% of the cells, RF assumed possession of 87.5%
(7/8) of the cell. As expected, RF did achieve a higher accuracy rate of 84%; however,
the accuracy rate of SSK (74.4%) is considerably high, considering the lack of labeled
samples.

In Figure 5, we visualize the results on a map we refer to as a geographical
confusion map. It resembles a confusion matrix, but it displays the results on a
geographical map with each cell (sample) placed where it is located. Figure 5 com-
pares the geographical confusion maps of RF (Figure 5a–c) and SSK (Figure 5d–f)
classification on the work hours between 8 a.m. and 5 p.m. in three cities: Ra’anana
(RF Figure 5a and SSK Figure 5d), Ramat-Gan (RF Figure 5b and SSK Figure 5e),
and Tel Aviv (RF Figure 5c and SSK Figure 5f). The legend displays the colors
representing the four land-use classes in these hours. The colored circles beside each
batch of cells indicate the “real” land-use label of the cell batch that lies to its side. The
color of each of the cells indicates the land use it is classified to. Notice, some of the
cells have more than one color. This is because the results in these maps accumulate 45
classification results, 9 hours from 8 a.m. to 5 p.m. X 5 random training–testing
permutations.

Figure 6(left) focuses on part of Ramat-Gan’s RF classification results (Figure 5b).
See the cell marked “1”; it has three colors: blue, yellow, and a thin line of red. Fifty-
three percent of the cell is blue, indicating it was classified as Residential in 53% of the
runs (24 of the 45 runs). Also, almost half of the cell is yellow, indicating that it was
frequently classified as Industrial, and it includes a thin red line that indicates it was also
classified as Commercial (in 2 of the 45 runs). In contrast, the cell marked “2” is
completely yellow, indicating that it was classified as Industrial in all runs.

Comparing the visualized results, one can see that SSK, which relies on a small
number of labeled cells, suffers from higher classification variance than RF. In SSK,
more cells are not unanimously classified to the same cell in all 45 runs, as indicated by
more cells containing more than one color. For example, in Figure 5c, most of the cells
of the commercial streets Ibn Gabirol and Dizengoff in Tel-Aviv classified by RF are
uniformly red. This indicates that they were classified as Commercial in all runs.

However, the same streets classified by SSK (Figure 5f) are mostly red, indicating
that in most runs, they are correctly classified as Commercial, but blue is also prom-
inent, indicating that in a non-negligible number of the runs, they were classified as
Residential (note, however, that in both streets, the ground floor of the buildings is
stores and restaurants, that is, should be labeled Commercial, but the remaining,
usually three, floors are residential, and thus should be labeled as Residential). SSK
heavily relies on a random selection of the 5% cells used in the initial training set, in
contrast to RF that relies on a large and consistent training set. Raanana’s commerce
street, Ahuza St. (Figure 5a and d), is confused with Residential. This is mostly
because of the location estimation inaccuracy described earlier in this section, as the
street is surrounded by neighborhoods and, hence, receives cellular transmissions of
the neighboring Residential land use and is thereby confused with Residential.
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Moreover, this geographical confusion may be caused by residential buildings on the
street itself that mix the social use of the land (as in the two streets in Tel Aviv).

SSK classification is more biased. As an example, we will examine the results of
the commercial streets marked with a red circle beside them in Ramat-Gan
(Figure 5b and e). Both algorithms classified the commercial streets inconsistently,
sporadically classifying them as Commercial (correct) or as Residential (incorrect),
but RF correctly classified the cells in most runs as Commercial (most cells are mostly
red), whereas SSK classified some of the Commercial cells more as Residential (cells
that are mostly blue).

Figure 5.
Geographical confusion map comparison of RF (a)–(c) and SSK (d)–(f) for three cities shown in Figure 2
(bottom): (a) and (d) Ra0anana, (b) and (e) Ramat Gan, and (c) and (f) Tel Aviv.
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The accuracy of SSK is different across the different streets. Dizengoff St.
(Figure 5f) for example, is correctly classified as Commercial in most runs. Another
Commercial street in Tel Aviv, Ibn Gabirol St. (Figure 5f), is correctly classified at a
lower rate than Dizengoff, while Jabotinsky St. in Ramat-Gan (Figure 5e) is mostly
classified as Residential instead of Commercial. Analyzing the three streets indicates
that they have different characteristics. Dizengoff and Ibn Gabirol have higher com-
mercial densities than Jabotinsky, with many more shops, cafes, and bars. The auto-
mobile traffic on those streets is also different. All three have noticeable car traffic,
but Ibn Gabirol is a wider road than Dizengoff, and Jabotinsky is much wider than Ibn
Gabirol and serves as the main artery that connects several cities to Tel-Aviv. It may
be that Jabotinsky is confused with Residential because there are more residents living
there. On Jabotinsky, there are four-story residential buildings (and some 10–20-story
ones as well), mainly inhabited by families. In comparison, on Dizengoff and Ibn
Gabirol Streets, there are three-story buildings inhabited mostly by young single
people. For all these reasons, it is not surprising that these streets are classified
differently, as their social function differ.

In Figure 6(right), we illustrate the accuracy rate through the self-labeled itera-
tions. The figure demonstrates the accuracy rate (Acc) in accordance with the per-
centage of cells that were labeled. After the first iteration, 10% of the cells are
classified (5% labeled by ground truth knowledge +5% classified in the first iteration),
and the accuracy rate is high (89%). However, notice that, in this stage of the process,
90% of the cells are yet to be classified. Through the process, as more cells are
classified, the accuracy rate gradually declines—from 89% after the first iteration to
72% at the end of the process when all cells are classified. There are two reasons for
this. First, in each iteration, incorrect labels (due to erroneous labeling of previous
iterations) are added to the training set, causing the quality of the training set to
decline. Second, as the iterations go on, the samples added to the training set are those
that the algorithm was the least confident of in previous iterations. Notice we could
have stopped the iterations before all the cells were classified. The accuracy rate drops
more rapidly in the classification of the last 20% of the cells. If we would have stopped
the process when 80% of the cells were classified, then the accuracy rate would have

Figure 6.
(left) “Zoom in” on part of Ramat Gan’s geographical confusion map of the RF classification results (Figure 5b).
(right) Accuracy rate (Acc) vs. the percentage of classified cells added in the self-labeled process.
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been 81%. However, in that case, 20% of the cells would have been left unclassified, so
this is left as a trade-off for the user.

5. Neighbor smoothing integrated into SSK

The lack of labeled data in our SSK semi-supervised methodology diminishes the
classifier’s ability. To achieve a more accurate classification, we used a smoothing
process, which utilizes geographic neighbor similarity. Cells located close by in the
geographic space have a greater chance of sharing the same land use because lands of
unified social function are arbitrarily divided into cells and, thereby, neighboring cells
tend to share similar social functions. To prevent confusion, we would like to empha-
size that there are two different types of neighbors in the context of SSK—feature-
space neighbors and geographic neighbors. Until this point in the paper, we have
discussed feature-space neighbors. Two cells are considered feature-space neighbors if
the Euclidian distance between their feature representations is relatively small. In the
SSK without smoothing, only feature-space neighbors were considered. Geographic-
space neighbors are cells closely located on the geographical map, and therefore, we
use them for geographical smoothing.

Smoothing makes the results more homogenous in the geographical space. It
causes the algorithm to be more accurate overall, but less sensitive to island land uses,
relatively small lands that include a social function that is different from its sur-
rounding areas. Because geographical space smoothing diminishes the chance of iden-
tifying these lands, we evaluated different degrees of smoothing, thus, controlling the
trade-off between accuracy and sensitivity to island land uses.

The smoothing is integrated into the SSK process; in each iteration, before
assigning a class, the geographic neighbors are also considered. The land-use array Aq,
computed by the feature-space neighbors of xq, is weighted with the geographical
neighbors’ land-use arrays (computed by their feature-space neighbors) to create
an integrated array that is used for classification and confidence estimation. The
rest remains the same—in every iteration, 5% of the samples are added to the
training set G, with a proportion of the number of samples assigned to each class,
and the process ends when all samples are labeled (or before, depending on the user/
application).

To weigh between the query cell land-use array and its geographic neighbors’ land-
use arrays, we first need to define a neighbor. xi is considered as xq’s geographic
neighbor if the geographical distance between them is smaller than a distance denoted
as radiusq. The distance between two cells is defined as the distance between their
geographical centers. The neighbors’ radius of query cell xq is given by:

radiusq ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

widthq=2
� �2 þ heightq=2

� �2
r

, (8)

where widthq and heightq are xq’s width and height (meters).

The square root expression in Eq. (6) is the length of half of the cell’s diagonal. That
way, the radius is fitted to the size and shape of the cell. Half the diagonal is multiplied
by 3 because, in a preliminary study, it was found to fit the problem. Figure 7(left)
demonstrates the query cell’s neighbor radius. Cell xq is the default squared cell–

200 � 200 m2; therefore, radiusq ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

200=2ð Þ2 þ 200=2ð Þ2
q

¼ 424:3m. In the example
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in Figure 7, six cells’ centers fall inside the circle formed by the neighbors’ radius and,
thus, those six cells, numbered 1 to 6, are considered as xq’s neighbors.

In Figure 7(left), the cells within the neighbors’ radius of xq lay on different
geographical distances from the center of xq. For example, the centers of cells x3, x1,
and x6 are 200, 283, and 400 meters away, respectively. We want to weigh the
contribution of a neighbor according to its distance from the query cell because the
closer the neighbor is, the greater the chance that it shares the same land use as the
query cell. The weights are given by:

W ið Þ
q ¼

1

D xq, xi
� �2 ∀i∈ nbrsq, (9)

where nbrsq is the set of xq0s neighbors, and D xq, xi
� �

is the geographical-based
distance between query cell xq and its neighbor xi.

In the example demonstrated in Figure 7(left), the weights of cells x3, x1, and x6
are W 3ð Þ

q ¼ 1=2002, W 1ð Þ
q ¼ 1=2832, and W 6ð Þ

q ¼ 1=4002. Notice that between these

three cells, cell x3 is the closest to cell xq, thus its weight is the highest accordingly.
Notice, we denote distances differently in the feature space and the geographical

space. Lower case d is a distance in the feature space (Eq. (1)), and upper case D is a
distance in the geographical space (Eq. (7)).

We then compute an array NAq that combines land-use array for xq’s neighbors by
weighting every neighbor’s distance from xq:

NAq ¼
P

i∈ nbrsq
W ið Þ

q Ai
P

i∈ nbrsq
W ið Þ

q

: (10)

For demonstrating the mathematical equations used for integrating neighbor
smoothing in SSK, we will use the example illustrated in Figure 7(right). xq has only
two neighbors, xa and xb. Since xa and xb are located at the same distance from xq,

their weights are equal, W að Þ
q ¼W bð Þ

q ¼ 1=2682.

Let us assume the land-use arrays are Aa ¼ 0, 0, 1, 0ð Þ and Ab ¼ 0, 0:8, 0, 0:2ð Þ.
Then NAq is calculated by the weighted average of Aa and Ab:NAq ¼ W

að Þ
q AaþW bð Þ

q Ab

W
að Þ
q þW bð Þ

q

¼
1=2682ð ÞAaþ 1=2682ð ÞAb

1=2682ð Þþ 1=2682ð Þ ¼
AaþAb

2 ¼ 0, 0, 1, 0ð Þþ 0, 0:8, 0, 0:2ð Þ
2 ¼ 0, 0:8, 1, 0:2ð Þ

2 ¼ 0, 0:4, 0:5, 0:1ð Þ. As

Figure 7.
(left) The neighbors’ radius for the query cell q. (right) An example in which query cell xq has two equally closed
neighbors xa and xb.
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can be seen, the value in entry 3 (0.5) is the highest in the array, indicating that xq’s
neighbors tend to be attributed to class 3, that is because xa and its corresponding
land-use array Aa are 100% attributed to class 3. However, xq’s neighbors also tend to
be attributed to class 2, which is because xb is most likely attributed to class 2.

Aq and NAq, the query cell land-use array and its neighbor’s land-use array, are
integrated to IAq by calculating their weighted average:

IAq ¼ P∙NAq þ 1� Pð Þ∙Aq, (11)

where P is the weight of NAq and, therefore, it is given to all of xq’s neighbors
together. We denote P as the neighbor weight. For example, consider again the
example in Figure 7(right) and assume P ¼ 0:3 and Aq ¼ 0:1, 0:8, 0:1, 0ð Þ. Then,

IAq ¼ 0:3 � 0, 0:4, 0:5, 0:1ð Þ þ 0:7 � 0:1, 0:8, 0:1, 0ð Þ ¼ 0:07, 0:68, 0:22, 0:03ð Þ: (12)

Examining Aq extracted by xq’s feature-space neighbors, it seems like xq has the
highest chance to be attributed to class 2, but examining NAq, extracted by xq’s
geographic-space neighbors, it seems most likely that it belongs to class 3. However,
after incorporating both spaces, xq is most likely attributed to class 2

The neighbor weight P depends on the number of geographic neighbors xq has.
The more neighbors it has, the more reliable their weighted array is, and we want it to
have a more significant role in determining xq’s class. The formula for computing P

P nbrsq
	

	

	

	, σ
� �

¼ σ þ σ

nbrsq
	

	

	

	� 1
� �

11
nbrsq
	

	

	

	>0

0 nbrsq
	

	

	

	 ¼ 0

8

<

:

, (13)

where nbrsq
	

	

	

	 is the number of neighbors that xq has, and σ is the smoothing

parameter that determines the degree of influence that the neighbors have in the
classification of the query cell. Setting a low σ, for example, will cause the neighbors
of the query cells to be less significant in the classification.

In the example above, P ¼ 0:3, because the number of neighbors nbrsq
	

	

	

	 ¼ 2

(as can be seen in Figure 7(right)), and σ ¼ 0:275. Therefore, P nbrsq
	

	

	

	, σ
� �

=0:275

þ0:275 2�1ð Þ
11 ¼ 0:3.

Eq. (9) is designed in a way that when xq has only one neighbor, its neighbor

weight is P nbrsq
	

	

	

	 ¼ 1, σ
� �

¼ σ, whereas if xq has 12 neighbors (the maximal number

of neighbors because more neighbors cannot fit inside the neighbor’s radius consider-

ing the shape and size of the cells), then P nbrsq
	

	

	

	 ¼ 12, σ
� �

¼ 2σ. The value of P grows

linearly between the case of only one neighbor and the case of 12 neighbors. If the

query cell does not have any neighbors, then P nbrsq
	

	

	

	 ¼ 0, σ
� �

¼ 0, and IAq ¼
0∙NAq þ 1� 0ð Þ∙Aq ¼ Aq. Because there are no neighbors to consider, NAq will have
no influence on setting IAq, and IAq ¼ Aq.

The classification confidence is calculated as in Eq. (3), but here it is calculated
over IAq instead of Aq

confidenceq ¼ max IAq

� �

, (14)

where in the example, confidenceq ¼ max 0:07, 0:68, 0:22, 0:03ð Þ ¼ 0:68.
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Again, in each iteration, the number of samples added to G from each class is
proportional to the number of cells assigned to that class in this iteration. If confidenceq is
high enough, then xq is classified as the class with the highest value in IAq. The algorithm
ends when all samples are added to G (or before based on the user/application).

The procedure of the SSK algorithm with neighbor smoothing:

1.Set σ (the smoothing parameter; can be set using a validation set)

2.G L (set the training set G to be the predefined labeled samples L)

3.Q  OnG (Q andO are the sets of unlabeled samples and all samples, respectively)

4.For each xq ∈Q (for each yet unlabeled sample)

a. Aq ¼
Pk

i¼1w
ið Þ
q Ai

Pk

i¼1w
ið Þ
q

(land-use array) (Eq. (2))

b. radiusq ¼ 3 ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

widthq
2

� �2
þ heightq

2

� �2
r

(neighbor radius) (Eq. (5))

c. nbrsq  ∅

d. For each xi ∈G

If D xq, xi
� �

< radiusq then nbrsq  nbrsq∪xi
� �

(add to nbrsq the xi
neighbor)

e. w ið Þ
q ¼ 1

D xq, xið Þ2 ∀i∈ nbrsq (Eq. (7))

f. NAq ¼
P

i∈ nbrsq
w

ið Þ
q Ai

P

i∈ nbrsq
w

ið Þ
q

(neighbors’ land-use array) (Eq. (8))

g. If nbrsq
	

	

	

	>0 thenP nbrsq
	

	

	

	, σ
� �

¼ σ þ σ

nbrsqj j�1ð Þ
11

Else P nbrsq
	

	

	

	, σ
� �

¼ 0 (Eq. (10))

h. IAq ¼ P∙NAq þ 1� Pð Þ∙Aq (integrated land-use array) (Eq. (9))

i. confidenceq ¼ max IAq

� �

(Eq. (11))

5.For each land-use class c

a. Z  sub areas with the highest confidence assigned to c

b. G G∪Z; Q  QnZ (the cells assigned to class cwith the highest confidence
are added to G and subtracted from Q)

6. If Qj j>0, then go to step 4, else output G
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5.1 Example

Figure 8 illustrates an example of the classification of a query cell xs after consid-
ering both spaces: xs’s neighbors in the feature space, under the title “Feature space”
(Figure 8(left)), and xs’s neighbors in the geographical space, under the title “Geo-
graphical space” (Figure 8(right)).

In this example, the class assignment is based on the two samples that are closest in
the feature space, and there are four land-use classes. xs’s two nearest neighbors in the
feature space are xr and xq, and their land-use arrays are Ar ¼ 0, 0, 1, 0ð Þ and Aq ¼
0, 3

4 , 0,
1
4

� �

with computed weights w
rð Þ
s ¼ 1 and w

qð Þ
s ¼ 4, respectively. Notice that

w
rð Þ
s and w

qð Þ
s are set, respectively, according to the xr and xqfeature space distances

from the query cell xs. In Figure 8(left), under the title “Feature space,” the two bar
graphs represent the land-use arrays of xr and xq, which are Ar and Aq, respectively.
For example, because Ar has 100% confidence of being attributed to class 3, the value

Figure 8.
Land-use classification of a query cell based on (left) only the feature space, (right) only the geographical space,
and (bottom) both using neighbor smoothing.
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of the bar of class 3 is 1, and the values of the other bars are 0. xs0s land-use array is

computed as a weighted average of Ar and Aq (Eq. (2)): As ¼ w
rð Þ
s Arþw qð Þ

s Aq

w
rð Þ
s þw qð Þ

s

¼
0, 0:6, 0:2, 0:2ð Þ, as is demonstrated in Figure 8(left), and it is the result of the
weighted average of Ar and Aq. Without neighbor smoothing, assigning a class to xs
would have been decided at this point, and xs would have been assigned to the class
which is the highest in As, that is, class 2.

But here, we integrate the neighbors’ land use in the classification decision. Let us
assume xs has two geographical neighbors xa and xb, and their land-use arrays are

Aa ¼ 0, 0, 0, 1ð Þ and Ab ¼ 0, 0:1, 0:1, 0:8ð Þ, and their weights are W að Þ
s ¼ 2 and

W bð Þ
s ¼ 3, respectively. Notice that W að Þ

s and W bð Þ
s are set according to the Euclidean

geographic distance of xa and xb from the query cell xs. In Figure 8(right), under
the title “Geographic space,” the two bar graphs represent the land-use arrays of xa
and xb. xs’s neighbors’ land-use array is computed by a weighted average of Aa and Ab

(Eq. (7)): NAs ¼ W
að Þ
s AaþW bð Þ

s Ab

W
að Þ
s þW bð Þ

s

¼ 0, 0:06, 0:06, 0:88ð Þ. NAs is demonstrated in Figure 8

(right) under the title “Geographical component.” The maximal value of 0.88, based
on the influential geographic neighbors of xs0s, challenge the cell’s previous assignment
of class 2 to that of class 4.

The final decision about assigning a class to xs is after combining the feature
component As and the geographic component NAs. Let us set the smoothing parameter
σ at 0.1, and thus the weight of the neighbors’ component is (Eq. (9)):

nbrsq
	

	

	

	 ¼ 2, σ ¼ 0:1
� �

¼ 0:11:xs ‘s integrated land-use array (Eq. (8)) is

IAs ¼ 0:11∙NAs þ 1� 0:11ð Þ∙As ¼ 0, 0:54, 0:18, 0:28ð Þ, as is demonstrated in
Figure 8(bottom) under the title “Land-use array xs.” If we consider IAs’s 0.54
confidence high enough, then xs would be classified as class 2 and added to the training
set G for the next iteration.

6. Empirical evaluation of neighbor smoothing integrated into SSK

In this section, we evaluate the effect of the neighbor smoothing integrated
into SSK. Figure 9 compares the SSK accuracy with different neighbor smoothing
values σ, varying from 0 (no smoothing performed) to 0.25. As σ is higher, the
accuracy rate is higher, varying from 74% when no smoothing is performed to 80%
when σ is 0.25.

Recall that the accuracy rate of RF is 84%. Although not reaching RF’s accuracy
rate, the smoothing enables SSK accuracy to be significantly close to that of RF even
though the latter is a supervised paradigm that uses a much bigger training set (87.5%
of the cells are labeled and used as ground truth for training the RF in each of the eight
cross-validation folds, comparing to only 5% of the cells that are used by the SSK).
However, the effectivity of the smoothing process is overestimated because the
neighbor similarity property that the neighbor smoothing relies on is exaggerated in
our dataset. In the process of selecting the areas, we chose ones that are homogenous
in land use, and their “real” land-use label is relatively easy for locals to determine.
This means that most areas include only one land use in a specific hour. Homogenous
areas have some advantages—they are practical for labeling, and they can serve to
assess the process feasibility, but they are less representative of normal urban behav-
ior. Thus, the areas we selected are overly homogenous. Therefore, the chance of
neighboring cells sharing the same land use is higher than in normal urban behavior.
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Island land uses located in the heart of other land uses, to which the neighbor
smoothed SSK is less sensitive, occur less frequently in our data. We do expect this
process to also perform well in a less homogenous dataset, however, in a more limited
manner. We expect the algorithm to perform better when setting a higher smoothing
parameter value, up to a point where the results become too homogenous, causing too
many errors in identifying island land uses.

Figure 10 compares the geographical confusion maps of SSK classification without
(Figure 10a and b) and with (Figure 10c and d) neighbor smoothing with σ ¼ 0:25 on
the work hours 8 a.m. to 5 p.m. in Ra’anana (Figure 10a and c) and Kiryat Arye, an
industrial area of Petch Tikva (Figure 10b and d). Recall that the colors in each cell
demonstrate accumulation of the classification results of the different hours and
various random cells chosen to be used for the initial set of labeled cells.

The smoothing causes the classification assignment to be more consistent and less
influenced by the randomness effect caused by randomly chosen cells with predefined
land use. Considering more factors in the cell class assignment, that is, considering the
cell’s neighbors, diminishes the effect of randomness and lowers the classification
variance. For example, see the classification of the industrial cells in Kiryat Arye. This is
an area of homogenous social function, and the smoothing makes classification there
more consistent. The cells are more uniformly colored in the same color (yellow)
indicating that they were classified to the same class in more of the iterations. The
smoothing also lowers SSK’s bias. Because of the smoothing, all cells in Kiryat Arye are
correctly classified as Industrial in most of the algorithm iterations.Without smoothing,
35 out of the 42 cells are well classified in most of the runs, while with smoothing, all 42
cells are well classified in most of them. For example, the bottom-right cell in Kiryat-
Arye without smoothing (Figure 10b) is incorrectly classified in most runs (note the
small yellow area indicating “Industrial” compared to the other colors), whereas with
smoothing (Figure 10d), this cell is mostly correctly classified as “Industrial.”

On the downside, neighbor smoothing diminishes the ability to identify “island”
land uses. For example, see the commercial island street in Ra’anana located in the
heart of several neighborhoods. Notice that even before smoothing (Figure 10a), SSK
mostly classified it as Residential, as it is affected by nearby residential cells (as
described above). Because the triangulating signal strength location estimation

Figure 9.
Effect of smoothing parameter σ on the accuracy rate (Acc).
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technology used for the location estimation in this work suffers from inaccuracy, the
extent of the problem is not negligible. Especially, small and narrow (“island”) streets
that are surrounded by a “sea” of residential neighborhoods are affected by this
inaccuracy. Smoothing complicates the task of identifying island land use, as it makes
the results more homogenous, and thus, the classifier is more decisive and mistakenly
classifies more to Residential (in the case of Ra0anana; Figure 10c).

Smoothing influence depends on the geographical structure of the land use. We
will distinguish between geographically wide-stretching land uses, such as Residential,
and island land uses, which are usually located in the heart of a wide-stretching land
use, such as commercial streets or shopping malls, or located at the borders between
them, such as highways.

Neighbor smoothing causes the wide-stretching land uses to expand over island
land uses and, consequently, more lands are classified as wide-stretching. Therefore,
wide-stretching land uses recall increases—more cells are classified as wide-stretching
with more cells identified correctly, but precision declines because some of the “new”

Figure 10.
Geographical confusion maps of SSK without (a, b) and with (c, d) smoothing (σ ¼ 0:25).
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wide-stretching cells belong to the neighboring island land use; thus, the percentage of
correctly classified cells declines. The recall of island land uses decreases because
fewer islands are identified, whereas precision increases because.

the cells classified as islands are those that are the most unambiguously correctly
classified.

However, because our dataset is homogenous, both precision and recall improve in
all land uses. Figure 11 demonstrates the effect of the smoothing parameter on recall
and precision of wide-stretching Residential (Figure 11a) and Commercial island land
(Figure 11b) uses.

In the wide-stretching Residential example, recall ascends from 0.92 to 0.96; thus,
50% of the unidentified Residential cells are identified due to the smoothing. Whereas
in the Commercial island land use, recall ascent is less prominent, from 0.52 to 0.54;
thus, a 4% rise of the unidentified Commercial cells is identified due to the smoothing.
As we would expect, the recall improvement in the wide-stretching land uses is
considerably more significant. In the wide-stretching Residential cell, precision
ascends from 0.73 to 0.76; thus, the percentage of cells incorrectly assigned as Resi-
dential is slightly reduced from 27–24%. Whereas in the Commercial island land use,
precision rises significantly from 0.70 to 0.82; thus, the percentage of cells incorrectly
assigned as Commercial is reduced from 30–18%. As we would expect, the precision
improvement in the island land uses is considerably more significant.

7. Discussion and conclusions

Previous works dedicated to social land-use mapping mostly used more than one
data resource and complex methodologies that integrate them. Other works assumed
substantial prior knowledge about the examined lands but when used relatively little
knowledge about the examined city achieved not satisfactory accuracy rates [18]. The
main contribution of this paper is that it offers a method for social land-use mapping
when only sparse prior knowledge about the examined city exists, and by relying on
the CDR, an inexpensive and available data resource is routinely gathered by telecom
operators.

We introduced SSK, a semi-supervised algorithm that requires a relatively small
number of labeled samples and, therefore, fits the condition of sparse prior

Figure 11.
Smoothing effect (σ) on the precision and recall performance measures in classifying (a) wide-stretching residential
land uses and (b) narrow commercial island land uses.
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knowledge. The heart of SSK is the combination of the KNN classifier and the self-
labeled technique that enables the enlargement of the training set in an iterative
manner. SSK achieves an accuracy rate of 74.4%, a significantly higher rate than that
achieved in the works of Toole et al. [42] and Pei et al. [18] of 54% and 58%,
respectively. These works also relied mainly on CDR as their main data resource.
However, it is not possible to infer that SSK performs better than their methodologies
because our validation was on a very different dataset. Whereas they performed land-
use mapping of a whole city, Boston in the work of Toole et al. [42], and Singapore in
the work of Pei et al. [18], we chose areas of relatively homogenous social function
from different cities in Israel. The task of classification in deliberately chosen areas of
more “pure” social function is easier. We also compared the SSK’s performance to that
of a random forest (RF) classifier trained using many more labeled places, with 87.5%
of the surface labeled (7/8 of the data set is used for training) compared to 5% in SSK.
As expected, RF lowered the bias and variance of the classification and achieved a
higher accuracy rate than SSK, but relative to the prior knowledge used in SSK, the
performance gaps are mild. In a condition of only a small number of labeled samples,
the effectiveness of conservative supervised classification algorithms, such as RF,
deteriorates. Therefore, if getting additional land-use labels is out of reach or too
expensive, it is better to use SSK.

SSK heavily relies on few labeled cells. If the land use in these cells is relatively
mixed, then it has the potential to heavily damage the classification. Therefore, if cells
of relatively “pure” social function cannot be obtained, then it is better to consider
using an unsupervised method. The good thing is that, in most cases, the ground truth
labeled cells are easier to be categorized to one land use (that is the reason they are
chosen to be labeled); thus, they are relatively not mixed. Through the iterative steps,
coverage of classified lands grows, but accuracy declines. We offer the option to stop
the process before all land use is classified. For example, stopping the process at 80%
of classified areas raises the accuracy rate to 81%, instead of 74.4%, if all areas are
classified.

We also introduced a version of SSK that includes neighbor smoothing. We rely on
the neighbor social land-use similarity property and offer a unique interpretation of
KNN—a KNN that considers both the feature-space neighbors as in the regular KNN
and the geographic space neighbors. We discussed the merits of incorporating
smoothing, along with its drawbacks. Smoothing improves the overall accuracy; how-
ever, it degrades the chances to discover narrow land of a social function that is
different than its surroundings. Therefore, the algorithm enables a parameter that sets
the level of smoothing performed and, thus, controls the trade-off between overall
accuracy and sensitivity to an exceptional social function. High levels of neighbor
smoothing should be most effective in cities that are more “planned”; these cities tend
to be more divided into functional parts of homogenous social function. Validating
neighbors’ smoothing shows that it indeed improves SSK’s accuracy rate to 80% with
the most smoothed results. In our dataset, it also improves the discovery rate of island
land uses. This is mainly due to the homogeneity of the social function of the areas we
chose to include in this work.

SSK is assembled of several components, each aiming to tackle some of the diffi-
culties in the problem of mapping social functions (e.g., lack of labeled samples). In
addition, SSK leverages opportunities inherent in the problem:

1.Self-labeled technique – While it might be costly to attain sufficient labeled
samples needed for a classic classifier, it is relatively easy to attain labels of few
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locations in a city. Residents can participate in the process of self-labeling of their
city and thereby contribute to the efforts to make their own city smarter.

2.Neighbor smoothing – Usage of only CDR as a data resource requires creative
solutions for improving the accuracy of the identification. One property that can
be utilized is the resemblance in terms of the social function of neighboring parts
of the city. Neighbor smoothing incorporates the geographic neighbors in the
classification, and, in our case, it proved to improve the average accuracy rate
from 74% to 80%. By integrating a smoothing parameter, we limited the effect of
neighbor smoothing to prevent overly homogenous classification that is not
sensitive to an exceptional social function.

3.Usage of KNN classifier—KNN fits perfectly for integrating the two spaces—
feature space and geographic space and thus incorporates neighbor smoothing.

4.Usage of the distance weighted version of KNN-DKNN, which gives in the
classification higher weight to closer neighbors, is mainly implemented for
integrating the geographic space. Obviously, adjacent lands tend to share a
similar social function, while lands that are relatively close but not adjacent have
a lower probability to share the same social function. Therefore, we chose to use
DKNN, which would cause the classification to rely more on the closest lands.
The same logic is applied to the feature space, mainly for uniformity purposes
between the two spaces.

In future work, we would like to validate the offered methodology on a whole city.
Because some of the social functions are not well identified, creative solutions will be
needed to identify them more consistently. In addition, further research may lead to
an enhanced smoothing logic that is more sensitive to island land uses. A limitation of
our approach may be that cellular communication cannot always capture the differ-
ences between some land uses (e.g., when the communication is limited in less popu-
lated areas), and then more data resources will be needed. Therefore, it may also be
interesting to examine combining this methodology with other data resources, such as
POI and remote-sensing imagery.
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